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Chapter 1

Systems of Linear Equations

1.1 Fields

Definition 1.1. A field is a nonempty set F equipped with two binary operations

F × F −→ F
(a, b) 7→ a+ b

,
F × F −→ F
(a, b) 7→ ab

,

called respectively addition and multiplication, such that
(i) The operations are associative and commutative, i.e. for every a, b, c ∈ F

a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c,

a+ b = b+ a, ab = ba.

(ii) There exist elements 0, 1 ∈ F , called respectively zero and identity of F , such
that 1 6= 0, and for every a ∈ F

a+ 0 = a, a1 = a.

(iii) Every a ∈ F has an opposite, i.e. there exists b ∈ F such that

a+ b = 0.

(iv) Every a ∈ F − {0} has an inverse, i.e. there exists c ∈ F such that

ac = 1.

(v) Multiplication is distributive over addition, i.e. for every a, b, c ∈ F

a(b+ c) = ab+ ac.

1
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Remark. It is easy to show that the zero and identity of F are unique. Also, for
any a ∈ F , its opposite and its inverse (if a 6= 0) are unique, and will be denoted
by −a and a−1 respectively. For the proofs see Section A.1. In addition, note that
due to the commutativity we have

0 + a = a, 1a = a, (−a) + a = 0.

We also have a−1a = 1, if a 6= 0.

Notation. The subtraction and the division of two elements a, b of a field, are
respectively defined as follows

a− b := a+ (−b), a/b =
a

b
:= ab−1 when b 6= 0.

Remark. Informally, a field is a structure in which we can perform the four basic
arithmetic operations, i.e. addition, subtraction, multiplication, and division.

Example 1.2. Q,R are fields with the usual addition and multiplication. Z is not
a field as it has nonzero elements with no (integer) multiplicative inverse, although
it has all the other properties of a field.

Proposition 1.3. Let F be a field. Then for all a, b, c ∈ F we have
(i) (Cancellation Laws)

a+ c = b+ c =⇒ a = b,

ac = bc, c 6= 0 =⇒ a = b.

(ii) 0a = 0 = a0. And ab = 0 =⇒ a = 0 or b = 0.
(iii) −(−a) = a, and −(a+ b) = (−a) + (−b) = −a− b.
(iv) If a 6= 0 then (a−1)−1 = a. And if a, b 6= 0 then (ab)−1 = a−1b−1.
(v) (−a)b = −ab = a(−b), and (−a)(−b) = ab.
(vi) −a = (−1)a, and for a 6= 0 we have (−a)−1 = −a−1.

Proof. The proofs can be found in Section A.1. �

Remark. It can happen in a field that
p times︷ ︸︸ ︷

1 + 1 + · · ·+ 1 = 0 for some prime integer
p. In this case we say that the characteristic of the field is p. If this does not
happen we say that the characteristic of the field is zero. Q,R are of characteristic
zero.
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1.2 Complex Numbers

Definition 1.4. The set C of complex numbers is the set R2 equipped with the
following addition and multiplication

(a, b) + (c, d) := (a+ c, b+ d),

(a, b)(c, d) := (ac− bd, ad+ bc).

Theorem 1.5. C is a field, whose zero and identity are respectively

(0, 0), and (1, 0).

Also the opposite of a complex number z = (a, b) is

−z := (−a,−b),

and when z is nonzero its inverse is

z−1 :=
( a

a2 + b2
,
−b

a2 + b2

)
.

Proof. Exercise. �

Remark. It is easy to see that the characteristic of C is zero, since the characteristic
of R is zero.

Remark. The map a 7→ (a, 0) from R into C is a one-to-one map that preserves
addition and multiplication, i.e.

(a, 0) + (b, 0) = (a+ b, 0), (a, 0)(b, 0) = (ab, 0).

Thus C contains a copy of the field R. We will abuse the notation and denote the
element (a, 0) by a. We also define i := (0, 1). Then any complex number z = (a, b)
can be written as

z = (a, b) = (a, 0) + (0, b) = (a, 0) + (0, 1)(b, 0) = a+ ib.

Note that we have
i2 = (0, 1)2 = (−1, 0) = −1,

i.e. i is a square root of −1.

Definition 1.6. Let z = (a, b) = a + ib be a complex number. The real numbers
a, b are called the real part and the imaginary part of z, respectively, and we
will denote them by

a = Re z, b = Im z.
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The conjugate of z is the complex number

z̄ := (a,−b) = a− ib.

The modulus or the absolute value of z is the nonnegative real number

|z| :=
√
a2 + b2.

Remark. Note that |z| ≥ 0, and |z| = 0 ⇐⇒ z = 0.
Remark. We can define the integer powers of complex numbers, as we did in
Section A.1 in a more general setting. Then all the basic properties of powers
expressed in Theorem A.13 also hold for powers of complex numbers.

Theorem 1.7. For all z, w ∈ C and n ∈ Z we have
(i) z + w = z̄ + w̄.
(ii) zw = z̄w̄.
(iii) z̄ = z.
(iv) zz̄ = |z|2, hence z−1 = |z|−2z̄.
(v) |z̄| = |z|.
(vi) |z + w| ≤ |z|+ |w|.
(vii) |zw| = |z||w|.
(viii) |Re z| ≤ |z|, and |Im z| ≤ |z|.
(ix) z = z̄ if and only if z ∈ R.
(x) z + z̄ = 2 Re z, and z − z̄ = 2i Im z.
(xi) |zn| = |z|n (when z = 0 we assume n > 0).
(xii) zn = z̄ n (when z = 0 we assume n > 0).

Proof. Exercise. �

Remark. Suppose z = a + ib is nonzero. Then r := |z| > 0. Now z
r has modulus

one, so it belongs to the unit circle in C. Hence there is a unique θ ∈ [0, 2π) such
that z

r = eiθ = cos θ + i sin θ. Therefore

z = reiθ = r(cos θ + i sin θ).

This is called the polar representation of z. The number θ is called the ar-
gument of z, and is denoted by arg z. In fact θ is the signed angle between the
segment connecting z and 0, and the half line of nonnegative real numbers.
Remark. Suppose z = reiθ and w = seiφ. Then we have

zw = rsei(θ+φ).

The interpretation of this formula is that when you multiply a complex number w
by a complex number z, you scale the modulus of w by the modulus of z, and you
rotate w around the origin by the angle arg z.
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Definition 1.8. A field F is called algebraically closed, if every nonconstant
polynomial with coefficients in F has at least one root in F .

Example 1.9. By the fundamental theorem of algebra, C is an algebraically closed
field. But the fields R,Q are not algebraically closed. For example, the polynomial
x2 + 1 does not have a root in R, and the polynomial x2 − 2 does not have a root
in Q.

1.3 Matrices

Definition 1.10. Let F be a field, and m,n ∈ N. An m× n matrix with entries
in F is a function

A : {(i, j) : i, j ∈ N, i ≤ m, j ≤ n} → F.

We denote by Aij (or Ai,j) the value of A at (i, j), and call it the ij-th entry of
A. The matrix A is usually denoted as a rectangular array of elements of F with
m rows and n columns

A = [Aij ] =

A11 · · · A1n
...

. . .
...

Am1 · · · Amn

.
The 1× n matrix [Ai1, . . . , Ain] is called the i-th row of A, and is denoted by Ai,..
Also, the m× 1 matrix A1j

...
Amj


is called the j-th column of A, and is denoted by A.,j . A 1 × n matrix is also
called a row vector, and an m × 1 matrix is also called a column vector. The
set of m× n matrices with entries in F is denoted by Fm×n. The size of a matrix
A ∈ Fm×n is m× n.

Remark. We know that Fn is the set of ordered n-tuples of elements of F . In
order to make this precise, we can define Fn to be the set of functions

a : {1, 2, . . . , n} → F.

Then we denote by ai the value of a at i, and we call it the i-th component of a.
We will denote a by the following familiar notation

a = (a1, . . . , an),
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and we also call it a vector. We can identify Fn with both F 1×n and Fn×1 via the
maps

(a1, . . . , an) 7→ [a1, . . . , an],

(a1, . . . , an) 7→

a1...
an

.
In particular, we always identify F with F 1×1. We also refer to the i,1-th entry
of a column vector, or the 1,i-th entry of a row vector, as the i-th component of
them.

Remark. Note that as matrices are functions into F , it suffices to define them by
specifying their ij-th entry for every i, j. Also, when we want to show that two
matrices are equal, it is enough to check the equality of their ij-th entry for each
i, j. The same things apply to the elements of Fn.

Definition 1.11. Let F be a field, and m,n ∈ N. The m × n zero matrix is a
matrix whose entries are all zero. We often denote the zero matrix simply by 0.
A square matrix is a matrix for which m = n, i.e. a matrix that has the same
number of rows and columns. The (main) diagonal of a square matrix A is the
n-tuple (A11, A22, . . . , Ann) ∈ Fn. The entries Aii are referred to as the diagonal
entries of A. The square matrix A is called upper triangular if Aij = 0 for j < i.
In other words, the entries of A below its main diagonal are zero, so A has the form

A11 A12 · · · A1n

0 A22 . . . A2n
...

...
. . .

...
0 0 · · · Ann

.
Similarly, a square matrix A is called lower triangular if Aij = 0 for j > i. A
diagonal matrix is a square matrix A for which Aij = 0 when i 6= j, so it has the
form 

A11 0 · · · 0
0 A22 . . . 0
...

...
. . .

...
0 0 · · · Ann

.
A special diagonal matrix is the n× n identity matrix, which is defined by

Iij = (In)ij :=

{
0 i 6= j,

1 i = j.
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Definition 1.12. Let F be a field, and m,n ∈ N. The addition of two m × n
matrices A,B with entries in F , is defined by

(A+B)ij := Aij +Bij .

The multiplication of an m × n matrix A with an n × l matrix B is an m × l
matrix AB, which is defined by

(AB)ij :=
n∑
k=1

AikBkj .

The scalar multiplication of a ∈ F and A ∈ Fm×n is defined by

(aA)ij := aAij .

The transpose of an m× n matrix A is the n×m matrix AT that satisfies

(AT)ij := Aji.

Notation. For a matrix A we set −A := (−1)A, so (−A)ij = −Aij . Also, for two
m× n matrices A,B we set A−B := A+ (−B).

Remark. Remember that we can identify Fn with both Fn×1 and F 1×n. These
identifications allow us to apply the above operations to the elements of Fn. In
particular the addition and scalar multiplication on Fn are defined as follows

(a1, . . . , an) + (b1, . . . , bn) := (a1 + b1, . . . , an + bn),

a(a1, . . . , an) := (aa1, . . . , aan),

where a ∈ F and (a1, . . . , an), (b1, . . . , bn) ∈ Fn. In addition, the zero vector
is 0 = (0, . . . , 0), and we set −(a1, . . . , an) := (−a1, . . . ,−an). Note that these
operations will also have the properties stated in the next theorem, since they are
equivalent to the operations on matrices.

Remark. Let A,B ∈ Fm×n and a ∈ F . It is easy to show that for every i, j we
have

(A+B)i,. = Ai,. +Bi,., (aA)i,. = aAi,., (Ai,.)
T = AT

.,i,

(A+B).,j = A.,j +B.,j , (aA).,j = aA.,j , (A.,j)
T = AT

j,..

Theorem 1.13. Let F be a field. Then for all L ∈ F p×m, A,B,E ∈ Fm×n,
C ∈ Fn×l, and a, b ∈ F we have
(i) The addition of matrices is associative and commutative, i.e.

A+ (B + E) = (A+B) + E, A+B = B +A.
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(ii) Let 0 ∈ Fm×n be the zero matrix, then

A+ 0 = A, A+ (−A) = 0.

(iii) 1A = A, and ImA = A = AIn.
(iv) We have

L(A+B) = LA+ LB, (A+B)C = AC +BC.

(v) We have

a(A+B) = aA+ aB, (a+ b)A = aA+ bA,

(aA)C = a(AC) = A(aC), a(bA) = (ab)A.

(vi) If A or C is the zero matrix, then AC is the zero matrix. Also, if a is zero,
or A is the zero matrix, then aA is the zero matrix.

(vii) We have

(A+B)T = AT +BT, (aA)T = aAT,

(AC)T = CTAT, (AT)T = A.

Proof. The proofs can be found in Section A.2. �

Remark. As a consequence of the above theorem, we can easily show by induction
that if A1, . . . , Ak ∈ Fn×n then we have

(A1 · · ·Ak)T = AT
k · · ·AT

1.

Theorem 1.14. The multiplication of matrices is associative, i.e. for any field F
and all matrices A ∈ F p×m, B ∈ Fm×n, and C ∈ Fn×l, we have

(AB)C = A(BC).

Proof. We have

(
(AB)C

)
ij

=

n∑
k=1

(AB)ikCkj =

n∑
k=1

( m∑
l=1

AilBlk

)
Ckj

=

n∑
k=1

m∑
l=1

AilBlkCkj =

m∑
l=1

n∑
k=1

AilBlkCkj

=

m∑
l=1

Ail

( n∑
k=1

BlkCkj

)
=

m∑
l=1

Ail(BC)lj =
(
A(BC)

)
ij
. �
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Example 1.15. Let A =

[
1 0
0 0

]
and B =

[
0 1
0 0

]
be matrices in F 2×2, for some

field F . Then we have

AB =

[
0 1
0 0

]
6=
[
0 0
0 0

]
= BA.

Hence the multiplication of matrices is not in general commutative. This exam-
ple also shows that the product of two nonzero matrices can be zero. Hence the
cancellation law does not hold for matrix multiplication, i.e. for A,B,C ∈ Fn×n

AC = BC 6=⇒ A = B.

Theorem 1.16. Suppose F is a field, and A ∈ Fm×n, C ∈ Fn×l. Then we have

(AC)ij = Ai,.C.,j , (AC).,j = AC.,j , (AC)i,. = Ai,.C.

Remark. In other words, the j-th column of AC is the product of A and the j-th
column of C. And the i-th row of AC is the product of the i-th row of A, and C.

Proof. Since Ai,. and C.,j are respectively 1×n and n×1 matrices, their product
is a 1× 1 matrix, i.e. an element of F ; and we have

(Ai,.C.,j)1,1 =
∑
k≤n

(Ai,.)1,k(C.,j)k,1 =
∑
k≤n

Ai,kCk,j = (AC)ij .

Similarly, (AC).,j and (AC)i,. are respectively m× 1 and 1× l matrices. Hence we
have (

(AC).,j
)
i,1

= (AC)i,j =
∑
k≤n

AikCkj =
∑
k≤n

Aik(C.,j)k,1 = (AC.,j)i,1,

(
(AC)i,.

)
1,j

= (AC)i,j =
∑
k≤n

AikCkj =
∑
k≤n

(Ai,.)1,kCkj = (Ai,.C)1,j . �

Exercise 1.17. Suppose A ∈ Fm×n and C ∈ Fn×l. Show that

AC =
∑
k≤n

A.,kCk,..

Solution. Note that A.,k and Ck,. are respectively m × 1 and 1 × l matrices.
Hence their product is an m× l matrix. Now we have(∑

k≤n
A.,kCk,.

)
i,j

=
∑
k≤n

(
A.,kCk,.

)
i,j

=
∑
k≤n

1∑
s=1

(A.,k)i,s(Ck,.)s,j

=
∑
k≤n

(A.,k)i,1(Ck,.)1,j =
∑
k≤n

Ai,kCk,j = (AC)i,j ,

as desired. �
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Notation. Let j, n ∈ N, and suppose j ≤ n. We denote by ej the column vector
in Fn×1 whose components are all zero except for its j-th component which is one,
i.e.

ej :=



0
...
0
1
0
...
0


← j-th row.

We call this the j-th vector of the standard basis of Fn×1. We also have

eTj =
[
0 · · · 0 1 0 · · · 0

]
∈ F 1×n.

We call this the j-th vector of the standard basis of F 1×n. We also sometimes abuse
the notation and call ej ’s or eTj ’s the standard basis vectors of Fn. Note that we
use the same notation for every n. For example e1 can be any of the followings

[1],

[
1
0

]
,

1
0
0

, . . . .
But this should cause no confusion, since the value of n is usually evident from the
context.
Remark. Let I be the identity matrix. Then we have Ii,. = eTi , and I.,j = ej .

Theorem 1.18. Suppose F is a field, and A ∈ Fm×n. Let x = [x1, . . . , xn]T ∈ Fn×1
be a column vector, and let y = [y1, . . . , ym] ∈ F 1×m be a row vector. Then we have

Ax =
∑
j≤n

xjA.,j , yA =
∑
i≤m

yiAi,..

In particular for ej ∈ Fn×1 and eTi ∈ F 1×m we have

Aej = A.,j , eTiA = Ai,..

Remark. We say that Ax is a linear combination of the columns of A, and yA is
a linear combination of the rows of A.

Proof. We know that Ax and yA are respectively m×1 and 1×n matrices. Then
we have

(Ax)i,1 =
∑
j≤n

Aijxj =
∑
j≤n

xj(A.,j)i,1 =
(∑
j≤n

xjA.,j

)
i,1
,

(yA)1,j =
∑
i≤m

yiAij =
∑
i≤m

yi(Ai,.)1,j =
(∑
i≤m

yiAi,.

)
1,j
.
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The final statement of the theorem is a trivial consequence of the above relations,
and the special form of the standard basis vectors. �

Exercise 1.19. Show that A ∈ Fn×n is diagonal if and only if for every j ≤ n we
have

A.,j = Ajjej .

Remark. Similarly we can show that A is diagonal if and only if for every i ≤ n
we have Ai,. = Aiie

T
i .

Solution. Suppose A is diagonal. Then we have

A.,j = [A1j , . . . , Ajj , . . . , Anj ]
T = [0, . . . , 0, Ajj , 0, . . . , 0]T = Ajjej .

Conversely if A.,j = Ajjej then we get A.,j = Ajjej = [0, . . . , 0, Ajj , 0, . . . , 0]T.
Hence Aij = 0 for every i 6= j. Thus A is diagonal. �

Definition 1.20. Let F be a field. A square matrix A ∈ Fn×n is called invertible
if there is B ∈ Fn×n such that

AB = In = BA.

We say B is an inverse of A. Also, we say two matrices A,C ∈ Fn×n commute if

AC = CA.

Theorem 1.21. Suppose F is a field, and A,C ∈ Fn×n are invertible matrices.
Then
(i) The inverse of A is unique, and we denote it by A−1.
(ii) A−1 and AT are also invertible, and

(A−1)−1 = A, (AT)−1 = (A−1)T.

(iii) AC is also invertible, and

(AC)−1 = C−1A−1.

Proof. The proofs can be found in Sections A.1, and A.2. �

Remark. As a consequence of the above theorem, we can easily show by induction
that if A1, . . . , Ak ∈ Fn×n are invertible then A1 · · ·Ak is also invertible, and

(A1 · · ·Ak)−1 = A−1k · · ·A
−1
1 .
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Example 1.22. Let a, b, c, d ∈ F . Consider the following 2× 2 matrices

A =

[
a b
c d

]
, B =

[
d −b
−c a

]
.

Then it is easy to show by direct computation that

AB =

[
a b
c d

] [
d −b
−c a

]
=

[
ad− bc 0

0 ad− bc

]
=

[
d −b
−c a

] [
a b
c d

]
= BA.

Now suppose ad − bc 6= 0. Then the above equation implies that A is invertible,
and

A−1 =
1

ad− bc

[
d −b
−c a

]
.

On the other hand, if ad − bc = 0 then we have AB = 0. Therefore A cannot be
invertible, since otherwise we would have B = IB = A−1AB = A−10 = 0. But this
implies that A = 0, and hence I = A−1A = A−10 = 0, which is a contradiction.

Exercise 1.23. Suppose A,B ∈ Fn×n are diagonal matrices. Show that AB is
also a diagonal matrix, and (AB)jj = AjjBjj for every j ≤ n. Then conclude that
AB = BA. In other words, conclude that diagonal matrices commute.

Solution. For i 6= j we have

(AB)ij =

n∑
k=1

AikBkj = 0 · 0 + · · ·+Aii · 0 + · · ·+ 0 ·Bjj + · · ·+ 0 · 0 = 0.

And for i = j we have

(AB)jj =

n∑
k=1

AjkBkj = 0 · 0 + · · ·+AjjBjj + · · ·+ 0 · 0 = AjjBjj .

Hence AB is diagonal. Thus BA is also diagonal. Furthermore for i 6= j we have

(BA)jj = BjjAjj = AjjBjj = (AB)jj , (BA)ij = 0 = (AB)ij .

Therefore AB = BA as desired. �

Definition 1.24. Let F be a field. For m ∈ N we inductively define the powers
of a square matrix A ∈ Fn×n to be

A0 := In, A
1 := A, . . . Am := Am−1A.

Also, for every polynomial

p(x) = a0 + a1x+ · · ·+ amx
m
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with coefficients ai ∈ F , we define

p(A) := a0In + a1A+ · · ·+ amA
m.

We say that the matrix p(A) is a polynomial in A.

Theorem 1.25. Suppose F is a field, and A,C ∈ Fn×n. Then for all nonnegative
integers m, k we have
(i) If A commutes with C, then Am commutes with Ck.
(ii) If A is invertible, then Am is also invertible and

(Am)−1 = (A−1)m.

(iii) AmAk = Am+k.
(iv) (Am)k = Amk.
(v) If A,C commute, then we have (AC)m = AmCm.
(vi) For any two polynomials p, q with coefficients in F we have

(p+ q)(A) = p(A) + q(A), (pq)(A) = p(A)q(A).

As a result, p(A) and q(A) always commute.

Remark. The significance of part (vi) is that the addition and multiplication of
polynomials convert to the addition and multiplication of matrices via the map
p 7→ p(A).

Proof. The proofs can be found in Sections A.1, and A.5. �

Remark. As a consequence of the above theorem, we can easily show by induction
that if p1, . . . , pk are polynomials with coefficients in F , then we have

(p1 + · · ·+ pk)(A) = p1(A) + · · ·+ pk(A),

(p1p2 · · · pk)(A) = p1(A)p2(A) · · · pk(A).

Definition 1.26. For a matrix A ∈ Cm×n we define its conjugate transpose
A∗ ∈ Cn×m by

(A∗)ij := Aji.

Remark. Note that if A ∈ Rm×n then A∗ = AT.

Proposition 1.27. Let λ ∈ C, A,B ∈ Cm×n, and C ∈ Cn×l.
(i) We have

(A+B)∗ = A∗ +B∗, (λA)∗ = λ̄A∗,

(AC)∗ = C∗A∗, (A∗)∗ = A.
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(ii) For every i, j we have

(Ai,.)
∗ = A∗.,i, (A.,j)

∗ = A∗j,..

(iii) If A ∈ Cn×n is invertible, then A∗ is also invertible, and we have

(A∗)−1 = (A−1)∗.

Proof. (i) We have
(
(A∗)∗

)
ij

= (A∗)ji = (Aij) = Aij . Also(
(λA)∗

)
ij

= (λA)ji = λ̄Aji = λ̄(A∗)ij = (λ̄A∗)ij .

In addition, we have(
(AC)∗

)
ij

= (AC)ji =
∑
k≤n

AjkCki =
∑
k≤n

Ajk Cki

=
∑
k≤n

CkiAjk =
∑
k≤n

(C∗)ik(A
∗)kj = (C∗A∗)ij .

The other one is similar.
(ii) Note that (Ai,.)

∗ and A∗.,i have the same size. Now we have(
(Ai,.)

∗)
j,1

= (Ai,.)1,j = Aij = A∗ji = (A∗.,i)j,1.

The other one is similar.
(iii) We have

(A−1)∗A∗ = (AA−1)∗ = I∗ = I.

Similarly we have A∗(A−1)∗ = I. Hence we get the desired result due to the
uniqueness of the inverse of a matrix. �

Remark. As a consequence of the above proposition, we can easily show by induc-
tion that if A1, . . . , Ak ∈ Cn×n then we have

(A1 · · ·Ak)∗ = A∗k · · ·A∗1.

1.4 Systems of Linear Equations

A system of m linear equations in n unknowns, or simply a linear system, is an
expression of the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm,
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where aij , bi are elements of a field F . The unknowns are also called variables. Let
A ∈ Fm×n be the matrix whose ij-th entry is aij . Also let b ∈ Fm×1 be the column
vector whose i-th component is bi. Then we can write the system in the matrix
form

Ax = b,

where x is the column vector whose j-th component is xj . A solution of the
system is a column vector x ∈ Fn×1 such that Ax = b. The goal is to find all the
solutions of a system, or to show that no solution exists. The matrix A is called
the coefficient matrix of the system. Let [A|b] be the m× (n+ 1) matrix whose
j-th column is A.,j for j ≤ n, and its (n + 1)-th column is b. We call [A|b] the
augmented matrix of the system.

Remark. Formally, a system of linear equations can be defined to be the augmented
matrix associated to it.

A system [A|b] is called homogeneous if b = 0, and nonhomogeneous if b 6= 0.
Note that x = 0 is always a solution of a homogeneous system [A|0], since A0 = 0.
The zero solution is called the trivial solution of the homogeneous system. A
nonzero solution of a homogeneous system is called a nontrivial solution.

A system of linear equations is called consistent if it has at least one solution,
and is called inconsistent if it has no solution. Two systems of m linear equations
in n unknowns are called equivalent if they have the same set of solutions. Note
that the set of solutions of a system can be empty too.

Remark. It is easy to see that the equivalence of systems of linear equations is an
equivalence relation, i.e. any system is equivalent to itself, and if [A|b] is equivalent
to [A′|b′] then [A′|b′] is equivalent to [A|b] too. Also, if [A|b] is equivalent to [A′|b′],
and [A′|b′] is equivalent to [A′′|b′′], then [A|b] is equivalent to [A′′|b′′] too.

Our strategy for solving a system of linear equations is to change the system
into an equivalent system that is easier to solve. Then we repeat this process until
we get a system which is equivalent to our original system, and can be solved with a
few simple calculations. The tools that we use to accomplish this are the operations
defined below.

Definition 1.28. An elementary row operation is an operation performed on
a matrix, that is of one of the following three types
(i) Interchanging two rows of the matrix.
(ii) Multiplying a row by a nonzero constant.
(iii) Adding a multiple of one row to another row.
An elementary matrix is a square matrix obtained from the identity matrix by
applying one elementary row operation. The type of an elementary matrix is the
type of the elementary row operation that produced the matrix.
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Notation. Suppose a, c ∈ F , and a 6= 0. The elementary matrices have the
following forms

i-th row→
...

j-th row→


1 0 · · · 0 0
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
0 0 · · · 0 1

,


1 0 · · · 0 0
0 a · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

,


1 0 · · · 0 0
0 1 · · · c 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

.

So, the first matrix is obtained by interchanging the i-th row and the j-th row of
the identity matrix; the second matrix is obtained by multiplying the i-th row of
the identity matrix by the nonzero constant a; and the third matrix is obtained
by adding the j-th row of the identity matrix multiplied by c, to its i-th row. We
denote the first elementary matrix by E(i, j), the second elementary matrix by
E(i; a), and the third elementary matrix by E(i, j; c). Note that we always assume
i 6= j. Also note that the identity matrix I is also an elementary matrix, since for
example I = E(i; 1) for any i.

Remark. Let E be one of the above elementary matrices. Then for k 6= i, j we
have

Ek,. = Ik,. = eTk,

i.e. the k-th row of E is the k-th vector of the standard basis. We also have

(E(i, j))i,. = eTj , (E(i; a))i,. = aeTi , (E(i, j; c))i,. = eTi + ceTj .

(E(i, j))j,. = eTi , (E(i; a))j,. = eTj , (E(i, j; c))j,. = eTj .

Proposition 1.29. Let A ∈ Fm×n, and let B be the matrix obtained from A by
applying one elementary row operation. Then B = EA, where E is the elementary
matrix corresponding to that elementary row operation.

Proof. Suppose B is obtained from A by adding its j-th row multiplied by c, to
its i-th row. The other two cases are similar. For k 6= i we have Bk,. = Ak,.. We
also have Bi,. = Ai,. + cAj,.. Now let E = E(i, j; c) ∈ Fm×m. Then EA ∈ Fm×n.
Furthermore we know that (EA)k,. = Ek,.A for any k ≤ m. When k 6= i we have

(EA)k,. = Ek,.A = eTkA = Ak,. = Bk,..

And when k = i we have

(EA)i,. = Ei,.A = (eTi + ceTj )A = eTiA+ ceTjA = Ai,. + cAj,. = Bi,..

Therefore we must have EA = B. �
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Proposition 1.30. Let E ∈ Fm×m be an elementary matrix. Then E is invertible,
and its inverse is also an elementary matrix that has the same type as E. In fact
we have

E(i, j)−1 = E(i, j), E(i; a)−1 = E(i; a−1), E(i, j; c)−1 = E(i, j;−c),

where a, c ∈ F and a 6= 0.

Remark. A trivial consequence of the above two propositions is that an elementary
row operation is invertible, and its inverse has the same type as itself.

Proof. We will only prove the third identity; the other two are similar. We have
to show that

E(i, j; c)E(i, j;−c) = I = E(i, j;−c)E(i, j; c).

Let E = E(i, j; c), E′ = E(i, j;−c), and A = EE′. Then we have Akl = Ek,.E
′
.,l.

When k 6= i we have Ek,. = eTk = E′k,.. Hence

Akl = eTkE
′
.,l = (E′.,l)k,. = E′k,l =

{
1 l = k,

0 l 6= k.

When k = i we have Ei,. = eTi + ceTj and E′i,. = eTi − ceTj . Thus

Ail = (eTi + ceTj )E
′
.,l = eTiE

′
.,l + ceTjE

′
.,l

= (E′.,l)i,. + c(E′.,l)j,. = E′i,l + cE′j,l =


1 + c · 0 = 1 l = i 6= j,

−c+ c · 1 = 0 l = j 6= i,

0 + c · 0 = 0 l 6= i, j.

Therefore EE′ = A = I. We can similarly show that E′E = I. Hence E is
invertible, and E−1 = E′ as desired. �

Proposition 1.31. Suppose A ∈ Fm×n, E ∈ Fm×m, and b ∈ Fm×1. If E is
invertible then the linear system [EA|Eb] is equivalent to the linear system [A|b].

Proof. Suppose x ∈ Fn×1 is a solution of [A|b]. Then Ax = b. Hence (EA)x =
E(Ax) = Eb, i.e. x is also a solution of [EA|Eb]. Conversely if x is a solution of
[EA|Eb] then EAx = Eb. Thus

Ax = IAx = E−1E(Ax) = E−1(EAx) = E−1Eb = Ib = b,

so x is a solution of [A|b] too. Note that the above calculations also show that if one
of the systems has no solution, then the other system cannot have a solution either.
Therefore we have shown that the two systems have the same set of solutions, i.e.
they are equivalent. �
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Note that in particular when E is an elementary matrix, [EA|Eb] is equivalent to
[A|b], since elementary matrices are invertible. Hence if we apply an elementary row
operation on a linear system we obtain an equivalent system. Because applying an
elementary row operation on a linear system, is the same as multiplying the system
by the elementary matrix associated to the elementary row operation.

Now our strategy is to perform a sequence of elementary row operations on
the augmented matrix of a linear system, in order to obtain an equivalent system
that can be solved easily. The final form of the augmented matrix that we wish to
obtain, is described below.

Definition 1.32. Let A ∈ Fm×n. We say A is in reduced row echelon form if
it satisfies the following conditions
(i) Every nonzero row of A is above every zero row of A, i.e. if Ai,. 6= 0 and

Aj,. = 0, then i < j.
(ii) The first nonzero entry of a nonzero row is 1, i.e. if Aij 6= 0 and Ail = 0 for

every l < j, then Aij = 1. In this case, Aij is called the leading entry of
the row Ai,..

(iii) A leading entry is the only nonzero entry in its column, i.e. if Aij = 1 is the
leading entry of the i-th row, then Akj = 0 for every k 6= i.

(iv) The leading entry of a nonzero row, is in a column to the right of the column
containing the leading entry of any row above it. In other words, if Aij and
Akl are the leading entries of the rows Ai,. and Ak,. respectively, then i < k
implies j < l.

Remark. The number of leading entries of A is obviously less than or equal to the
number of rows of A. Also note that by condition 3, the number of leading entries
of A cannot be more than the number of columns of A either, because any column
can contain at most one leading entry.

Example 1.33. The following matrix is in reduced row echelon form
0 1 3 0 0 1 0 0
0 0 0 0 1 −2 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

.
The leading entries are highlighted in bold. Note that the 1 in the last column is
not a leading entry. The zero matrix is also a trivial example of a matrix in reduced
row echelon form.

Proposition 1.34. Suppose A ∈ Fm×n is in reduced row echelon form. Let
A1,j1 , . . . Ak,jk be the leading entries of the nonzero rows of A. Then we have
k ≤ min{m,n}, and

A.,ji = ei,
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for every i ≤ k. In addition if j < ji then

A.,j = [A1j , A2j , . . . , Ai−1,j , 0, . . . , 0]T.

In other words, Alj = 0 if l ≥ i. And if j ≥ jk then Alj = 0 for l > k.

Remark. Note that when j < j1 then we have A.,j = 0.

Proof. It is obvious that k ≤ m. We also have k ≤ n, since j1 < j2 < · · · < jk ≤
n. Now note that the column A.,ji has only one nonzero component, which is its
i-th component; and this nonzero component is 1. Hence we have A.,ji = ei.

Furthermore if j < ji, then the nonzero entries of the column A.,j are on the
rows A1,., . . . , Ai−1,.. In other words, Alj = 0 for l ≥ i. Because otherwise for some
l ≥ i the leading entry of the l-th row is Alj where j < ji, i.e. the leading entry of
the l-th row is in a column to the left of the column containing the leading entry of
the i-th row which lies above the l-th row, or is equal to the l-th row. But this is
in contradiction with the 4th condition of a matrix in reduced row echelon form, or
simply with the fact that a row cannot have two leading entries. Finally note that
when j > jk we have Alj = 0 for l > k, because the rows of A below the k-th row
are zero. �

Theorem 1.35. Suppose B = [A|b] ∈ Fm×(n+1) is the augmented matrix of a
system of linear equations. Also suppose that B is in reduced row echelon form. Let
B1,j1 , . . . Bk,jk be the leading entries of the nonzero rows of B. If jk = n + 1 then
the linear system [A|b] has no solution. Otherwise, let B.,l1 , . . . , B.,ln−k , B.,n+1 be
the columns of B that do not contain a leading entry. Then the set of solutions of
the linear system [A|b] is the set of vectors of the form

v0 + xl1vl1 + · · ·+ xln−kvln−k ,

where for p ≤ n− k, xlp ∈ F is arbitrary, and v0, vlp ∈ Fn×1 are given by

(v0)i =


Bq,n+1 i = jq, q ≤ k,

0 i = lp̃, p̃ ≤ n− k,
(vlp)i =


−Bq,lp i = jq, q ≤ k,
1 i = lp,

0 i = lp̃, p̃ 6= p, p̃ ≤ n− k.

Remark. Note that we require the augmented matrix of the system to be in reduced
row echelon form, not its coefficient matrix. Also note that when the system is
homogeneous we have v0 = 0, since B.,n+1 = b = 0.

Remark. The variables xl1 , . . . , xln−k are called the free variables of the system.
Also, the expression

v0 + xl1vl1 + · · ·+ xln−kvln−k ,

is sometimes called the general solution of the system.



CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS 20

Proof. If jk = n + 1 then the k-th row of B is [0 0 . . . 0 1]. The equation corre-
sponding to this row is 0x1+· · ·+0xn = 1, which obviously has no solution. So let us
assume that jk ≤ n. Thus in particular we have k ≤ n, since j1 < j2 < · · · < jk ≤ n.
We also know that the first k rows of B are nonzero, and the rest are zero. The cor-
responding equation to a zero row is 0x1 + · · ·+ 0xn = 0, which is trivially satisfied
for all xj ∈ F . Thus we have to find the solutions to the equations corresponding
to the nonzero rows. Consider the q-th row where q ≤ k. Then we have

0x1 + · · ·+ 0xjq−1 + 1xjq +
∑
j>jq

Bqjxj = Bq,n+1.

But note that Bqj = 0 when j = jq̃ for q̃ 6= q, and Bq,lp = 0 when lp < jq. Hence
the above equation is equivalent to

xjq = Bq,n+1 −
∑
lp>jq

Bq,lpxlp = Bq,n+1 −
∑
p≥1

Bq,lpxlp . (∗)

Therefore if we assign arbitrary values to the free variables xl1 , . . . , xln−k , then the
vector

y := v0 + xl1vl1 + · · ·+ xln−kvln−k

is a solution of the system, since it is easy to see that ylp = xlp , and

yjq = Bq,n+1 −
∑
p≥1

Bq,lpxlp = Bq,n+1 −
∑
p≥1

Bq,lpylp .

Conversely if x ∈ Fn×1 is a solution of the system, then the relation (∗) must hold
for every q ≤ k; and there is no restriction on the lp-th component of x for every
p ≤ n− k. Now it is easy to see that

x = v0 + xl1vl1 + · · ·+ xln−kvln−k ,

since the equality holds for every component. Hence the set of solutions of the
system is exactly the set of vectors described in the theorem. �

Remark. Consider a consistent linear system whose augmented matrix is in re-
duced row echelon form. It is clear from the previous theorem that this system has
a unique solution if and only if it has no free variables.

Example 1.36. Although the concrete description of the solutions of a system
given in the previous theorem has some theoretical applications, the best way to
apply that result in numerical examples is to imitate its proof. For example consider
the following augmented matrix of a linear system

0 1 3 0 0 1 0 0
0 0 0 0 1 −2 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣
3
2
9
0

.
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The free variables of this system are x1, x3, x4, x6, x8. We also have

x2 = 3− 3x3 − x6,
x5 = 2 + 2x6,

x7 = 9− x8.

Now to produce the vector v0 we make every free variable zero. Also to produce a
vector vlp we put xlp = 1, and xlq = 0 for q 6= p, and we ignore the constant terms
i.e. we consider v0 to be 0. Hence the general solution of the above system is

0
3
0
0
2
0
9
0


+ x1



1
0
0
0
0
0
0
0


+ x3



0
−3
1
0
0
0
0
0


+ x4



0
0
0
1
0
0
0
0


+ x6



0
−1
0
0
2
1
0
0


+ x8



0
0
0
0
0
0
−1
1


,

where x1, x3, x4, x6, x8 can have any values. �

1.5 Gaussian Elimination

Remember that our strategy to solve a system of linear equations is to perform a
sequence of elementary row operations on the augmented matrix of the system, in
order to obtain the equivalent system whose augmented matrix is in reduced row
echelon form. Then we can easily solve the system as we have shown above. There
are several algorithms to convert a matrix to its reduced row echelon form. Here
we describe the method called Gaussian elimination. We describe this algorithm
step by step, and simultaneously we apply each step to a given matrix, to clarify
the method.
(i) Let A ∈ Fm×n be a given matrix. Consider the first nonzero column of A

from the left, i.e. the nonzero column A.,j with smallest j. Let Aij be the
first nonzero entry of the column A.,j from the top, i.e. the nonzero entry
Aij with smallest i. Then interchange the first row of A with its i-th row. In
the resulting matrix, the 1, j-th entry is nonzero. Next multiply the first row
by the inverse of this nonzero entry. Then in the resulting matrix, the 1, j-th
entry is one. This entry is called a leading entry. In the following example,
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the leading entries are highlighted in bold.
0 0 0 0 −1 2 −3 −3
0 2 6 0 8 −14 −2 −2
0 1 3 0 5 −9 3 3
0 3 9 0 11 −19 −4 −4

→


0 2 6 0 8 −14 −2 −2
0 0 0 0 −1 2 −3 −3
0 1 3 0 5 −9 3 3
0 3 9 0 11 −19 −4 −4



→


0 1 3 0 4 −7 −1 −1
0 0 0 0 −1 2 −3 −3
0 1 3 0 5 −9 3 3
0 3 9 0 11 −19 −4 −4

.
(ii) Now add suitable multiples of the first row to the other rows, in order to make

the entries below the leading entry and in its column, zero.
0 1 3 0 4 −7 −1 −1
0 0 0 0 −1 2 −3 −3
0 1 3 0 5 −9 3 3
0 3 9 0 11 −19 −4 −4

→


0 1 3 0 4 −7 −1 −1
0 0 0 0 −1 2 −3 −3
0 0 0 0 1 −2 4 4
0 0 0 0 −1 2 −1 −1

.
(iii) Then ignore the first row, and apply the previous steps to the rest of the

matrix, which is a matrix in F (m−1)×n. In the following example, the ignored
rows are highlighted in gray.

0 1 3 0 4 −7 −1 −1
0 0 0 0 −1 2 −3 −3
0 0 0 0 1 −2 4 4
0 0 0 0 −1 2 −1 −1

→


0 1 3 0 4 −7 −1 −1
0 0 0 0 1 −2 3 3
0 0 0 0 1 −2 4 4
0 0 0 0 −1 2 −1 −1



→


0 1 3 0 4 −7 −1 −1
0 0 0 0 1 −2 3 3
0 0 0 0 0 0 1 1
0 0 0 0 0 0 2 2

.
Then ignore the first two rows, and apply the previous steps to the rest of
the matrix, which is a matrix in F (m−2)×n. Repeat this process by ignoring
more rows, until there is no row left, or the remaining rows are all zero.

0 1 3 0 4 −7 −1 −1
0 0 0 0 1 −2 3 3
0 0 0 0 0 0 1 1
0 0 0 0 0 0 2 2

→


0 1 3 0 4 −7 −1 −1
0 0 0 0 1 −2 3 3
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

.
(iv) Now consider the last leading entry, i.e. the leading entry in the last nonzero

row. Then add suitable multiples of this row to the other rows, in order to
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make the entries above the leading entry and in its column, zero.
0 1 3 0 4 −7 −1 −1
0 0 0 0 1 −2 3 3
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

→


0 1 3 0 4 −7 0 0
0 0 0 0 1 −2 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

.
Repeat this process with the leading entry of the row above the last nonzero
row, and then with the leading entries of the rows above it, until you reach
the leading entry of the first row.

0 1 3 0 4 −7 0 0
0 0 0 0 1 −2 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

→


0 1 3 0 0 1 0 0
0 0 0 0 1 −2 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

.
Remark. The steps 1-3 are called the forward phase of the algorithm, and the
step 4 is called the backward phase.

Remark. If instead of step 4, in steps 2 and 3 we make all the entries in the columns
of leading entries zero, we obtain the Gauss-Jordan elimination. This method can
be used to solve linear systems too, but it requires more arithmetic operations
compared to Gaussian elimination. Because when in this algorithm we make the
entries above a leading entry zero, we have to multiply and add some entries that
would have been zero in the backward phase of the Gaussian elimination. So the
Gaussian elimination is more efficient, and hence it is the preferred computational
method.

Remark. Let us describe the Gaussian elimination in a different way. This de-
scription allows us to look at this algorithm as a function on the space of matrices
Fm×n. Let Si : Fm×n → Fm×n be the function that switches the i-th row of a ma-
trix A with the first row in the sequence Ai,., Ai+1,., . . . , Am,. that has the leftmost
nonzero entry. If all the rows Ai,., Ai+1,., . . . , Am,. are zero, then Si does not change
A. Let Ri : Fm×n → Fm×n be the function that multiplies the i-th row of a matrix
A with the inverse of the first nonzero entry of its i-th row. If the i-th row of A is
zero, then Ri does not change A.

Finally let Ui : Fm×n → Fm×n be the function that makes every entry above
the first nonzero entry of the i-th row, zero; and let Di : Fm×n → Fm×n be the
function that makes every entry below the first nonzero entry of the i-th row, zero.
Both Ui, Di add suitable multiples of the i-th row to other rows to produce their
output. And if the i-th row of the matrix is zero, then Ui, Di do not change it.
Now it is easy to see that the application of the Gaussian elimination to a matrix
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is the same as the action of the following function

[U2 ◦ · · · ◦ Um−1 ◦ Um] ◦Rm ◦ [Dm−1 ◦Rm−1 ◦ Sm−1] ◦ · · ·
· · · ◦ [D2 ◦R2 ◦ S2] ◦ [D1 ◦R1 ◦ S1].

Note that the leftmost group of functions in the above formula represents the back-
ward phase of the algorithm, and the other groups represent the part of the forward
phase that creates and employs the i-th leading entry (if there is any). Similarly,
it is easy to see that the Gauss-Jordan elimination has the same output as the
following function

[Um ◦Rm] ◦ [Um−1 ◦Dm−1 ◦Rm−1 ◦ Sm−1] ◦ · · ·
· · · ◦ [U2 ◦D2 ◦R2 ◦ S2] ◦ [D1 ◦R1 ◦ S1].

Definition 1.37. Let A,B ∈ Fm×n. We say B is the reduced row echelon
form of A if B is in reduced row echelon form, and there is an invertible matrix
E ∈ Fm×m such that B = EA.

Remark. Every matrix A has a unique reduced row echelon form B. The existence
of B, through an algorithm to find it, is proved in the next theorem. We will prove
the uniqueness of B in Theorem 2.46, after we develop the appropriate tools. Note
that the uniqueness of the reduced row echelon form means that if B,B′ are two
matrices in reduced row echelon form, and E,E′ are invertible matrices such that
B = EA, B′ = E′A, then B = B′. But it is not true that E is also uniquely
determined by A. In fact different algorithms for finding B, produce different
invertible matrices E.

Theorem 1.38. Gaussian elimination converts every matrix to its reduced row
echelon form.

Remark. In fact we will show that for A ∈ Fm×n, Gaussian elimination produces
a finite sequence of elementary matrices E1, . . . , Ek ∈ Fm×m such that Ek · · ·E1A
is the reduced row echelon form of A.

Proof. Let A ∈ Fm×n. Note that each operation in the Gaussian elimination is
an elementary row operation, which corresponds to multiplication from the left by
an elementary matrix. Therefore if B ∈ Fm×n is the output of the Gaussian elimi-
nation, then B = EA, where E ∈ Fm×m is the product of finitely many elementary
matrices. But the elementary matrices are invertible, hence their product is invert-
ible too, i.e. E is invertible. Therefore it suffices to show that B is in reduced row
echelon form. We prove this by induction on the number of rows m. When m = 1,
the Gaussian elimination converts the matrix A, which is a row vector, to a row
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vector whose first nonzero entry is one; or to the zero row vector when A is itself
zero. Thus the Gaussian elimination converts A to a reduced row echelon matrix.

Now suppose the claim is true for m − 1, and we want to prove it for m. Let
Ã ∈ Fm×n be the matrix that is obtained from A by applying the first and second
steps of Gaussian elimination. Let A′ ∈ F (m−1)×n be the matrix that is obtained
from Ã by removing the first row, i.e. A′i,. = Ãi+1,. for i ≤ m− 1. Note that when
we apply the third step of the algorithm to Ã, we are actually applying the forward
phase of the Gaussian elimination to A′. Also when we apply the backward phase
to Ã, we are applying the backward phase to A′, and in addition we add some
multiples of nonzero rows of A′ to the first row of Ã to make some of its entries
zero. Thus in the process of applying the Gaussian elimination to A, we have
applied the Gaussian elimination to A′ too. Note that in the Gaussian elimination,
other than its first step, we do not interchange any row with the first row. So if
we let B′ ∈ F (m−1)×n be the matrix that is obtained from B by removing the first
row, then B′ is the output of the Gaussian elimination applied to A′. Therefore by
the induction hypothesis B′ is in reduced row echelon form.

Hence we only need to conclude that B is also in reduced row echelon form. We
have to check the four conditions of a matrix in reduced row echelon form. If A is
zero, then B is zero too, and it is in reduced row echelon form trivially. Otherwise
A has at least a nonzero row, so the first row of Ã is nonzero. The first row of
B is obtained from the first row of Ã by adding to it some multiples of the rows
below it. But when we formed Ã, we made the entries below the leading entry of
the first row, zero. So the leading entry of the first row will not change when we
add a multiple of another row to the first row. In other words, the first row of B
is nonzero. Thus as the zero rows of B′ are below every nonzero row, B has this
property too. Furthermore, the leading entry of every nonzero row of B is one,
since this is true in B′; and we made the leading entry of the first row of B one,
when we applied the first step of the algorithm to A.

Now consider a leading entry in B. If it is the leading entry of the first row, then
we have made every other entry in its column zero, when we applied the second
step of the algorithm. If the leading entry belongs to B′, then every other entry in
its column is zero by induction hypothesis. But we have to note that this column
is in B′, i.e. we cannot conclude anything from the induction hypothesis about
the entry on this column and the first row of B. However we made these entries
zero during the application of the backward phase of the algorithm. So the leading
entries of B are the only nonzero entry in their columns.

Finally it remains to show that the leading entry of each row of B is to the right
of the leading entry of any row above it. If the two rows belong to B′, then this is
true due to the induction hypothesis. Thus we only need to show that the leading
entry of the first row of B is to the left of the leading entry of any other row. But
when we applied the first step of the algorithm to A, we chose the first leading



CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS 26

entry in the first nonzero column, and we interchanged its row with the first row.
Then in the second step we made all the entries in the column of the first leading
entry zero. Hence in B′ the first nonzero column is to the right of the column that
contains the leading entry of the first row of B. Therefore the leading entries of B′

are all to the right of the leading entry of the first row of B, as desired. �

Remark. The above theorem is in particular true when we apply the Gaussian
elimination to the augmented matrix of a linear system. Then we convert the system
through a sequence of elementary row operations, to a system whose augmented
matrix is in reduced row echelon form. And we have seen before that we can easily
solve such systems. At the end we have found the set of solutions of the initial
system, since the elementary row operations do not change the set of solutions of a
system. Note that due to this last property, we do not need to use the uniqueness of
the reduced row echelon form of the augmented matrix, in order to be certain that
we will not get a different set of solutions if we use a different algorithm. Because
if there were more than one reduced row echelon form for the augmented matrix,
then all of them would have produced equivalent linear systems, with the same set
of solutions, due to Proposition 1.31, since they are all of the form EA, where A is
the augmented matrix of the system, and E is an invertible matrix.



Chapter 2

Vector Spaces

2.1 Vector Spaces

Definition 2.1. A vector space over a field F is a nonempty set V equipped with
two operations

V × V −→ V
(v, w) 7→ v + w

,
F × V −→ V
(a, v) 7→ av

,

called respectively (vector) addition and scalar multiplication, such that
(i) Addition is associative, i.e. for every v, w, u ∈ V we have

(v + w) + u = v + (w + u).

(ii) Addition is commutative, i.e. for every v, w ∈ V we have

v + w = w + v.

(iii) V has an additive identity, i.e. there is an element 0 ∈ V such that for every
v ∈ V we have

v + 0 = v.

(iv) Every v ∈ V has an additive inverse, i.e. there exists w ∈ V such that

v + w = 0.

(v) For every a ∈ F and every v, w ∈ V we have

a(v + w) = av + aw.

(vi) For every a, b ∈ F and every v ∈ V we have

(a+ b)v = av + bv.

27
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(vii) For every a, b ∈ F and every v ∈ V we have

a(bv) = (ab)v.

(viii) For every v ∈ V we have
1v = v,

where 1 is the identity of F .

Remark. The elements of the vector space V are called vectors. Note that the
nature of the elements of V can be quite different from our intuitive notion of
vectors in three dimensional Euclidean space. For example the elements of a vector
space can be functions, or sequences, or more complicated objects. Nevertheless, we
will refer to the elements of any vector space as vectors. In contrast, the elements
of the field F are usually referred to as scalars.
Remark. The properties (v) and (vi) mean that scalar multiplication is distributive
over vector addition and addition of scalars.
Remark. As we will show below, the additive identity of a vector space is unique,
and will be called the zero vector. Also, the additive inverse of any vector v is
unique, and will be denoted by −v. Note that due to the commutativity we also
have

0 + v = v, (−v) + v = 0.

In addition, for two vectors v, w we define

w − v := w + (−v).

Remark. Let V be a vector space over a field F . When F = R we say V is a real
vector space, and when F = C we say V is a complex vector space.

Example 2.2. Suppose F is a field. Then Fn equipped with the standard compo-
nentwise addition and scalar multiplication, is a vector space over F . Also, Fm×n

equipped with the addition and scalar multiplication of matrices, is a vector space
over F . Recall that we can consider the elements of Fn as column vectors, i.e. as
n× 1 matrices, via the identification

(a1, . . . , an) 7→

a1...
an

.
We will usually use this convention unless otherwise specified. Note that this iden-
tification preserves both addition and scalar multiplication. Also, remember that
we formally defined Fn and Fm×n to be respectively the set of functions from
{1, . . . , n} and {(i, j) : i ≤ m, j ≤ n} into F . Therefore Fn and Fm×n are special
cases of the vector spaces described in the next example.
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Example 2.3. Let S be a nonempty set, and let F be a field. Then the space of
functions from S into F , i.e.

FS := {f : for every function f : S → F},

is a vector space over F . The addition and scalar multiplication on this space are
defined as follows

(f + g)(s) := f(s) + g(s), (af)(s) := af(s),

where f, g ∈ FS and a ∈ F . Note that f + g and af are functions, so in order
to define them we have to specify their values at every s ∈ S. We leave it as an
exercise, to check that FS is indeed a vector space with these operations. We only
mention that the zero of this vector space is the zero function, i.e. the function
that maps every s ∈ S to 0 ∈ F . Also, the additive inverse of a function f is the
function (−f)(s) := −f(s).

Example 2.4. Another special case of the above example, is when S = N. Then
FN is the space of all sequences in F . In this case, the above operations are actually
the componentwise addition and scalar multiplication of sequences, and they will
make FN a vector space over F . We will also denote this vector space by F∞.

Example 2.5. Let F [x] be the space of polynomials with coefficients in a field
F . Then F [x] equipped with the standard addition of polynomials and multiplying
polynomials by a constant, is a vector space over F . For the details see Section
A.3.

Proposition 2.6. Let V be a vector space over a field F . Then for every a ∈ F
and every v, w, u ∈ V we have
(i) (Cancellation Law) v + w = u+ w implies v = u.
(ii) V has a unique additive identity.
(iii) Every vector v has a unique additive inverse.
(iv) 0v = 0.
(v) a0 = 0.
(vi) av = 0 implies a = 0 or v = 0.
(vii) (−1)v = −v.

Remark. Note that we use 0 to denote both the zero vector, and the zero of F .
But it should always be clear from the context which one is intended.

Proof. (i) Suppose y is an additive inverse of w. Then we can add y to both
sides of v+w = u+w to obtain (v+w) + y = (u+w) + y. Now by associativity of
addition we have v+ (w+ y) = u+ (w+ y). Since w+ y = 0, we get v+ 0 = u+ 0.
Therefore w = u.
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(ii) Suppose 0, 0̃ are both additive identities of V . Then we have 0̃ = 0̃+0, since
0 is an additive identity. We also have 0 + 0̃ = 0, since 0̃ is an additive identity.
However we know that 0̃ + 0 = 0 + 0̃, because addition is commutative. Therefore
we must have 0̃ = 0, as desired.

(iii) Suppose w, w̃ are both additive inverses of v. Then

w + v = 0 = w̃ + v.

Thus by cancellation law we get w = w̃.
(iv) We have

0 + 0v = 0v = (0 + 0)v = 0v + 0v.

Hence by cancellation law we get 0 = 0v.
(v) We have

0 + a0 = a0 = a(0 + 0) = a0 + a0.

Thus again by cancellation law we get 0 = a0.
(vi) If a = 0 then there is nothing to prove. Now if a 6= 0 then we have

v = 1v = (a−1a)v = a−1(av) = a−10 = 0.

(vii) We have

v + (−1)v = 1v + (−1)v = (1 + (−1))v = 0v = 0.

Hence the result follows from the uniqueness of the additive inverse of v. �

Remark. It is easy to show by induction that

a(v1 + · · ·+ vk) = av1 + · · ·+ avk,

(a1 + · · ·+ ak)v = a1v + · · ·+ akv,

for v, vi ∈ V , and a, ai ∈ F .

2.2 Subspaces and Linear Combinations

Notation. In the rest of this chapter, we assume that F is a field, and V is a vector
space over F .

Definition 2.7. Let W ⊂ V . Then we can restrict the vector addition and scalar
multiplication of V to W . If with these restricted operations, W becomes a vector
space, then we say W is a subspace of V .
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Remark. The vector addition and scalar multiplication of V are functions as fol-
lows

+ : V × V → V, · : F × V → V.

So when we talk about their restrictions to W , we mean

+|W×W : W ×W → V, ·|F×W : F ×W → V.

Note that we do not know a priori that the image of the above restricted functions
are inside W . But this is actually true as we will prove below.

Theorem 2.8. Let W ⊂ V . Then W is a subspace of V if and only if all of the
following three conditions hold
(i) 0 ∈W , where 0 is the zero vector of V .
(ii) W is closed under addition, i.e. if u, v ∈W then u+ v ∈W .
(iii) W is closed under scalar multiplication, i.e. if a ∈ F and u ∈ W then

au ∈W .

Proof. First supposeW satisfies the above three conditions. ThenW is nonempty.
In addition, since W is closed under addition and scalar multiplication, we have

+|W×W : W ×W →W, ·|F×W : F ×W →W.

Hence W is equipped with a vector addition and a scalar multiplication. It is
obvious that these operations satisfy the properties (i),(ii), and (v)–(viii) of the
definition of a vector space; because these properties hold for all the vectors in V ,
so they also hold for all the vectors in W . Thus we only need to show that the
properties (iii),(iv) of the definition of a vector space also hold inW , i.e. we have to
show that W has an additive identity, and every w ∈W has an additive inverse in
W . Since the zero vector of V belongs to W , it is obvious that W has an additive
identity. On the other hand, every w ∈ W has an additive inverse in W , because
W is closed under scalar multiplication, and therefore we have −w = (−1)w ∈ W .
Thus the above restricted operations makeW a vector space. HenceW is a subspace
of V .

Now supposeW is a subspace of V . ThenW is a vector space with the restricted
operations

+|W×W : W ×W → V, ·|F×W : F ×W → V.

But the operations of a vector space must take values inside the vector space, i.e.
the image of the above functions must be W . Therefore W must be closed under
both vector addition and scalar multiplication. On the other hand, W must be
nonempty, since it is a vector space. Let w ∈ W . Then we have 0 = 0w ∈ W ,
sinceW is closed under scalar multiplication. ThusW satisfies the three conditions
stated in the theorem. �
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Remark. The following proposition is an easy criterion to check whether a given
subset is a subspace.

Proposition 2.9. Suppose W ⊂ V is nonempty. Then W is a subspace of V if
and only if for all u, v ∈W and a ∈ F we have u+ av ∈W .

Proof. If W is a subspace then we have av ∈ W , since W is closed under scalar
multiplication. Now we have u+av ∈W becauseW is closed under vector addition.
Conversely suppose that W satisfies the property stated in the proposition. Then
if we set a = 1 we get u + v ∈ W for every u, v ∈ W . Hence W is closed under
addition. Now let w be a vector in W . Then we have 0 = w + (−1)w ∈ W .
Therefore by setting u = 0 we obtain av = 0 + av ∈W for every v ∈W and a ∈ F .
Thus W is closed under scalar multiplication. Hence by the previous theorem W
is a subspace. �

Example 2.10. It is easy to see that {0} is a subspace of V . This subspace is
called the zero subspace.

Example 2.11. Let A ∈ Fm×n. Then the set of solutions of the homogeneous
system of linear equations Ax = 0 is a subspace of Fn. Because x = 0 is a solution
of the system, so the set of solutions is nonempty. Also if x, y are solutions of the
system, and a ∈ F , then we have

A(x+ ay) = Ax+ aAy = 0 + a0 = 0.

Thus x+ ay is also a solution of the system, as desired.

Example 2.12. It is easy to show that the set of polynomials in F [x] whose degree
is less than or equal to some given integer n, is a subspace of F [x].

Theorem 2.13. The intersection of a nonempty family of subspaces of V is a
subspace of V .

Proof. Suppose {Wα : α ∈ I} is a nonempty family of subspaces of V . Let

W :=
⋂
α∈I

Wα = {v ∈ V : v ∈Wα for every α}.

Then we have 0 ∈ W , since 0 ∈ Wα for every α. Now let u, v ∈ W and a ∈ F .
Then u, v ∈ Wα for every α. Hence we have u + v, au ∈ Wα for every α, because
each Wα is a subspace. Thus u+v, au ∈W by the definition of intersection of sets.
Therefore W is a subspace. �

Definition 2.14. Let S,W ⊂ V . We say the subspace spanned by S is W if the
following conditions hold:
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(i) S ⊂W ,
(ii) W is a subspace of V ,
(iii) W is the smallest subspace of V , with respect to inclusion, that contains S,

i.e. if W ′ is a subspace of V that contains S, then we must have W ⊂W ′.
The subspaceW is also called the subspace generated by S, or the span of S; and
is denoted by span(S). A vector space, or a subspace of a vector space, is called
finitely generated if it is spanned by a finite set.

Remark. Note that a priori we do not know that every subset of a vector space
generates a subspace; because it is not obvious that we can always find the smallest
subspace that contains a given subset. However, the following theorem shows that
this is always possible, and the span of every subset of a vector space exists.

Theorem 2.15. Let S ⊂ V . Then span(S) exists, i.e. there is a unique subspace
of V that contains S, and is contained in any subspace containing S.

Proof. LetW be the intersection of all subspaces containing S. Note that V itself
is a subspace containing S, so the family of all subspaces containing S is nonempty,
and therefore their intersection is defined. Also note that by Theorem 2.13, W is a
subspace of V , since it is the intersection of a nonempty family of subspaces of V .
In addition, W contains S; because it is the intersection of a nonempty family of
sets, and each one of those sets contains S.

Now suppose W ′ is a subspace of V that contains S. Then W ⊂ W ′, because
W is the intersection of all subspaces containing S, and W ′ is one of the subspaces
that contains S. Hence by definition we have W = span(S). Finally, let us show
that W is the only subspace that satisfies all the conditions in the definition of
span(S). Suppose W̃ is also a smallest subspace that contains S. Then we must
have W ⊂ W̃ ; since W̃ is a subspace that contains S, and W is a smallest subspace
containing S. On the other hand, we must have W̃ ⊂ W ; since W is a subspace
that contains S, and W̃ is a smallest subspace containing S. Therefore W = W̃ ,
as desired. �

Example 2.16. We have span(∅) = {0}, since {0} is a subspace that contains ∅,
and is contained in any other subspace.

Example 2.17. Let v ∈ V . We claim that span({v}) = {av : a ∈ F}. Let us
denote {av : a ∈ F} by W . It is obvious that v ∈ W , since v = 1v. Furthermore,
W is a subspace; because it contains v, so it is nonempty. In addition, if u,w ∈W
and c ∈ F , then we have u = av and w = bv, for some a, b ∈ F ; hence we have

u+ cw = av + cbv = (a+ cb) ∈W.

Thus W is a subspace. Now suppose W ′ is a subspace that contains v. Then
for every a ∈ F we have av ∈ W ′, since W ′ is closed under scalar multiplication.
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Therefore we have W ⊂ W ′. So W is the smallest subspace that contains v;
hence it is span({v}). In Theorem 2.21, we will examine a more general version
of this example. Also, note that if we put v = 0 in this example, we will get
span({0}) = {0}; because a0 = 0, for every a ∈ F .

Definition 2.18. A list of vectors in V is a finite sequence of elements of V , i.e.
it is a function from the set {1, . . . , k} to V , for some k ∈ N.

Remark. Note that a list of vectors in V can be considered as an element of V k

for some k ∈ N. But we denote a list by simply writing the vectors in its image,
like v1, v2, . . . , vk.
Remark. We need to work with lists of vectors instead of sets of vectors, since we
want to allow repetition of vectors, and more importantly we want each vector to
have a precise position among other vectors i.e. we want the vectors to have an
order. In the sequel, whenever we use a set of vectors in a notion that is defined
for lists of vectors, we implicitly assume that we have arranged the elements of the
set in an arbitrary sequence. Although we have to check that the notion does not
depend on the particular order of the elements of the set, which is the case for all
the notions we define here. Finally, for convenience we consider the empty set to
be a list of vectors too, called the empty list.
Remark. When we talk about the span of a list of vectors v1, . . . , vk, we mean the
span of the set of vectors in that list, i.e. the span of the set {v1, . . . , vk}. The span
of v1, . . . , vk is usually denoted by span(v1, . . . , vk).

Definition 2.19. A linear combination of a finite list of vectors v1, . . . , vk ∈ V
is a vector of the form

a1v1 + · · ·+ akvk,

where a1, . . . , ak ∈ F . We also denote the above vector by
∑k

j=1 ajvj .

Remark. Note that by the generalized associativity and commutativity rules, the
above expression is unambiguously defined and is independent of the order of the
summands. See Section A.6.
Remark. Also note that a list of vectors has finitely many vectors, so we are not
defining linear combinations of infinitely many vectors. In fact, adding infinitely
many vectors requires some notion of limit, which is not available in an arbitrary
vector space.

Proposition 2.20. The subspaces of a vector space are closed under forming linear
combinations, i.e. if W ⊂ V is a subspace and v1, . . . , vk ∈W then

a1v1 + · · ·+ akvk ∈W

for every a1, . . . , ak ∈ F .
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Proof. The proof is by induction on k. The case of k = 1 is trivially true, since
W is closed under scalar multiplication. Suppose the claim is true for some k, and
we want to prove it for k + 1. Let v1, . . . , vk+1 ∈ W and a1, . . . , ak+1 ∈ F . Then
by the induction hypothesis we have a1v1 + · · ·+ akvk ∈W . On the other hand we
have ak+1vk+1 ∈W , since W is closed under scalar multiplication. Finally we have

a1v1 + · · ·+ akvk + ak+1vk+1 ∈W,

because W is closed under addition. �

Theorem 2.21. Suppose v1, . . . , vn ∈ V . Then the subspace generated by v1, . . . , vn
equals the set of all linear combinations of v1, . . . , vn, i.e.

span(v1, . . . , vn) = {a1v1 + · · ·+ anvn : for every a1, . . . , an ∈ F}.

Proof. Let W := {a1v1 + · · · + anvn : for every a1, . . . , an ∈ F}. In order to
show that W = span(v1, . . . , vn), we have to prove that W is the smallest subspace
with respect to inclusion that contains v1, . . . , vn. First let us show that W is a
subspace containing v1, . . . , vn. It is obvious that W contains v1, . . . , vn, since if we
take aj = 1, and ai = 0 for every i 6= j, then we get

vj = 0v1 + · · ·+ 0vj−1 + 1vj + 0vj+1 + · · ·+ 0vn ∈W.

Thus in particular W is nonempty. Now suppose u, v ∈ W and a ∈ F . Then by
definition of W we have u =

∑n
j=1 ajvj and v =

∑n
j=1 bjvj , for some aj , bj ∈ F .

Hence we have

u+ av =
n∑
j=1

ajvj + a
n∑
j=1

bjvj =
n∑
j=1

(ajvj + abjvj) =
n∑
j=1

(aj + abj)vj ∈W.

Therefore W is a subspace, as desired. Now let W ′ be a subspace that contains
v1, . . . , vn. Then by the previous proposition we know that W ′ contains every
linear combination of v1, . . . , vn, so W ⊂ W ′. Thus W is the smallest subspace
that contains v1, . . . , vn; hence we have W = span(v1, . . . , vn). �

Remark. Let S ⊂ V be an arbitrary set of vectors. Then we can similarly show
that the subspace generated by S equals the set of all linear combinations of any
list of vectors in S, i.e.

span(S) = {a1v1 + · · ·+ akvk :

for every k ∈ N, v1, . . . , vk ∈ S, and a1, . . . , ak ∈ F}.

Remark. In contrast to the definition of span(S) in terms of subspaces containing
S, the above theorem gives a concrete description of span(S) that only uses the
elements of S itself.
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Proposition 2.22. Suppose S ⊂ V , and A ⊂ span(S). Then span(A) ⊂ span(S).

Proof. span(S) is a subspace that containsA, so it must contain span(A) too. �

Remark. Let us give another proof for the above proposition by using the descrip-
tion of span in terms of linear combinations. Suppose

∑n
j=1 ajvj ∈ span(A) where

v1, . . . , vn ∈ A ⊂ span(S). Then we have vj =
∑m

k=1 bjkuk, where u1, . . . , um ∈ S.
Note that we can use the same set of vectors in S for all vj ’s, since there are only
finitely many vj ’s, and we can set bjk = 0 if uk did not appear in the expansion of
vj . Hence we have

n∑
j=1

ajvj =
n∑
j=1

aj

(
m∑
k=1

bjkuk

)
=

m∑
k=1

(
n∑
j=1

ajbjk

)
uk ∈ span(S).

Notice that the essence of the above argument is that a linear combination of several
linear combinations of some vectors is itself a linear combination of those vectors.

Proposition 2.23. Suppose v1, . . . , vk, b ∈ Fn. Let A ∈ Fn×k be the matrix whose
j-th column is vj. Then b ∈ span(v1, . . . , vk) if and only if the linear system Ax = b
has a solution x ∈ F k.
Remark. Note that we put the vectors vj in the columns of A, not its rows.

Proof. Suppose b ∈ span(v1, . . . , vk). Then there are scalars x1, . . . , xk ∈ F such
that b = x1v1 + · · ·+ xkvk. Let x := [x1, . . . , xk]

T ∈ F k. Then we have

Ax = x1A.,1 + · · ·+ xkA.,k = x1v1 + · · ·+ xkvk = b.

So the system has a solution. On the other hand if the system has a solution x ∈ F k,
then we have b = Ax = x1A.,1 + · · ·+ xkA.,k = x1v1 + · · ·+ xkvk, where x1, . . . , xk
are the components of x. Hence b is a linear combination of v1, . . . , vk. �

Exercise 2.24. Suppose W is a subspace of V , and U is a subset of W . Show that
U is a subspace of W if and only if it is a subspace of V .

Solution. The proof is a simple application of Proposition 2.9. Let us restate
that proposition here, with a slight change, in order to make our argument more
clear. It says that if U ⊂ V is nonempty, then U is a subspace of V if and only if
for all u, v ∈ V and a ∈ F we have

u, v ∈ U =⇒ u+ av ∈ U.

Now suppose U is a subspace of W . Then U is nonempty, and U ⊂ W ⊂ V . Let
a ∈ F . If u, v ∈ V also belong to U , then we have u, v ∈ U ⊂W . Hence u+av ∈ U ,
and therefore U is a subspace of V .

Conversely, suppose U is a subspace of V . Then U is nonempty, and U ⊂ W .
Let a ∈ F . If u, v ∈ W also belong to U , then we have u, v ∈ U ⊂ V . Hence
u+ av ∈ U , and therefore U is a subspace of W . �
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2.3 Linear Independence

Suppose we have a subspace W , and we know that the vectors v1, . . . , vn generate
W , i.e. we know that W = span(v1, . . . , vn). Now, a natural question that arises is
that whether we can find a simpler set that generates W , i.e. a set that generates
W , and has fewer elements. For example, supposeW = span(v, 2v), for some vector
v. Then by Theorem 2.21 we have

W = {av + 2bv : a, b ∈ F}.

However, av + 2bv = (a+ 2b)v ∈ span(v). Thus W ⊂ span(v). On the other hand,
it is obvious that span(v) ⊂ W , since W is a subspace that contains v. Hence
we have W = span(v), i.e. we can generate W with only one vector, namely v.
Therefore, the set of generators v, 2v for W is not optimal, i.e. we can reduce it to
a smaller set that generates W .

In general, suppose we have subspace, and a set that generates it. We want to
know whether this given set of generators contains unnecessary vectors or not. The
following notion helps us to answer this question.

Definition 2.25. A finite list of vectors v1, . . . , vk ∈ V is called linearly inde-
pendent if for every a1, . . . , ak ∈ F we have

a1v1 + · · ·+ akvk = 0 =⇒ aj = 0 for every j.

We also consider the empty list to be linearly independent.
Oppositely, a finite list of vectors v1, . . . , vk ∈ V is called linearly dependent

if it is not linearly independent, i.e. if there are a1, . . . , ak ∈ F , where at least one
of the aj ’s is nonzero, such that

a1v1 + · · ·+ akvk = 0.

Remark. As with linear combinations, here we prefer to work with lists of vectors
instead of sets of vectors, since we want the vectors to have an order, and we want
to allow repetitions. Similarly, whenever we talk about the linear independence,
or the linear dependence, of a set of vectors, we implicitly assume that we have
arranged the elements of the set in an arbitrary sequence. It is easy to see that
these notions do not depend on the particular order of the elements of the set.

Remark. In these notes we only consider finite linearly independent sets. But let us
mention that an arbitrary subset S of a vector space is called linearly independent if
every finite subset of S is linearly independent. And S is called linearly dependent
if it has a finite linearly dependent subset.
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Remark. If there is a repetition in a list of vectors v1, . . . , vk, say for example
vi = vj , then this list is linearly dependent. Because we have

0v1 + · · ·+ 0vi−1 + 1vi + 0vi+1 + · · ·+ 0vj−1 + (−1)vj + 0vj+1 + · · ·+ 0vk = 0.

Also if one of the vectors in the list is zero, say vi = 0, then the list is linearly
dependent, since

0v1 + · · ·+ 0vi−1 + 1vi + 0vi+1 + · · ·+ 0vk = 0.

Thus if a list is linearly independent then its vectors are all nonzero and distinct.

Example 2.26. Let u, v ∈ V . If u is linearly dependent then there is a nonzero
a ∈ F such that au = 0. Hence we must have u = 0. Conversely, it is obvious that
if u = 0 then it is linearly dependent, since for example 1 · 0 = 0. Thus u is linearly
dependent if and only if it is zero. Equivalently, u is linearly independent if and
only if it is nonzero.

Now if u, v are linearly dependent then there are a, b ∈ F such that au+bv = 0,
and at least one of the a, b is nonzero. If a 6= 0 then we have u = −a−1bv, and if
b 6= 0 then we have v = −b−1au. Thus one of the u, v is a scalar multiple of the
other. Conversely if one of the u, v is a scalar multiple of the other, say u = cv
for some c ∈ F , then we have 1u − cv = 0. Therefore u, v are linearly dependent.
Hence u, v are linearly dependent if and only if one of them is a scalar multiple of
the other.

Proposition 2.27. A list v1, . . . , vk ∈ V is linearly dependent if and only if one of
its elements is in the span of the others, i.e. for some j we have

vj ∈ span(v1, . . . , vj−1, vj+1, . . . , vk).

Proof. If for some j we have vj ∈ span(v1, . . . , vj−1, vj+1, . . . , vk), then we must
have

vj = a1v1 + · · ·+ aj−1vj−1 + aj+1vj+1 + · · ·+ akvk,

for some a1, . . . , ak ∈ F . But then we have

a1v1 + · · ·+ aj−1vj−1 + (−1)vj + aj+1vj+1 + · · ·+ akvk = 0.

Hence v1, . . . , vk are linearly dependent, since the coefficient of vj is nonzero.
Conversely if v1, . . . , vk are linearly dependent, then we have a1v1+· · ·+akvk = 0

for some a1, . . . , ak ∈ F , and at least one of the ai’s is nonzero. Suppose aj 6= 0.
Then we have

vj = (−a−1j a1)v1 + · · ·+ (−a−1j aj−1)vj−1 + (−a−1j aj+1)vj+1 + · · ·+ (−a−1j ak)vk.

Therefore vj ∈ span(v1, . . . , vj−1, vj+1, . . . , vk). �
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Proposition 2.28. A subset of a linearly independent set is linearly independent.

Proof. Suppose v1, . . . , vk is linearly independent, and vj1 , . . . , vjn is a subset of
v1, . . . , vk. Suppose aj1vj1 + · · ·+ ajnvjn = 0 for some aji ∈ F . Then we have

0v1 + · · ·+ 0vj1−1 + aj1vj1 + 0vj1+1 + · · ·+ aj2vj2 + · · ·+ ajnvjn + · · ·+ 0vk = 0.

Hence all the coefficients of the above linear combination must be zero, since
v1, . . . , vk is linearly independent. In particular we have aj1 = · · · = ajn = 0.
Therefore vj1 , . . . , vjn is linearly independent too. �

Theorem 2.29. Suppose w1, . . . , wn ∈ V , and u1, . . . , um ∈ span(w1, . . . , wn). If
m > n then u1, . . . , um are linearly dependent.

Remark. An equivalent way of stating the above result is that if u1, . . . , um ∈
span(w1, . . . , wn), and u1, . . . , um are linearly independent, then m ≤ n.

Proof. Let W := span(w1, . . . , wn). The proof is by induction on n. First sup-
pose that n = 1. In this case we haveW := span(w1), so uj = ajw1 for j = 1, . . . ,m
and aj ∈ F . If one of the uj ’s is 0, for example u1 = 0, then the list is linearly
dependent as we have 1u1 + 0u2 + · · · + 0um = 0. Thus suppose that uj ’s are all
nonzero. Therefore aj ’s are all nonzero too. But then we have

a2u1 − a1u2 + 0u3 + · · ·+ 0um = a2(a1w1)− a1(a2w1) = (a2a1 − a1a2)w1 = 0.

Hence the list is linearly dependent, since the coefficients of u1, u2 in the above
relation are nonzero.

Now suppose that the theorem is true for n = k − 1. We want to deduce it for
n = k. We know that uj ’s are in the span of wi’s. Hence for each j ≤ m we have

uj = aj1w1 + · · ·+ ajkwk,

where aji ∈ F . If the coefficient of wk is zero for all j, then uj ’s are in the span of
k−1 vectors, and therefore they are linearly dependent by the induction hypothesis.
So suppose one of the ajk’s, say amk, is nonzero. Then for j = 1, . . . ,m− 1 set

vj = uj − (ajka
−1
mk)um. (∗)

These are m − 1 vectors, and they are in the span of k − 1 vectors w1, . . . , wk−1,
since we made the coefficient of wk zero. But we have m > k so m − 1 > k − 1.
Hence by the induction hypothesis vj ’s are linearly dependent. This means that
there are scalars cj ∈ F , where at least one of them is nonzero, such that

c1v1 + · · ·+ cm−1vm−1 = 0.
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Now by using (∗) and rearranging the terms in the above relation we get

c1u1 + · · ·+ cm−1um−1 − (c1a1ka
−1
mk + · · ·+ cm−1am−1ka

−1
mk)um = 0.

Therefore uj ’s are also linearly dependent, as desired. �

Proposition 2.30. Suppose B ⊂ V is a linearly independent set, and v ∈ V . Then
B ∪ {v} is linearly independent if and only if v /∈ span(B).

Remark. An equivalent way of stating the above result is that if B is linearly
independent, then B ∪ {v} is linearly dependent if and only if v ∈ span(B).

Proof. We will prove the contrapositive of the proposition which is stated in the
above remark. If v ∈ span(B) then B∪{v} is linearly dependent by Proposition 2.27.
Conversely suppose that B ∪ {v} is linearly dependent. Suppose B = {v1, . . . , vn}.
Then there are scalars a1, . . . , an, a, where at least one of them is nonzero, such
that a1v1 + · · · + anvn + av = 0. If a = 0 then a1v1 + · · · + anvn = 0. But B is
linearly independent, so we must have aj = 0 for all j, which is contrary to our
assumption. Therefore a 6= 0. Hence we have v = −a−1a1v1− · · · − a−1anvn. Thus
v ∈ span(B) as desired. �

Proposition 2.31. Suppose v1, . . . , vk ∈ Fn. Let A ∈ Fn×k be the matrix whose
j-th column is vj. Then v1, . . . , vk are linearly independent if and only if the homo-
geneous linear system Ax = 0 has only the trivial solution x = 0.

Remark. Note that we put the vectors vj in the columns of A, not its rows.

Proof. Suppose x := [x1, . . . , xk]
T ∈ F k. Then we have

Ax = x1A.,1 + · · ·+ xkA.,k = x1v1 + · · ·+ xkvk.

Therefore Ax = 0 if and only if x1v1 + · · · + xkvk = 0. Now note that x 6= 0 if
and only if at least one of the xj ’s is nonzero. Hence the existence of a nontrivial
solution for the system Ax = 0 is equivalent to the linear dependence of v1, . . . , vk.
The contrapositive of this statement is our desired result. �

2.4 Bases and Dimension

Definition 2.32. A finite list of vectors v1, . . . , vn ∈ V is called a basis for V , if
it is linearly independent and generates V .

Remark. In general a set B ⊂ V is a basis, if it is linearly independent and
generates V . But we only consider finite bases in these notes.
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Remark. Note that a list of vectors has an order, so a basis has an order too.
Hence some authors use the term ordered basis. Also note that no vector can be
repeated in a linearly independent list, so the elements of a basis are all distinct.
The next theorem shows that why bases are important and useful.

Theorem 2.33. Let v1, . . . , vn ∈ V be a list of vectors. Then v1, . . . , vn is a basis
for V if and only if every vector v ∈ V can be written as a unique linear combination
of v1, . . . , vn.

Remark. The uniqueness in the above theorem means that if for some ai, bi ∈ F
we have

a1v1 + . . .+ anvn = v = b1v1 + . . .+ bnvn,

then bi = ai for each i. In other words the n-tuple (a1, . . . , an) is uniquely deter-
mined by v.

Proof. Suppose v1, . . . , vn is a basis for V . Let v ∈ V . Then v ∈ span(v1, . . . , vn),
so there are ai ∈ F such that v = a1v1 + . . . + anvn. Now suppose for bi ∈ F we
also have v = b1v1 + . . .+ bnvn. Then by subtracting these two equations we get

(a1 − b1)v1 + . . .+ (an − bn)vn = 0.

But v1, . . . , vn are linearly independent, so for every i we have ai = bi as desired.
Conversely suppose that every vector v ∈ V can be written as a unique linear

combination of v1, . . . , vn. Then v ∈ span(v1, . . . , vn). Thus v1, . . . , vn generate V .
Next suppose a1v1 + . . .+ anvn = 0 for some ai ∈ F . Then we have

a1v1 + . . .+ anvn = 0 = 0v1 + . . .+ 0vn.

But 0 must be written uniquely as a linear combination of v1, . . . , vn. Therefore
ai = 0 for every i. Hence v1, . . . , vn are linearly independent, and consequently
they form a basis for V . �

Example 2.34. The list of vectors e1, . . . , en is a basis for Fn, called its standard
basis. To see this let x = [x1, . . . , xn]T ∈ Fn. Then we have x = x1e1 + · · ·+ xnen.
So e1, . . . , en generate Fn. On the other hand, suppose x1e1 + · · · + xnen = 0 for
some x1, . . . , xn ∈ F . Then we have [x1, . . . , xn]T = x1e1 + · · · + xnen = 0. Hence
xj = 0 for every j. Thus e1, . . . , en are also linearly independent.

Theorem 2.35. Suppose v1, . . . , vn and u1, . . . , um are bases for V . Then m = n.

Remark. In other words, the number of vectors in a basis is uniquely determined
by the vector space.
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Proof. We have u1, . . . , um ∈ span(v1, . . . , vn), and we know that u1, . . . , um are
linearly independent. Hence by Theorem 2.29 we must have m ≤ n. Similarly we
can show that n ≤ m. Thus m = n. �

Definition 2.36. If a vector space V has a finite basis, then the dimension of V
is the number of vectors in its basis. A vector space is called finite dimensional
if it has a finite basis, and is called infinite dimensional otherwise.

Notation. We know that the number of vectors in a basis is independent of the
basis, so the dimension of a finite dimensional vector space is uniquely determined
by the vector space. If V is a finite dimensional vector space over a field F , we
denote its dimension by

dimV.

And when we want to emphasize the field of scalars, we denote the dimension of V
by

dimF V,

and we call it the dimension of V over F .

Example 2.37. We have dimFn = n, since Fn has a basis with n elements, i.e. its
standard basis. We also have dimFm×n = mn. To see this consider the matrices
Eij for i ≤ m and j ≤ n, where the entries of Eij are all zero except its ij-th entry
which equals 1. Then it is easy to show that {Eij : i ≤ m, j ≤ n} is a basis for
Fm×n.

Example 2.38. Consider the zero vector space {0}. Then its dimension is 0, since
the empty set ∅ is a linearly independent set that spans {0}.

Theorem 2.39. Suppose that V is the span of a finite set S ⊂ V , and B ⊂ V is a
linearly independent set. Then there is A ⊂ S such that B ∪ A is a basis for V .

Remark. An important consequence of the above theorem is that in a finitely
generated vector space we can extend a linearly independent set B1 to a basis, and
we can reduce a finite spanning set S1 to a basis. For the first claim consider an
arbitrary finite spanning set S for the space. Then there is A1 ⊂ S such that B1∪A1

is a basis, i.e. we have extended B1 to a basis. Now for the second claim consider
the linearly independent set B = ∅. Then there is A ⊂ S1 such that A = ∅ ∪A is a
basis, i.e. we have reduced S1 to a basis.

Proof. Suppose S = {u1, . . . , um} spans V . We are looking for a set A ⊂ S
such that B ∪ A is a basis. This means that B ∪ A must spans V , and be linearly
independent. Consider the class of sets Ã ⊂ S such that B ∪ Ã is linearly inde-
pendent. Since S is finite, it has finitely many subsets. Therefore there are finitely
many sets Ã in the above class. Also the above class is nonempty, since it contains
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∅ ⊂ S. Now, in this finite class consider a set with the greatest number of elements,
and call it A. Note that there might be several sets with the greatest number of
elements, but we only need one of them.

We claim that B ∪ A is a basis. First note that B ∪ A is linearly independent,
since we have chosen A among the subsets of S whose union with B is linearly
independent. Thus we only need to show that B ∪ A spans V . Now if A = S then
S ⊂ B ∪ A. Hence by Proposition 2.22 we have

V = span(S) ⊂ span(B ∪ A) ⊂ V =⇒ span(B ∪ A) = V.

Otherwise there is v ∈ S − A. Then A ∪ {v} is a subset of S with more elements
than A. Thus B ∪ A ∪ {v} is linearly dependent, since A has the greatest number
of elements amongst the subsets of S whose union with B is linearly independent.
Therefore by Proposition 2.30 we must have v ∈ span(B ∪ A). As v was arbitrary
we obtain that S ⊂ B ∪ A. Hence span(B ∪ A) = V as before. �

Exercise 2.40. Suppose V is finite dimensional, and v1, . . . , vk ∈ V is a nonempty
linearly independent set of vectors that is not a basis for V . Show that there is
more than one set of vectors w1, . . . , wm ∈ V such that v1, . . . , vk, w1, . . . , wm is a
basis for V . Is the number of such sets w1, . . . , wm necessarily infinite?

Theorem 2.41. Every finitely generated vector space has a basis.

Remark. As a consequence, every finitely generated vector space is finite dimen-
sional.

Proof. Suppose S is a finite set that spans the space. Consider the linearly
independent set B = ∅. Then by Theorem 2.39 there is A ⊂ S such that A = ∅∪A
is a basis, i.e. the space has a basis. �

Remark. Let us give another proof for the above theorem, that describes an al-
gorithm for finding a basis. Suppose V is a finitely generated vector space, i.e.
V = span(w1, . . . , wm). Consider the list w1, . . . , wm. If all the vectors in the list
are zero then V = {0}, and ∅ is a basis for V . So we assume that some of the vec-
tors in the list are nonzero. We start with the first nonzero vector in the list, say
it is wj . Then we remove the vectors w1, . . . , wj−1 from the list. Next we consider
wj+1. If wj+1 is in the span of wj , we remove it from the list; otherwise we keep it.
Now suppose we have gone through the list, and kept the vectors wj , wj2 , . . . , wjk .
If the next vector, say wl, is in the span of wj , wj2 , . . . , wjk , we remove it from the
list; otherwise we keep it. We repeat this process until there is no more vector to
consider. Then we have a list wj , wj2 , . . . , wjn .

Note that the above list is linearly independent by our construction. Because
the first vector is nonzero, and therefore it is linearly independent. And at each
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step we added a vector that is not in the span of previous vectors, so we kept the list
linearly independent by Proposition 2.30. Finally note that the removed vectors
are in the span of wj , wj2 , . . . , wjn , so each wi is in the span of wj , wj2 , . . . , wjn .
Hence by Proposition 2.22 we have

V = span(w1, . . . , wm) ⊂ span(wj , . . . , wjn) ⊂ V.

Thus wj , wj2 , . . . , wjn is a basis for V .
We can even modify the above algorithm to prove Theorem 2.39. Suppose

B = {v1, . . . , vk} is linearly independent, and S = {w1, . . . , wm} spans V . Then
we start with the list of elements of B, and we go through the list of elements of
S one by one. At each step if a vector belongs to the span of the list we ignore
it; otherwise we add it to the list. At the end we have constructed a basis for V
by adding some elements of S to B. The proof of this fact is similar to the above
argument.
Remark. When V = Fn, we have to solve a linear system at each step of the above
algorithm, to determine whether a vector is in the span of the previous vectors. But
we can actually find a basis among w1, . . . , wm by solving only one system of linear
equations. So the above algorithm is not very useful in this case. We will describe
the faster method in Theorem 2.47.
Remark. If V is not finitely generated, then we can apply a modified version of
the above algorithm to produce linearly independent sets of vectors with arbitrarily
large number of elements. To do this we start with a nonzero vector v1 ∈ V ,
which we know is linearly independent. Suppose we have chosen v1, . . . , vk, and
they are linearly independent. Then V 6= span(v1, . . . , vk), since V is not finitely
generated. Hence there is vk+1 ∈ V − span(v1, . . . , vk). Thus by Proposition 2.30,
v1, . . . , vk, vk+1 is linearly independent too. Therefore by repeating this process we
can build linearly independent sets with any number of elements.

Theorem 2.42. Suppose that V is a finite dimensional vector space, and dimV =
n. Then
(i) Any linearly independent subset of V has at most n elements, and if it has n

elements then it is a basis.
(ii) Any set that generates V has at least n elements, and if it has n elements

then it is a basis.

Remark. A consequence of the above theorem is that a maximal linearly inde-
pendent set is a basis, and a minimal spanning set is also a basis. These facts are
actually true in infinite dimensional vector spaces too, and can be used to prove
the existence of a basis for those spaces.

Proof. (i) Suppose B ⊂ V is linearly independent. Then we have seen that there
is a basis B̃ ⊃ B. Hence the number of elements of B is at most the number of
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elements of B̃, which is n = dimV . If B has exactly n elements, then we must have
B = B̃, so B must be a basis.

(ii) Suppose S ⊂ V is a spanning set. Then we have seen that there is a basis
S̃ ⊂ S. Hence the number of elements of S is at least the number of elements of S̃,
which is n = dimV . If S has exactly n elements, then we must have S = S̃, so S
must be a basis. �

Example 2.43. The space F∞ is not finite dimensional, therefore it is not finitely
generated either. To see this suppose to the contrary that F∞ is finite dimensional.
Let n := dimF∞. But this leads to a contradiction, since F∞ contains the following
linearly independent list of n+ 1 vectors

(1, 0, 0, . . . ), (0, 1, 0, . . . ), . . . , (0, 0, . . . , 0,

n+1-th
�
1 , 0, . . .).

Theorem 2.44. Suppose that W is a subspace of a finite dimensional vector space
V . Then
(i) W is finite dimensional, and dimW ≤ dimV .
(ii) If dimW = dimV then W = V .

Proof. (i) Let n = dimV . Every linearly independent set A ⊂ W is also a
linearly independent subset of V . Therefore A has at most n elements. Let B be a
linearly independent subset of W that has the greatest number of elements. Note
that there might be several linearly independent sets with the greatest number of
elements, but we only need one of them.

Now let w ∈ W . If w /∈ span(B) then B ∪ {w} is linearly independent by
Proposition 2.30. Also note that w /∈ B, since B ⊂ span(B). Thus B ∪ {w} is a
subset of W that has more elements than B, which is a contradiction. So we must
have w ∈ span(B). Hence W ⊂ span(B), since w was arbitrary. On the other hand,
by Proposition 2.20 we have span(B) ⊂ W , since W is a subspace containing B.
Therefore B spans W , and as it is linearly independent, B is a finite basis for W .
Finally note that B has at most n elements, so dimW ≤ n.

(ii) Let n = dimW = dimV . Let B be a basis of W . Then B is a linearly
independent subset of V that has n elements. Hence B is a basis for V . Therefore
V = span(B) = W . �

Proposition 2.45. Let A,B ∈ Fm×n, and suppose B is the reduced row echelon
form of A. Let B1,j1 , . . . Bk,jk be the leading entries of the nonzero rows of B.
Then the columns A.,j1 , . . . , A.,jk are linearly independent, and form a basis for
span(A.,1, . . . , A.,n). In addition for every j ≤ n we have

A.,j =
∑
l≤k

BljA.,jl .
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Also, for every i ≤ k the columns A.,j1 , . . . , A.,ji−1 form a basis for

span(A.,1, . . . , A.,ji−1).

Remark. In other words, if j < ji then A.,j is a linear combination of A.,j1 , . . . ,
A.,ji−1 . (Note the difference between ji−1 and ji−1.) In particular we have A.,j = 0
when j < j1.
Remark. Note that as a consequence of this proposition we get

k = dim span(A.,1, . . . , A.,n).

Proof. We know that B = EA for some invertible matrix E ∈ Fm×m. We also
know that j1 < j2 < · · · < jk ≤ n. By Proposition 1.34, we also know that B.,ji = ei
for every i ≤ k, and when j < ji we have

B.,j = [B1j , B2j , . . . , Bi−1,j , 0, . . . , 0]T =
∑
l≤i−1

Bljel =
∑
l≤i−1

BljB.,jl . (∗)

Note that when j < j1 we have B.,j = 0. Also when j ≥ jk we have to set i = k+ 1
in the above equation.

Now suppose
∑

i≤k aiA.,ji = 0 for some ai ∈ F . Then we have∑
i≤k

aiei =
∑
i≤k

aiB.,ji =
∑
i≤k

ai(EA).,ji

=
∑
i≤k

aiEA.,ji = E
(∑
i≤k

aiA.,ji

)
= E0 = 0.

Thus ai = 0 for every i. Hence A.,j1 , . . . , A.,jk are linearly independent. Next
suppose j < ji. Then if we multiply the equation (∗) by E−1 we get

A.,j = (E−1B).,j = E−1B.,j = E−1
( ∑
l≤i−1

BljB.,jl

)
=
∑
l≤i−1

BljE
−1B.,jl =

∑
l≤i−1

Blj(E
−1B).,jl =

∑
l≤i−1

BljA.,jl . (∗∗)

Hence A.,j1 , . . . , A.,ji−1 generate span(A.,1, . . . , A.,ji−1). So they form a basis for
span(A.,1, . . . , A.,ji−1), since they are linearly independent. If we simply assume
that j ≤ n then we can set i = k + 1 in the above equation, and conclude that
A.,j1 , . . . , A.,jk is a basis for span(A.,1, . . . , A.,n). Also note that when j < j1 the
above equation becomes A.,j = (E−1B).,j = E−1B.,j = E−10 = 0.

Now let j ≤ n. Suppose j < ji for some i; or j > jk, in which case we set
i = k + 1. Then the equation (∗∗) gives us

A.,j =
∑
l≤i−1

BljA.,jl =
∑
l≤k

BljA.,jl ,

since Blj = 0 for l ≥ i. �
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Theorem 2.46. The reduced row echelon form of a matrix is unique.

Remark. Let A ∈ Fm×n. Remember that the reduced row echelon form of A
is a matrix B ∈ Fm×n which is in reduced row echelon form, such that we have
B = EA for some invertible matrix E ∈ Fm×m. Also note that the uniqueness of
the reduced row echelon form of A means that if B,B′ ∈ Fm×n are two matrices
in reduced row echelon form, and E,E′ ∈ Fm×m are invertible matrices such that
B = EA, B′ = E′A, then B = B′. But it is not true that E is also uniquely
determined by A.

Proof. Let A,B ∈ Fm×n, and suppose B is the reduced row echelon form of A.
Let B1,j1 , . . . Bk,jk be the leading entries of the nonzero rows of B. We know that
j1 < j2 < · · · < jk ≤ n. By Proposition 1.34, we also know that B.,ji = ei for
every i ≤ k. Furthermore, the previous proposition implies that A.,j1 , . . . , A.,jk are
linearly independent, and form a basis for span(A.,1, . . . , A.,n). Also, for every i ≤ k
the columns A.,j1 , . . . , A.,ji−1 form a basis for span(A.,1, . . . , A.,ji−1). In addition we
have A.,j = 0 when j < j1.

Now let us show that B is uniquely determined by A. First note that j1, . . . , jk
are uniquely determined by A. We prove this by induction. We know that A.,1 =
A.,2 = · · · = A.,j1−1 = 0. But A.,j1 is linearly independent, so it is nonzero. Thus
A.,j1 is the first nonzero column of A. Suppose we have shown that j1, . . . , ji−1
are uniquely determined by A. Then we know that A.,j ∈ span(A.,j1 , . . . , A.,ji−1)
for j < ji. On the other hand, A.,j1 , . . . , A.,ji are linearly independent, so A.,ji /∈
span(A.,j1 , . . . , A.,ji−1). Therefore A.,ji is the first column after A.,j1 , . . . , A.,ji−1

that does not belong to their span. At the end, after we have determined jk, we
have A.,j ∈ span(A.,j1 , . . . , A.,jk) for every j ≤ n.

Hence j1, . . . , jk are uniquely determined by A. In particular k is uniquely
determined by A. So in the matrix B, the positions of the columns B.,j1 , . . . , B.,jk ,
which are equal to e1, . . . , ek, are uniquely determined by A. Now let j ≤ n be an
index different from j1, . . . , jk. By the previous proposition we have

A.,j =
∑
l≤k

BljA.,jl .

This equation implies that B1j , . . . , Bkj are the coefficients of the expansion of A.,j
as a linear combination of A.,j1 , . . . , A.,jk . But these coefficients are uniquely deter-
mined by the columns of A, because A.,j1 , . . . , A.,jk is a basis for span(A.,1, . . . , A.,n).
In addition we have Blj = 0 for l > k, since the rows of B below the k-th row are
zero. Thus the entries of the columns B.,j are uniquely determined by A. Hence B
is uniquely determined by A. �

Theorem 2.47. Suppose w1, . . . , wm ∈ Fn. Let A ∈ Fn×m be the matrix whose
j-th column is wj. Let B ∈ Fn×m be the reduced row echelon form of A. Suppose
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B.,j1 , . . . , B.,jk are the columns of B that contain a leading entry. Then wj1 , . . . , wjk
is a basis for span(w1, . . . , wm).

Remark. This theorem provides us an algorithm to find a basis for Fn among the
vectors w1, . . . , wm, by solving only one system of linear equations.

Proof. This theorem is a trivial consequence of Proposition 2.45. �

Theorem 2.48. Suppose v1, . . . , vk ∈ Fn are linearly independent, and w1, . . . , wm
span Fn. Let A ∈ Fn×(k+m) be the matrix whose j-th column is vj when j ≤ k,
and its (k + i)-th column is wi when i ≤ m. Let B ∈ Fn×(k+m) be the reduced row
echelon form of A. Then B has exactly n−k columns B.,j1 , . . . , B.,jn−k that contain
a leading entry, and satisfy ji > k. In addition, v1, . . . , vk, wj1 , . . . , wjn−k is a basis
for Fn.

Remark. This theorem provides us an algorithm to extend the list v1, . . . , vk to a
basis for Fn by using the elements of the list w1, . . . , wm. Also note that in this
algorithm we only need to solve one system of linear equations.

Proof. First note that k ≤ n. Now since w1, . . . , wm ∈ span(A.,1, . . . , A.,k+m) ⊂
Fn, and w1, . . . , wm generate Fn, we have

dim span(A.,1, . . . , A.,k+m) = n.

Thus the number of leading entries of B are n, due to the Proposition 2.45. On
the other hand A.,j = vj for j ≤ k. So A.,1, . . . , A.,k are linearly independent, and
thus they form a basis for their own span. Therefore A.,j does not belong to the
span of A.,1, . . . , A.,j−1 for j ≤ k. Hence as shown in the proof of Theorem 2.46,
B.,1, . . . , B.,k must contain leading entries. Thus the other n− k leading entries of
B belong to the columns B.,j for some j > k. Now the theorem follows trivially
from Proposition 2.45. �

2.5 Sums and Direct Sums of Subspaces

Definition 2.49. Suppose W1, . . . ,Wk are subspaces of a vector space V . Then
their sum denoted by

W1 + · · ·+Wk,

is the subspace generated by
⋃k
i=1Wi.

Remark. Note that we have only defined the sum of several subspaces of some
given vector space, not the sum of several arbitrary and unrelated vector spaces.
In fact, the above definition is meaningless when Wi’s are not subspaces of a larger
space V .
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Remark. Also note that the sum of several subspaces does not depend on their
order, since the union of several sets does not depend on the order of sets.

Theorem 2.50. Suppose W1, . . . ,Wk are subspaces of V . Then we have

W1 + · · ·+Wk = {v1 + · · ·+ vk : for every v1 ∈W1, . . . , vk ∈Wk}.

Proof. Let W := {v1 + · · · + vk : v1 ∈ W1, . . . , vk ∈ Wk}. Then every element
of W is a linear combination of some vectors in

⋃k
i=1Wi. Thus W is in the span

of
⋃k
i=1Wi, i.e. W ⊂ W1 + · · · + Wk. To prove the equality, it suffices to show

that W is a subspace, since W obviously contains each Wj , and W1 + · · · + Wk

is the smallest subspace that contains each Wj . Now let
∑
vj ,
∑
uj ∈ W where

vj , uj ∈Wj for each j, and let a ∈ F . Then we have∑
j≤k

vj + a
∑
j≤k

uj =
∑
j≤k

(vj + auj) ∈W,

since vj + auj ∈Wj for each j. Hence W is a subspace as desired. �

Theorem 2.51. Suppose W1,W2 are finite dimensional subspaces of V . Then
W1 +W2 and W1 ∩W2 are also finite dimensional subspaces, and we have

dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2).

Proof. First note thatW1∩W2 is finite dimensional, since it is a subspace ofW1.
Let w1, . . . , wk be a basis for W1 ∩W2. Now w1, . . . , wk is a linearly independent
subset of W1, so we can extend it to a basis for W1. Let us denote this basis by
w1, . . . , wk, u1, . . . , un. Similarly we can extend w1, . . . , wk to a basis forW2, and we
denote it by w1, . . . , wk, v1, . . . , vm. We claim that w1, . . . , wk, u1, . . . , un, v1, . . . , vm
is a basis for W1 +W2.

Let u+ v be an arbitrary vector in W1 +W2, where u ∈W1 and v ∈W2. Then
there are scalars ai, bi, ci, di ∈ F such that

u = a1u1 + · · ·+ anun + c1w1 + · · ·+ ckwk,

v = b1v1 + · · ·+ bmvm + d1w1 + · · ·+ dkwk.

Then we have

u+ v = a1u1 + · · ·+ anun + b1v1 + · · ·+ bmvm

+ (c1 + d1)w1 + · · ·+ (ck + dk)wk.

Hence w1, . . . , wk, u1, . . . , un, v1, . . . , vm span W1 + W2. In particular W1 + W2 is
finite dimensional.
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Now let us show that w1, . . . , wk, u1, . . . , un, v1, . . . , vm is linearly independent.
Suppose for some ai, bi, ci ∈ F we have

a1u1 + · · ·+ anun + b1v1 + · · ·+ bmvm + c1w1 + · · ·+ ckwk = 0.

Then we have

u := a1u1 + · · ·+ anun = −b1v1 − · · · − bmvm − c1w1 − · · · − ckwk. (∗)

But u ∈ span(u1, . . . , un) ⊂W1, and u ∈ span(w1, . . . , wk, v1, . . . , vm) = W2. Hence
u ∈W1 ∩W2. Thus there are di ∈ F such that u = d1w1 + · · ·+ dkwk. Therefore

a1u1 + · · ·+ anun = u = d1w1 + · · ·+ dkwk.

Hence
a1u1 + · · ·+ anun − d1w1 − · · · − dkwk = 0.

So we must have ai = 0 and dj = 0 for each i, j, since w1, . . . , wk, u1, . . . , un is
linearly independent. Now the equation (∗) implies that

−b1v1 − · · · − bmvm − c1w1 − · · · − ckwk = 0,

and therefore we must have bi = 0 and cj = 0 for each i, j, since w1, . . . , wk, v1, . . . , vm
is linearly independent too. Hence we get the desired.

Finally note that there is no repetition in the list of vectors w1, . . . , wk, u1, . . . , un,
v1, . . . , vm, since it is a linearly independent list. Thus the number of vectors in
this list is n+m+ k, and hence we have

dim(W1 +W2) = n+m+ k = n+ k +m+ k − k
= dimW1 + dimW2 − dim(W1 ∩W2),

as desired. �

Remark. There is no simple formula similar to the above formula, for the dimen-
sion of the sum of more than two finite dimensional subspaces.

Definition 2.52. Suppose W1, . . . ,Wk are subspaces of V . Then the subspaces
W1, . . . ,Wk are said to be independent if for every v1 ∈W1, . . . , vk ∈Wk we have

v1 + · · ·+ vk = 0 =⇒ vi = 0 for every i.

WhenW1, . . . ,Wk are independent subspaces, their sum is called their direct sum,
and is denoted by

W1 ⊕ · · · ⊕Wk.
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Remark. Note that the direct sum of several subspaces is nothing but their sum.
We just use a different notation for it, to emphasize that the subspaces are inde-
pendent.

Theorem 2.53. Suppose W1, . . . ,Wk are independent subspaces of V . Then for
every v ∈W1 ⊕ · · · ⊕Wk there are unique v1 ∈W1, . . . , vk ∈Wk, such that

v = v1 + · · ·+ vk.

Remark. The uniqueness in the above theorem means that if for some vi, ui ∈Wi

we have
v1 + . . .+ vk = v = u1 + . . .+ uk,

then ui = vi for each i.

Proof. The existence of v1, . . . , vk is proved in Theorem 2.50. To prove the
uniqueness suppose that for some vi, ui ∈Wi we have

v1 + . . .+ vk = v = u1 + . . .+ uk.

Then we have (v1 − u1) + · · ·+ (vk − uk) = 0. But vi − ui ∈ Wi for each i. So for
each i we must have vi − ui = 0, since W1, . . . ,Wk are independent subspaces. �

Theorem 2.54. SupposeW1,W2 are subspaces of V . ThenW1,W2 are independent
if and only if W1 ∩W2 = {0}.

Proof. SupposeW1∩W2 = {0}, and we have v1+v2 = 0 where vj ∈Wj . Then we
have v1 = −v2 ∈W2. Thus v1 ∈W1 ∩W2. So v1 = 0, and therefore v2 = 0. Hence
W1,W2 are independent subspaces. Conversely suppose W1,W2 are independent
subspaces. Let v ∈ W1 ∩W2 be an arbitrary vector. Then we have v + (−v) = 0.
But v ∈W1∩W2 ⊂W1 and −v ∈W1∩W2 ⊂W2. Hence we must have v = −v = 0.
Thus W1 ∩W2 = {0}. �

Remark. There is no simple criterion similar to the above, for the independence
of more than two subspaces. For example, consider the subspaces Wk := {y = kx}
of R2, for k = 1, 2, 3. Then W1,W2,W3 are not independent, since[

1
1

]
+

[
−2
−4

]
+

[
1
3

]
=

[
0
0

]
,

and the k-th vector in the above sum belongs to Wk. But it is easy to see that
Wk ∩Wj = {0} for k 6= j.

Theorem 2.55. Suppose W1, . . . ,Wk are finite dimensional subspaces of V , and
Bj is a basis for Wj for each j. Let B :=

⋃k
j=1 Bj.
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(i) W1 + · · · + Wk is finite dimensional, and B is a set of generators for it. In
addition we have

dim(W1 + · · ·+Wk) ≤
k∑
j=1

dimWj .

(ii) If W1, . . . ,Wk are also independent, then B is a basis for W1⊕ · · · ⊕Wk, and
we have

dim(W1 ⊕ · · · ⊕Wk) =
k∑
j=1

dimWj .

Proof. (i) Suppose Bj = {vj,1, . . . , vj,nj}. Let W := W1 + · · · + Wk, and let
v ∈ W . We know that there are vj ∈ Wj for each j, so that v =

∑
j≤k vj . On

the other hand, we know that there are aj,i ∈ F such that vj =
∑

i≤nj aj,ivj,i for
each j, because Bj is a basis for Wj . Hence we have v =

∑
j≤k

∑
i≤nj aj,ivj,i. So B

generates W . Thus W is finitely generated, and therefore it is finite dimensional.
In addition note that by Theorem 2.42, the dimension of W is less than or

equal to the number of elements of B. Also, note that the number of elements of
B =

⋃
j≤k Bj is less than or equal to the sum of the number of elements of each Bj .

Hence we get the desired inequality for dimW .
(ii) Let W := W1 ⊕ · · · ⊕ Wk. We know that B generates W . Now sup-

pose Bj = {vj,1, . . . , vj,nj}. Then B = {v1,1, . . . , v1,n1 , . . . , vk,nk}. Suppose we
have

∑
j≤k

∑
i≤nj aj,ivj,i = 0, where aj,i ∈ F . Let vj :=

∑
i≤nj aj,ivj,i. Then

we have
∑

j≤k vj = 0, and vj ∈ Wj for each j. Thus we must have vj = 0 for
each j, since W1, . . . ,Wk are independent subspaces. Hence for every fixed j we
have

∑
i≤nj aj,ivj,i = 0. But Bj is linearly independent, so aj,i = 0 for every i, j.

Therefore
⋃
j≤k Bj is linearly independent, and consequently it is a basis for W .

Finally note that B is linearly independent, thus its elements are all distinct.
Hence the number of elements of B =

⋃
j≤k Bj is the sum of the number of elements

of each Bj . Therefore we get the desired formula for dimW . �

Remark. The converse of the part (ii) of the above theorem is also true, as we will
see next.

Theorem 2.56. Suppose W1, . . . ,Wk are finite dimensional subspaces of V , and
Bj is a basis for Wj for each j. Let B :=

⋃k
j=1 Bj.

(i) If B is a basis for V , then W1, . . . ,Wk are independent subspaces, and we have
V = W1 ⊕ · · · ⊕Wk.

(ii) Let W := W1 + · · · + Wk. If dimW =
∑k

j=1 dimWj, then W1, . . . ,Wk are
independent subspaces, and we have W = W1 ⊕ · · · ⊕Wk.
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Proof. (i) Suppose Bj = {vj,1, . . . , vj,nj}. Then we have

B = {v1,1, . . . , v1,n1 , . . . , vk,1, . . . , vk,nk}.

Let v ∈ V . We know that there are aj,i ∈ F such that v =
∑

j≤k
∑

i≤nj aj,ivj,i. Set
vj :=

∑
i≤nj aj,ivj,i. Then we have v =

∑
j≤k vj , and vj ∈ Wj for each j. Thus we

have shown that V = W1 + · · ·+Wk.
Now suppose

∑
j≤k vj = 0, where vj ∈ Wj for each j. Then there are aj,i ∈ F

so that vj =
∑

i≤nj aj,ivj,i for each j, because Bj is a basis for Wj . Therefore we
have

∑
j≤k

∑
i≤nj aj,ivj,i = 0. But B is a basis, so we must have aj,i = 0 for every

i, j. Hence we have vj =
∑

i≤nj aj,ivj,i = 0 for every j. Thus W1, . . . ,Wk are
independent subspaces, and therefore their sum is a direct sum.

(ii) By previous theorem, we know that B generatesW . On the other hand, the
number of elements of B =

⋃
j≤k Bj is less than or equal to the sum of the number

of elements of each Bj . Hence the number of elements of B is less than or equal to
the dimension of W . Therefore by Theorem 2.42, B is a basis for W . Thus by part
(i) of the theorem we get the desired result. �

Exercise 2.57. Suppose W,U are subspaces of V , and V = W ⊕U . Also suppose
that

W = W1 ⊕ · · · ⊕Wk, U = U1 ⊕ · · · ⊕ Ul,
where W1, . . . ,Wk and U1, . . . , Ul are subspaces of W and U respectively. Show
that

V = W1 ⊕ · · · ⊕Wk ⊕ U1 ⊕ · · · ⊕ Ul.

Solution. First let us emphasize that k or l can be 1 too. Also, note that each
Wi and Uj is also a subspace of V , as shown in Exercise 2.24. Let v ∈ V . Then
there are w ∈W and u ∈ U such that v = w + u. Consequently there are wi ∈Wi

and uj ∈ Uj so that

w = w1 + · · ·+ wk, u = u1 + · · ·+ ul.

Hence v = w1 + · · ·+ wk + u1 + · · ·+ ul. Therefore

V = W1 + · · ·+Wk + U1 + · · ·+ Ul.

Now suppose w1 + · · ·+ wk + u1 + · · ·+ ul = 0, where wi ∈Wi and uj ∈ Uj . Let

w := w1 + · · ·+ wk ∈W, u := u1 + · · ·+ ul ∈ U.

Then we have w + u = 0. But W,U are independent subspaces, so we must have
w = u = 0. Thus we have w1 + · · ·+ wk = 0, and u1 + · · ·+ ul = 0. Therefore we
obtain wi = 0 for every i, and uj = 0 for every j; because W and U are the direct
sum of W1, . . . ,Wk and U1, . . . , Ul respectively. Hence W1, . . . ,Wk, U1, . . . , Ul are
independent subspaces of V , and we get the desired. �



Chapter 3

Linear Maps

3.1 Linear Maps

Definition 3.1. Suppose V and W are two vector spaces over the same field F . A
linear map is a function T : V →W that satisfies
(i) T (u+ v) = T (u) + T (v) for every u, v ∈ V .
(ii) T (av) = aT (v) for every v ∈ V and a ∈ F .

Linear maps from V to F are called (linear) functionals on V . Linear maps from
V to itself are called (linear) operators on V .

Remark. We usually denote T (v) by Tv.

Remark. Note that in the relation T (u+ v) = Tu+ Tv, u, v are added using the
addition of V , and Tu, Tv are added using the addition of W . So in some sense,
we can say that the linear map T transforms the addition of V into the addition of
W . Similar remarks apply to the scalar multiplication.

Remark. When we want to emphasize the role of the field F , we will say that T
is F -linear.

Notation. In the rest of this chapter, we assume that F is a field, V,W are vector
spaces over F , and T : V →W is a linear map.

Proposition 3.2. Suppose T : V →W is a linear map. Then
(i) T (0) = 0.
(ii) For every v1, . . . , vk ∈ V and a1, . . . , ak ∈ F we have

T (a1v1 + · · ·+ akvk) = a1T (v1) + · · ·+ akT (vk).

Remark. The above proposition means that linear maps preserve linear combina-
tions, and the zero vector.

54
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Proof. (i) We have

T (0) + 0 = T (0) = T (0 + 0) = T (0) + T (0).

So T (0) = 0. Another easy way to prove this is to note that

T (0) = T (0 · 0) = 0 · T (0) = 0.

Notice that in the above 0 denotes both the zero scalar and the zero vector.
(ii) By an easy induction on k we can show that T (

∑
j≤k vj) =

∑
j≤k T (vj).

Then we have T (
∑

j≤k ajvj) =
∑

j≤k T (ajvj) =
∑

j≤k ajT (vj). �

Remark. The following proposition is an easy criterion to check whether a given
map is linear.

Proposition 3.3. A function T : V →W is linear if and only if for every u, v ∈ V
and a ∈ F we have

T (u+ av) = Tu+ aTv.

Proof. When T is linear we have T (u+av) = Tu+T (av) = Tu+aTv. Conversely
suppose that T satisfies the above property. Then by setting a = 1 we get T (u+v) =
Tu + Tv for every u, v ∈ V . So we must have T (0) = 0, as we have shown in the
proof of the last proposition. Now by setting u = 0 we get

T (av) = T (0 + av) = T (0) + aTv = 0 + aTv = aTv.

Thus T is linear. �

Example 3.4. Let A ∈ Fm×n. Then the function

Fn −→ Fm

x 7→ Ax

is a linear map. Note that we consider the vectors of Fn, Fm as column vectors, so
the action of A on x is just matrix multiplication. This example is the prototype
example of linear maps between finite dimensional vector spaces, as we will see
later. Another interesting linear map, similar to the above one, is the following

Fn×k −→ Fm×k

B 7→ AB
.

Example 3.5. The following functions are linear maps

V →W
v 7→ 0

,
V → V
v 7→ v

.

The first function is called the zero linear map, and is usually denoted by 0. And
the second function is the identity map of V , which is usually denoted by IV . When
V is clear from the context, we simply denote IV by I.
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Example 3.6. Consider the following functions on F∞

(a1, a2, . . . ) 7→ (a2, a3, . . . ),

(a1, a2, . . . ) 7→ (0, a1, a2, . . . ).

These functions are both linear. They are called the backward shift, and the forward
shift, respectively.

Example 3.7. Let S be a nonempty set, and let W be a vector space over the
field F . Then the space of functions from S into W , i.e.

WS := {f : f : S →W},

is a vector space over F . The addition and scalar multiplication on this space are
defined as follows

(f + g)(s) := f(s) + g(s), (af)(s) := af(s),

where f, g ∈ WS and a ∈ F . Note that f + g and af are functions, so in order
to define them we have to specify their values at every s ∈ S. We leave it as an
exercise, to check that WS is indeed a vector space with these operations. We only
mention that the zero of this vector space is the zero function, i.e. the function
that maps every s ∈ S to 0 ∈ W . Also, the additive inverse of a function f is the
function (−f)(s) := −f(s).

Now suppose that S = V is also a vector space over F . Let L(V,W ) be the set
of all linear maps from V to W . Let us show that L(V,W ) is a subspace of WS .
First note that the zero function is a linear map, so it belongs to L(V,W ). Next
assume that T, S ∈ L(V,W ) and a ∈ F . We know that

(T + S)(v) := Tv + Sv, (aT )(v) := aTv,

for all v ∈ V . We only need to show that T + S, aT belong to L(V,W ), i.e. they
are linear maps too. Suppose that u, v ∈ V and b ∈ F . Then we have

(T + S)(u+ bv) = T (u+ bv) + S(u+ bv) = Tu+ bTv + Su+ bSv

= Tu+ Su+ b(Tv + Sv) = (T + S)(u) + b(S + T )(v),

(aT )(u+ bv) = a
(
T (u+ bv)

)
= a(Tu+ bTv) = aTu+ abTv

= aTu+ baTv = (aT )(u) + b(aT )(v).

Thus T + S, aT are linear. Hence L(V,W ) is a subspace of WS , and therefore
L(V,W ) is itself a vector space over the field F .

Definition 3.8. We call L(V,W ) the space of linear maps from V to W . When
W = V we denote this space by L(V ).
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Definition 3.9. Suppose U, V,W are vector spaces over F . Let T ∈ L(V,W ) and
S ∈ L(W,U). Then the product of S, T is their composition, i.e.

ST := S ◦ T : V → U.

Remark. We will show that ST is a linear map, so we have ST ∈ L(V,U). Also
note that by definition for all v ∈ V we have

(ST )(v) = S(Tv).

Proposition 3.10. The composition of two linear maps is a linear map.

Proof. Let T ∈ L(V,W ) and S ∈ L(W,U). Then for u, v ∈ V and a ∈ F we
have

ST (u+ av) = S
(
T (u+ av)

)
= S(Tu+ aTv)

= S(Tu) + aS(Tv) = STu+ aSTv.

Thus ST is linear by the previous proposition. �

Proposition 3.11. Suppose U, V,W, Y are vector spaces over a field F . Let
T, T1, T2 ∈ L(V,W ), S, S1, S2 ∈ L(W,U), and R ∈ L(U, Y ). Then we have
(i) R(ST ) = (RS)T .
(ii) TIV = T , and IWT = T .
(iii) (S1 + S2)T = S1T + S2T , and S(T1 + T2) = ST1 + ST2.
(iv) (aS)T = a(ST ) = S(aT ), where a ∈ F .

Proof. It is easy to check that all the corresponding maps in the proposition have
the same domain. Hence in order to show their equality we only need to check that
they have the same value at every point. Let v ∈ V be an arbitrary vector.

(i) We have(
R(ST )

)
(v) = R

(
ST (v)

)
= R

(
S(Tv)

)
= RS(Tv) =

(
(RS)T

)
(v).

Thus we get the desired result, since v is arbitrary.
(ii) We have TIV (v) = T (IV v) = T (v), and IWT (v) = IW (Tv) = Tv.
(iii) We have(

(S1 + S2)T
)
(v) = (S1 + S2)(Tv) = S1(Tv) + S2(Tv)

= S1T (v) + S2T (v) = (S1T + S2T )(v).

Note that in the above formula we only used the definition of composition of maps,
and the definition of their addition. Now we have(

S(T1 + T2)
)
(v) = S

(
(T1 + T2)(v)

)
= S(T1v + T2v)

= S(T1v) + S(T2v) = ST1(v) + ST2(v) = (ST1 + ST2)(v).
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This time, along with the definitions of composition and addition of maps, we also
used the linearity of S.

(iv) We have(
(aS)T

)
(v) = (aS)(Tv) = a

(
S(Tv)

)
= a

(
ST (v)

)
=
(
a(ST )

)
(v).

Note that here we only used the definitions of composition of maps and their scalar
product. Now we have(

S(aT )
)
(v) = S

(
(aT )(v)

)
= S

(
a(Tv)

)
= a

(
S(Tv)

)
= a

(
ST (v)

)
=
(
a(ST )

)
(v).

This time, in addition to the definitions of composition and scalar product of maps,
we also used the linearity of S. �

Remark. Most of the properties listed in the above proposition also hold for the
composition of arbitrary functions. The exceptions are S(T1 + T2) = ST1 + ST2
and S(aT ) = a(ST ). In the proof of these two properties we have used the linearity
of S. These two properties make the analogy between multiplication of scalars and
composition of linear maps complete. Hence we call the composition of two linear
maps, their product.

Remark. Note that we can multiply any two operators in L(V ). Thus the above
proposition implies that L(V ) is an algebra over the field F . See Section A.5 for
details.

Exercise 3.12. Show that if dimV > 1 then the multiplication on L(V ) is not
commutative.

Definition 3.13. We say two linear operators T, S ∈ L(V ) commute if

TS = ST.

Definition 3.14. Let T ∈ L(V,W ) be a linear map. We say T is invertible if it
is invertible as a function, i.e. if it is one-to-one and onto.

Remark. Remember that a function f : V → W is invertible if and only if there
exists a function g : W → V such that g ◦ f = IV and f ◦ g = IW . Then we say g
is the inverse of f , and we denote it by f−1. Note that the inverse of an invertible
function is uniquely determined by that function.

Remark. We will show that when T ∈ L(V,W ) is invertible, then the function
T−1 : W → V is also a linear map, so we have T−1 ∈ L(W,V ). A particular case
is when W = V . In this case T−1 satisfies

TT−1 = IV = T−1T.
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In other words, T−1 is the inverse of T with respect to the multiplication of L(V ).
Hence T is an invertible element of L(V ). Conversely if T ∈ L(V ) is an invertible
element, i.e. if there is S ∈ L(V ) such that TS = IV = ST , then by the previous
remark T is also invertible as a function, and we have T−1 = S.

Proposition 3.15. The inverse of an invertible linear map is a linear map.

Proof. Suppose T ∈ L(V,W ) is invertible. Then T−1 : W → V . Let u, v ∈ W
and a ∈ F . Then we have

T (T−1(u+ av)) = u+ av = TT−1u+ aTT−1v = T (T−1u+ aT−1v).

But T is one-to-one, since it is invertible. Thus we have T−1(u + av) = T−1u +
aT−1v. Therefore T−1 is linear. �

Example 3.16. Suppose we want to find out whether there is a linear map T ∈
L(R2) such that

T

[
1
0

]
=

[
1
1

]
, T

[
2
1

]
=

[
1
3

]
, T

[
1
1

]
=

[
1
2

]
.

To answer this question, note that we have[
2
1

]
−
[
1
0

]
=

[
1
1

]
, but T

[
2
1

]
− T

[
1
0

]
=

[
1
3

]
−
[
1
1

]
=

[
0
2

]
6= T

[
1
1

]
.

Therefore there is no linear map with the specified values at those given points.

Remark. The reason that the linear map T failed to exist in the above example,
is that we have a nontrivial linear relation between the given points in the domain,
while that linear relation does not hold between the specified values at those given
points. Now we can ask the question that if the specified values also satisfied that
linear relation, would there be a linear map which took those specified values? The
answer to this question is positive. But formulating a general result about this
problem is complicated, and its applications are few. So instead of that, we will
assume that there is no nontrivial linear relation between the given points in the
domain at all, i.e. we will assume that they are linearly independent. Then we can
show that there is always a linear map that takes the specified values on a given
linearly independent set of vectors in the domain. This is the subject of the next
theorem.

Theorem 3.17. Suppose v1, . . . , vn is a basis for V , and w1, . . . , wn ∈ W are
arbitrary vectors. Then there is a unique linear map T ∈ L(V,W ) such that for
every j we have Tvj = wj.
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Remark. The above theorem implies that a linear map is uniquely determined
by its values at the elements of some basis. It also provides us with a method for
constructing linear maps. We just need to choose a basis for V , and assign some
arbitrary values to the elements of the basis.

Proof. Let v ∈ V be an arbitrary vector. Then there are uniquely determined
scalars a1, . . . , an ∈ F such that v = a1v1 + · · · + anvn, since v1, . . . , vn is a basis
for V . Now we define

Tv := a1w1 + · · ·+ anwn ∈W.

Then we have a function T : V →W . First note that T is well defined, i.e. its value
at every v is uniquely determined by v, because the scalars a1, . . . , an are uniquely
determined by v. It is also obvious that our definition implies that Tvj = wj for
every j, since we have vj = 0v1 + · · ·+ 0vj−1 + 1vj + 0vj+1 + · · ·+ 0vn.

Let v, u ∈ V and a ∈ F . Then we have v =
∑

j≤n ajvj and u =
∑

j≤n bjvj , for
some aj , bj ∈ F . Now we have

u+ av =
∑
j≤n

bjvj + a
∑
j≤n

ajvj =
∑
j≤n

(bj + aaj)vj .

Note that bj + aaj ’s are the coefficients of the expansion of u + av as a linear
combination of vj ’s, since these coefficients are uniquely determined by every vector
in V . Therefore we have

T (u+ av) =
∑
j≤n

(bj + aaj)wj =
∑
j≤n

bjwj + a
∑
j≤n

ajwj = Tu+ aTv.

Hence T is linear as desired.
Finally we have to show that T is unique. Note that the uniqueness of a1, . . . , an

in the first paragraph of the proof does not imply that T is the only linear map
that satisfies Tvj = wj . Because there might be other methods to construct such
linear map, and we do not know a priori that those methods will produce the same
linear map as T . So suppose that S ∈ L(V,W ) satisfies Svj = wj for every j. Then
for every v ∈ V there are a1, . . . , an ∈ F such that v = a1v1 + · · · + anvn. Hence
we have

Sv = S(a1v1 + · · ·+ anvn) = a1Sv1 + · · ·+ anSvn

= a1w1 + · · ·+ anwn = a1Tv1 + · · ·+ anTvn = T (a1v1 + · · ·+ anvn) = Tv.

Therefore we must have S = T , and so T is unique. �

Remark. Suppose that in the above theorem V is finite dimensional, and v1, . . . , vn
are linearly independent, but they do not generate V . Then we can extend them
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to a basis v1, . . . , vn, u1, . . . , uk for V . We can also extend the list w1, . . . , wn to
w1, . . . , wn, w̃1, . . . , w̃k, where w̃i ∈W are arbitrary vectors. Now we can apply the
above theorem and conclude that there is a linear map T such that Tvj = wj and
Tui = w̃i. Hence we have shown that a linear map T exists that satisfies Tvj = wj .
But note that if W is nonzero then T is not unique, since we have freedom in
choosing w̃1, . . . , w̃k. We also have freedom in choosing u1, . . . , uk as we have seen
in Exercise 2.40.

3.2 Null Spaces and Images

Definition 3.18. Let T : V →W be a linear map. The null space, or the kernel,
of T is the set

nullT = null(T ) := {v ∈ V : Tv = 0}.
Also, the image of T is the set

T (V ) := {Tv : v ∈ V }.

Remark. Let us review some terminology about functions. Consider a function
T : V →W . Then V is called the domain of T , and W is called the codomain of
T . Note that the codomain of T is not necessarily equal to the image of T , since
T might not be onto. In addition to the above terms, there is also the term “range
of T ”. Depending on the text, it can mean the codomain of T , or the image of T .
However, in more recent texts, it usually means the image of T . In these notes, we
will not use it though, to avoid any possible confusion.

Proposition 3.19. Let T : V →W be a linear map.
(i) The null space of T is a subspace of V .
(ii) If U is a subspace of V , then T (U) is a subspace of W . In particular the

image of T is a subspace of W .

Proof. (i) First note that 0 ∈ nullT , because T0 = 0. Now let u, v ∈ nullT and
a ∈ F . Then we have Tu = 0 = Tv. Hence T (u + av) = Tu + aTv = 0 + a0 = 0.
Thus u+ av ∈ nullT , and therefore nullT is a subspace.

(ii) First note that 0 ∈ T (U), because T0 = 0 and 0 ∈ U . Now let w1, w2 ∈
T (U) and a ∈ F . Then there are u1, u2 ∈ U such that Tuj = wj . Hence we have
T (u1 + au2) = Tu1 + aTu2 = w1 + aw2. But u1 + au2 ∈ U , since U is a subspace.
Therefore w1 +aw2 ∈ T (U). Thus T (U) is a subspace. Finally note that the image
of T is T (V ), and V is a subspace of V . �

Remark. It is obvious from the definition that T is onto if and only if T (V ) = W .
Note that we do not use the linearity of T here. But we will use the linearity of T
to prove the following result about nullT . It is one of the reasons that the concept
of null space is useful when we work with linear maps.
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Proposition 3.20. A linear map is one-to-one if and only if its null space is {0}.

Proof. Let T ∈ L(V,W ). Suppose nullT = {0}. Then if Tu = Tv for some
u, v ∈ V , we get T (u − v) = Tu − Tv = 0. So u − v ∈ nullT . Hence u − v = 0.
Thus u = v, and therefore T is one-to-one.

Conversely suppose that T is one-to-one. Let v ∈ nullT . Then we have Tv =
0 = T0. So we must have v = 0, since T is one-to-one. Hence nullT = {0} as
desired. �

Definition 3.21. Let T : V → W be a linear map. If T (V ) is finite dimensional,
then the rank of T is dimT (V ). And if null(T ) is finite dimensional, then the
nullity of T is dim null(T ).

Theorem 3.22. Let T : V → W be a linear map, and suppose V is finite dimen-
sional. Then T (V ),null(T ) are finite dimensional, and we have

dimT (V ) + dim null(T ) = dimV.

Remark. In other words, rank plus nullity equals the dimension of the domain.
Some authors refer to this theorem as the rank-nullity theorem.

Proof. We know that nullT is finite dimensional, since it is a subspace of V .
Let u1, . . . , uk be a basis for nullT . Now we can extend this basis of nullT to
a basis for V . So suppose u1, . . . , uk, v1, . . . , vn is a basis for V . Now we claim
that Tv1, . . . , T vn is a basis for T (V ). Let w ∈ T (V ) be an arbitrary vector.
Then there is v ∈ V such that w = Tv. Also, there are ai, bj ∈ F such that
v =

∑
i≤k aiui +

∑
j≤n bjvj . Hence we have

w = Tv = T
(∑
i≤k

aiui +
∑
j≤n

bjvj

)
=
∑
i≤k

aiTui +
∑
j≤n

bjTvj =
∑
j≤n

bjTvj .

Note that we used the fact that Tui = 0 for every i. Thus we have shown that
Tv1, . . . , T vn generate T (V ).

Now suppose
∑

j≤n bjTvj = 0 for some bj ∈ F . Then we have

T
(∑
j≤n

bjvj

)
=
∑
j≤n

bjTvj = 0.

Hence
∑

j≤n bjvj ∈ nullT . Therefore there are ai ∈ F so that
∑

j≤n bjvj =∑
i≤k aiui, since u1, . . . , uk is a basis for nullT . Thus we have∑

j≤n
bjvj +

∑
i≤k

(−ai)ui = 0.
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But this implies that bj = 0 = ai for every i, j, since u1, . . . , uk, v1, . . . , vn is a basis
for V . Therefore Tv1, . . . , T vn are linearly independent too, and hence they form
a basis for T (V ). Thus T (V ) is finite dimensional too. Finally note that we have

dimV = n+ k = dimT (V ) + dim null(T ),

as desired. �

Remark. Let u ∈ V , and consider the level set of T containing u, i.e. the set

Su := {v ∈ V : Tv = Tu}.

Then for v ∈ Su we have T (v − u) = Tv − Tu = 0. Hence v − u ∈ nullT . On the
other hand if w ∈ nullT , then T (u+w) = Tu+ Tw = Tu. Therefore Su is the set
of all vectors of the form u+ w where w ∈ nullT . To express this we can write

Su = u+ nullT.

Thus the level sets of T are translated copies of the null space of T .
Now note that the level sets of any function form a partition of its domain. So we

have a partition of V into the level sets of T . Let n := dimV , and k := dim nullT .
Then each Su is a translated copy of nullT , so Su is a “k-dimensional object”.
But every vector in the k-dimensional object Su is mapped to Tu by T . Hence,
intuitively we can say that T annihilates those k-dimensional objects Su, and in
their place only preserves a vector whose image is Tu. Thus we can think of T (V )
as the image of the set of vectors that are preserved by T ; and we can think
of the translated copies of nullT as the set of vectors which are annihilated by
T . Therefore, intuitively, the above theorem means that the amount of vectors
preserved by T plus the amount of vectors annihilated by T equals the amount of
all vectors in the domain of T .

Proposition 3.23. Suppose T ∈ L(V,W ), and v1, . . . , vn ∈ V . Also, suppose U is
a finite dimensional subspace of V . Then we have
(i) T

(
span(v1, . . . , vn)

)
= span(Tv1, . . . , T vn).

(ii) If v1, . . . , vn are linearly independent, and T is one-to-one, then Tv1, . . . , T vn
are also linearly independent.

(iii) T (U) is a finite dimensional subspace of W .
(iv) If T is one-to-one, then we also have

dimT (U) = dimU.

In addition if u1, . . . , uk is a basis for U then Tu1, . . . , Tuk is a basis for
T (U).
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Proof. (i) Let w ∈ span(Tv1, . . . , T vn). Then there are aj ∈ F such that

w =
∑
j≤n

ajTvj = T
(∑
j≤n

ajvj

)
∈ T

(
span(v1, . . . , vn)

)
.

Conversely suppose w ∈ T
(
span(v1, . . . , vn)

)
. Then there is v ∈ span(v1, . . . , vn)

such that w = Tv. We also have v =
∑

j≤n ajvj for some aj ∈ F . Hence we have

w = Tv = T
(∑
j≤n

ajvj

)
=
∑
j≤n

ajTvj ∈ span(Tv1, . . . , T vn).

Thus the two sets are equal.
(ii) Suppose

∑
j≤n ajTvj = 0 for some aj ∈ F . Then we have

T
(∑
j≤n

ajvj

)
=
∑
j≤n

ajTvj = 0.

Therefore we must have
∑

j≤n ajvj = 0, since T is one-to-one. Hence we obtain
aj = 0 for every j, because v1, . . . , vn are linearly independent. Thus Tv1, . . . , T vn
are linearly independent too.

(iii) Let u1, . . . , uk be a basis for U . Then by part (i) we have

T (U) = T
(
span(u1, . . . , uk)

)
= span(Tu1, . . . , Tuk).

Thus T (U) is finitely generated, hence it is finite dimensional.
(iv) Let u1, . . . , uk be a basis for U . We have seen that Tu1, . . . , Tuk gen-

erate T (U). On the other hand, Tu1, . . . , Tuk are linearly independent, because
u1, . . . , uk are linearly independent, and T is one-to-one. Therefore Tu1, . . . , Tuk
is a basis for T (U). Thus we have dimT (U) = k = dimU . �

Remark. In the above proposition, we have shown that the image of a set of
generators for a subspace is a set of generators for the image of that subspace. If
in addition the linear map is one-to-one, then the image of a basis for a subspace
is a basis for the image of that subspace. It is easy to see that this last assertion,
and in fact the parts (ii), (iv) of the proposition, are not true without assuming
that the linear map is one-to-one. For example the zero linear map between two
nonzero vector spaces, maps every linearly independent set to 0, which is linearly
dependent. It also maps the whole domain to the zero subspace, so it does not
preserve the dimension either.

Theorem 3.24. Suppose V,W are finite dimensional vector spaces, and dimV =
dimW . Let T : V → W be a linear map. Then T is one-to-one if and only if it is
onto.
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Remark. Remember that a map T is invertible if it is one-to-one and onto. Hence
the above theorem implies that if V,W are finite dimensional and have the same
dimension, then for T ∈ L(V,W ) we have

T is invertible ⇐⇒ T is one to one ⇐⇒ T is onto.

Proof. Suppose T is one-to-one. Then nullT = {0}. Hence dim nullT = 0.
Therefore by the previous theorem we must have dimT (V ) = dimV = dimW .
So T (V ) is a subspace of W that has the same dimension as W . Hence we have
T (V ) = W , which means that T is onto.

Conversely suppose that T is onto. Then T (V ) = W . Therefore we have
dimT (V ) = dimW = dimV . Thus we get

dim nullT = dimV − dimT (V ) = 0.

Hence we must have nullT = {0}, which implies that T is one-to-one. �

Theorem 3.25. Suppose V,W are finite dimensional vector spaces, and dimV =
dimW . Let T ∈ L(V,W ) and S ∈ L(W,V ). If ST = IV then TS = IW , and we
have S = T−1.

Proof. Let v ∈ nullT . Then we have Tv = 0. On the other hand we have

v = IV v = ST (v) = S(Tv) = S(0) = 0.

Hence nullT = {0}. Thus T is one-to-one, and therefore by the previous theorem
T is also onto. So T is invertible, and T−1 ∈ L(W,V ). Hence from ST = IV we get

S = SIW = S(TT−1) = (ST )T−1 = IV T
−1 = T−1.

Therefore we also have TS = TT−1 = IW . �

Remark. The above two theorems are in particular true when V is finite dimen-
sional, and W = V . This case is indeed the most important case of these results.

Example 3.26. Consider the backward and forward shifts T, S ∈ L(F∞)

T : (a1, a2, . . . ) 7→ (a2, a3, . . . ),

S : (a1, a2, . . . ) 7→ (0, a1, a2, . . . ).

Then T is onto, but it is not one-to-one. And S is one-to-one, but it is not onto.
In addition we have TS = IF∞ , but ST 6= IF∞ since for example

ST (1, 0, 0, . . . ) = (0, 0, 0, . . . ).

Therefore the above two theorems are not true in infinite dimensional vector spaces.
Note that this example also shows that the multiplication of linear operators is not
commutative.
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3.3 Isomorphisms and Coordinates

Definition 3.27. An invertible linear map is called a (linear) isomorphism. Two
vector spaces are called isomorphic if there exist an isomorphism between them.

Remark. From the viewpoint of linear algebra, isomorphic vector spaces are the
same. In other words, we cannot distinguish two isomorphic vector spaces with the
tools of linear algebra. But those vector spaces may have other differences, that
are induced by some other structures. For example R3 is isomorphic to the space
of polynomials with degree less than 3. So as vector spaces, they are completely
the same. But on R3 we have the notion of cross product of vectors, which is
not present in the space of polynomials. Also, we have the division algorithm for
polynomials, but there is no corresponding notion for the vectors in R3.

Hence among isomorphic vector spaces, each particular space may have some
extra features that make it suitable for some applications. But when we consider
them as vector spaces, we regard them as the same space. Nevertheless, ignoring
some differences and paying attention to only a few properties, is a useful idea.
It helps us to study many different objects at the same time. It also helps us
to understand the implications of those few properties, and to not confuse these
implications with the specific properties of each particular object.

Theorem 3.28. We have
(i) If two vector spaces are isomorphic, and one of them is finite dimensional,

the other one is finite dimensional too.
(ii) Two finite dimensional vector spaces are isomorphic if and only if they have

the same dimension.

Proof. (i) Suppose V,W are vector spaces, and V is finite dimensional. Let
T ∈ L(V,W ) be an isomorphism. Then T is onto, so we have T (V ) = W . Now
Theorem 3.22 implies that W is finite dimensional, since W is the image of T .

(ii) Suppose V,W are finite dimensional vector spaces. Let T ∈ L(V,W ) be an
isomorphism. Then T is one-to-one and onto. Therefore we have nullT = {0} and
T (V ) = W . Hence we have

dimV = dimT (V ) + dim nullT = dimT (V ) + 0 = dimW.

Conversely suppose that dimV = dimW = n. Let v1, . . . , vn be a basis for V ,
and w1, . . . , wn be a basis for W . Then there is a unique T ∈ L(V,W ) such
that Tvj = wj for every j. We claim that T is an isomorphism. By Theorem
3.24, it suffices to show that T is onto, since V,W have the same dimension. Let
w ∈ W . Then there are a1, . . . , an ∈ F such that w = a1w1 + · · ·+ anwn. Now let
v := a1v1 + · · ·+ anvn. Then we have

Tv = T (a1v1 + · · ·+ anvn) = a1Tv1 + · · ·+ anTvn = a1w1 + · · ·+ anwn = w.
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Hence T is onto, and so it is an isomorphism. Thus V,W are isomorphic as desired.
�

Remark. As a consequence of the above theorem, if V is a finite dimensional
vector space over a field F , and dimV = n, then V is isomorphic to Fn. So in some
sense, all the finite dimensional vector spaces over F are F, F 2, F 3, . . . . But despite
this classification, we prefer to study abstract vector spaces instead of the concrete
spaces Fn. The reason is that Fn has a standard basis that simplifies studying it,
but we prefer to have an understanding of vector spaces that is independent of the
choice of basis. In addition, when we study the subspaces of Fn, we do not have a
standard choice of basis. Hence we have to treat those subspaces as abstract vector
spaces.

On the other hand, an isomorphism between V, Fn, and the concrete nature of
Fn, provide us useful tools to study V . We will construct specific isomorphisms
between V and Fn later in this section, and we will see some of their applications.

Remark. The above theorem means that the dimension is an invariant of vector
spaces that completely determines them. Let us elaborate further on this point.
An invariant of a class of objects having some structure is something that we have
assigned to those objects, such that if two objects are considered the same, i.e.
if they are isomorphic, then their assigned invariants are the same. For example
here our objects are finite dimensional vector spaces, and their assigned invariants
is their dimension. The point of assigning invariants is to be able to distinguish
between different objects more easily, because the invariants usually have a simpler
nature than the objects themselves. For example the dimension of a vector space
is a positive integer, which is much simpler than the vector space itself. And if
two vector spaces have different dimensions, then we can be sure that they are not
isomorphic.

Now if an invariant has the extra property that whenever two objects’ invariants
are the same then the two objects are isomorphic, then that invariant completely
classifies those objects. The dimension of vector spaces is an invariant with this
property, as we have proved above. This kind of invariants are very useful, but they
are rare. Another example of an invariant that completely classifies the objects
being studied, is the genus of orientable surfaces that are closed and connected.
The genus of such a surface is the number of holes in it. For example the genus of
sphere is 0, and the genus of the surface of a doughnut, which is called a torus, is
1. It is a deep theorem of topology that two such surfaces are homeomorphic if and
only if they have the same genus. Note that in topology, isomorphisms are called
homeomorphisms.

Definition 3.29. Suppose B = {v1, . . . , vn} is a basis for the nonzero vector space
V . Let v ∈ V . Then we know that there are unique scalars a1, . . . , an ∈ F such
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that
v = a1v1 + · · ·+ anvn.

The coordinate vector of v with respect to B is the column vector

[v]B :=

a1...
an

∈ Fn.
The scalars a1, . . . , an are called the coordinates of v with respect to B. Also, the
coordinate isomorphism with respect to B is the function

φB : V −→ Fn

v 7→ [v]B
.

Remark. Remember that we consider a basis to be a list of vectors, so a basis has
an order. It is obvious that if we change the order of elements of the basis B, then
we have to change the order of coordinates of every vector. Hence the order of the
basis is important here.

Example 3.30. Suppose V is finite dimensional, and B = {v1, . . . , vn} is a basis
for V . Then we have [vj ]B = ej , since

vj = 0v1 + · · ·+ 0vj−1 + 1vj + 0vj+1 + · · ·+ 0vn.

Example 3.31. Let B = {e1, . . . , en} be the standard basis for Fn. Then for any
x = [x1, . . . , xn]T ∈ Fn we have x = x1e1 + · · ·+ xnen. Hence [x]B = x.

Proposition 3.32. Suppose B = {v1, . . . , vn} is a basis for V . Then the function
φB : V → Fn is a linear isomorphism. Furthermore for every x = [x1, . . . , xn]T ∈
Fn we have

φ−1B (x) = x1v1 + · · ·+ xnvn.

Proof. Let u, v ∈ V and a ∈ F . Then there are uniquely determined scalars
aj , bj ∈ F such that u =

∑
ajvj and v =

∑
bjvj . So we have φB(u) = [a1, . . . , an]T

and φB(v) = [b1, . . . , bn]T. Now we know that u+ av =
∑

(aj + abj)vj . Hence

φB(u+ av) = [a1 + ab1, . . . , an + abn]T

= [a1, . . . , an]T + a[b1, . . . , bn]T = φB(u) + aφB(v).

Thus φB is linear.
By Theorem 3.24, to show that φB is an isomorphism, it suffices to show that it

is one-to-one, because dimV = n = dimFn. So suppose φB(v) = 0 for some v ∈ V .
Then the definition of φB implies that v = 0v1 + · · ·+ 0vn = 0. Thus nullφB = {0},
and therefore φB is one-to-one. Finally let x = [x1, . . . , xn]T ∈ Fn. Then for
v := x1v1 + · · · + xnvn we have φB(v) = [x1, . . . , xn]T = x. Hence φ−1B (x) = v as
desired. (Note that this argument also directly shows that φB is onto.) �
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Remark. Suppose U is a subspace of V , and u1, . . . , uk generate U . Let B be
a basis for V , and let φB : V → Fn be the coordinate isomorphism. Then by
Proposition 3.23, the subspace φB(U) is generated by φB(u1), . . . , φB(uk). Now we
can apply Theorem 2.47 and find a basis φB(uj1), . . . , φB(ujl) for φB(U). Then
Proposition 3.23 implies that uj1 , . . . , ujl form a basis for φ−1B

(
φB(U)

)
= U , since

φ−1B is one-to-one as it is invertible.
Similarly, if we want to check the linear independence of u1, . . . , uk ∈ V , we

can apply Proposition 2.31 to φB(u1), . . . , φB(uk) ∈ Fn. If φB(u1), . . . , φB(uk)
are linearly independent, then Proposition 3.23 implies that u1, . . . , uk are also
linearly independent, since φ−1B is one-to-one. And if φB(u1), . . . , φB(uk) are linearly
dependent then we must have

φB(uj) =
∑
i 6=j

aiφB(ui),

for some j ≤ k and some ai ∈ F . Therefore we have

uj = φ−1B
(
φB(uj)

)
= φ−1B

(∑
i 6=j

aiφB(ui)
)

=
∑
i 6=j

aiφ
−1
B
(
φB(ui)

)
=
∑
i 6=j

aiui.

Thus u1, . . . , uk are also linearly dependent.
We can also check to see if some vector v ∈ V belongs to the span(u1, . . . , uk).

We just need to apply Proposition 2.23 to the vectors φB(v) and φB(u1), . . . , φB(uk).
If φB(v) ∈ span

(
φB(u1), . . . , φB(uk)

)
then repeating the argument in the last para-

graph shows that v ∈ span(u1, . . . , uk). And if φB(v) /∈ span
(
φB(u1), . . . , φB(uk)

)
then we must have v /∈ span(u1, . . . , uk). Since otherwise we would have v =∑

i≤k aiui for some ai ∈ F , and this implies

φB(v) = φB

(∑
i≤k

aiui

)
=
∑
i≤k

aiφB(ui) ∈ span
(
φB(u1), . . . , φB(uk)

)
,

which is a contradiction.
The above examples show the power of coordinate isomorphisms. They allow

us to transfer questions about an abstract vector space V , into questions about the
concrete vector space Fn. Then we can do computations inside Fn, and finally
transfer our results back to V . �

Definition 3.33. Suppose B = {v1, . . . , vn} is a basis for the nonzero vector space
V , and C = {w1, . . . , wm} is a basis for the nonzero vector space W . Let T ∈
L(V,W ). Then the matrix of T with respect to the bases B, C is an m×n matrix
whose j-th column is [Tvj ]C , i.e.

[T ]BC :=
[

[Tv1]C
∣∣ . . . ∣∣ [Tvn]C

]
∈ Fm×n.

When W = V and C = B, we use the notation [T ]B instead of [T ]BB.
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Remark. Note that in the notation [T ]BC we put the basis of the domain on top of
the basis of the codomain. The usefulness of this choice is manifested in the next
theorem.

Theorem 3.34. Suppose that V,W are finite dimensional vector spaces, and B, C
are bases for them respectively. Let T ∈ L(V,W ). Then for any v ∈ V we have

[Tv]C = [T ]BC [v]B.

Remark. In other words, if we multiply the matrix of T and the coordinate vector
of v, we get the coordinate vector of Tv.

Proof. Suppose B = {v1, . . . , vn} and C = {w1, . . . , wm}. Then there are xj ∈ F
such that v =

∑
xjvj . Hence [v]B = [x1, . . . , xn]T. Let A := [T ]BC and x := [v]B.

Then by the properties of matrix multiplication we get

[T ]BC [v]B = Ax =
∑
j≤n

xjA.,j =
∑
j≤n

xj [Tvj ]C =
∑
j≤n

[xjTvj ]C

=
[∑
j≤n

xjTvj

]
C

=
[
T
(∑
j≤n

xjvj

)]
C

= [T (v)]C .

Note that we have used the linearity of T and the linearity of the coordinate iso-
morphism with respect to C. �

Proposition 3.35. Suppose B = {v1, . . . , vn} is a basis for V , and C = {w1, . . . , wm}
is a basis for W . Then the function

φBC : L(V,W ) −→ Fm×n

T 7−→ [T ]BC

is a linear isomorphism. As a result, L(V,W ) is finite dimensional, and we have

dimL(V,W ) = dimV · dimW.

Remark. Note that the linearity of φBC means that for T, S ∈ L(V,W ) and a ∈ F
we have

[T + S]BC = [T ]BC + [S]BC , [aT ]BC = a[T ]BC .

Also, the fact that φBC is one-to-one implies that a linear map is uniquely determined
by its matrix; and the fact that φBC is onto implies that every matrix is the matrix
of some linear map.
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Proof. Let S, T ∈ L(V,W ) and a ∈ F . Then for every j we have(
[T + aS]BC

)
.,j

= [(T + aS)(vj)]C = [Tvj + aSvj ]C

= [Tvj ]C + a[Svj ]C =
(
[T ]BC

)
.,j

+ a
(
[S]BC

)
.,j

=
(
[T ]BC + a[S]BC

)
.,j
.

Note that we have used the linearity of φC , i.e. the coordinate isomorphism with
respect to C. Hence we have [T + aS]BC = [T ]BC + a[S]BC . So φ

B
C is linear.

Now suppose φBC (T ) = [T ]BC = 0. Then by Theorem 3.34, for every v ∈ V we
have

[Tv]C = [T ]BC [v]B = 0[v]B = 0.

Therefore Tv = 0, since φC is an isomorphism. Hence T = 0. Thus φBC is one-to-one.
So we only need to show that φBC is onto. Let A ∈ Fm×n. Consider the

linear map S : Fn → Fm which is defined by S(x) := Ax for every x ∈ Fn.
Remember that φB : V → Fn and φC : W → Fm are linear isomorphisms. Let
T := φ−1C SφB ∈ L(V,W ). Then for every j we have(

[T ]BC
)
.,j

= [Tvj ]C = φC(Tvj) = φC
(
φ−1C SφB(vj)

)
= SφB(vj) = S

(
φB(vj)

)
= S([vj ]B) = A[vj ]B = Aej = A.,j .

Thus [T ]BC = A, and therefore φBC is onto. Hence φBC is an isomorphism as desired.
As a result, L(V,W ) is finite dimensional, and we have dimL(V,W ) = dimFm×n =
nm. �

Remark. Note that in the above proof we needed to show directly that φBC is
both one-to-one and onto. Because we did not know a priori that L(V,W ) is finite
dimensional and has the same dimension as Fm×n. Although it is not hard to
explicitly construct a basis for L(V,W ) that resembles the standard basis of Fm×n.

Example 3.36. Suppose V is finite dimensional, and B = {v1, . . . , vn} is a basis
for V . It is easy to see that [IV ]B = I, i.e. the matrix of the identity map is the
identity matrix. Because the j-th column of [IV ]B is [IV (vj)]B = [vj ]B = ej = I.,j .
So we get the desired. Note that this result only holds when we use the same basis
in both the domain and the codomain. In fact if C is another basis for V that is
not equal to B, then we must have [IV ]BC 6= I.

Example 3.37. Suppose A ∈ Fm×n, and T ∈ L(Fn, Fm) is defined by T (x) = Ax,
where x ∈ Fn. Let B = {e1, . . . , en}, C = {e1, . . . , em} be the standard bases for
Fn, Fm, respectively. Then we have

[T ]BC = A.

Because the j-th column of [T ]BC is

[Tej ]C = [Aej ]C = [A.,j ]C = A.,j .

Note that for A.,j ∈ Fm we have [A.,j ]C = A.,j .
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Example 3.38. Let T ∈ L(Fn, Fm). Then we claim that there is a unique matrix
A ∈ Fm×n such that T (x) = Ax for every x ∈ Fn. Let B = {e1, . . . , en}, C =
{e1, . . . , em} be the standard bases for Fn, Fm, respectively. Now set A := [T ]BC .
Then for every x ∈ Fn we have

T (x) = [T (x)]C = [T ]BC [x]B = Ax.

Note that the coordinate vector of any element y of some F k in the standard basis
is y itself. Finally note that the uniqueness of A follows from the previous example,
since it shows that any matrix that satisfies our criterion must be equal to [T ]BC .

Theorem 3.39. Suppose that V,W,U are finite dimensional vector spaces over a
field F , and B, C,D are bases for them respectively. Let T ∈ L(V,W ) and S ∈
L(W,U). Then we have

[ST ]BD = [S]CD[T ]BC .

Remark. The above theorem means that the composition of linear maps corre-
sponds to the multiplication of matrices. In fact, the multiplication of matrices is
defined in a way to make this theorem valid, and this is the main reason behind its
definition.

Proof. Suppose B = {v1, . . . , vn}. Let A := [T ]BC , B := [S]CD and C := [ST ]BD.
Then by Theorem 3.34 we have

C.,j = Cej = [ST ]BD[vj ]B = [ST (vj)]D = [S(Tvj)]D

= [S]CD[Tvj ]C = [S]CD
(
[T ]BC [vj ]B

)
= B(Aej) = (BA)ej = (BA).,j .

So the j-th column of C is equal to the j-th column of BA for every j. Therefore
C = BA as desired. �

Remark. The above theorem enables us to give another proof for the associativity
of matrix multiplication. It actually sheds some new light on this matter, and makes
it clear why the multiplication of matrices, which is defined in terms of their entries
in a nontrivial way, must be associative. The reason is that the multiplication
of matrices corresponds to the composition of linear maps, and the composition
of functions is obviously associative. Now to prove this rigorously suppose that
A ∈ F p×m, B ∈ Fm×n, and C ∈ Fn×l. Let T ∈ L(Fm, F p), S ∈ L(Fn, Fm), and
R ∈ L(F l, Fn) be the linear maps whose matrices with respect to the standard
bases are A,B,C respectively. Then we have

A(BC) = [T ]([S][R]) = [T ][SR] = [T (SR)]

= [(TS)R] = [TS][R] = ([T ][S])[R] = (AB)C.
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Theorem 3.40. Suppose that V,W are finite dimensional vector spaces, and B, C
are bases for them respectively. Let T : V → W be an invertible linear map. Then
the matrix [T ]BC is invertible, and we have

[T−1]CB =
(
[T ]BC

)−1
.

Proof. First note that dimV = dimW , since T is an isomorphism. Therefore
both [T ]BC , [T

−1]CB are square matrices. Now by Theorem 3.39 we have

[T ]BC [T−1]CB = [TT−1]CC = [IW ]CC = I.

Similarly we have [T−1]CB[T ]BC = [IV ]BB = I. Hence [T ]BC is an invertible matrix, and
its inverse is [T−1]CB. �

Theorem 3.41. Suppose that V is finite dimensional, and B, C are bases for V .
Let v ∈ V , and T ∈ L(V ). Then we have

[v]C = P [v]B, [T ]C = P [T ]BP
−1,

where P = [IV ]BC .

Remark. Note that by the previous theorem the matrix P is invertible, and we
have P−1 = [I−1V ]CB = [IV ]CB. We can also write the above relations as

[v]B = P−1[v]C , [T ]B = P−1[T ]CP.

The matrices P, P−1 are called the change of coordinates matrices.

Remark. Two matrices A,B ∈ Fn×n are called similar, if there exists an invertible
matrix C ∈ Fn×n such that B = CAC−1, or equivalently A = C−1BC. Hence the
above theorem implies that the matrices of a linear map T in two different bases,
are similar matrices. Because of this theorem, many properties of similar matrices
are the same, since they are actually different representations of the same linear
map.

Proof. By Theorem 3.34 we have

[v]C = [IV v]C = [IV ]BC [v]B = P [v]B.

Now by Theorem 3.39 we have

P [T ]BP
−1 = [IV ]BC [T ]BB[IV ]CB = [IV ]BC [TIV ]CB

= [IV ]BC [T ]CB = [IV T ]CC = [T ]CC = [T ]C . �
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3.4 More about Matrices and Linear Systems

Theorem 3.42. Suppose A,B ∈ Fn×n. If AB = I then BA = I, and therefore we
have B = A−1.

Proof. Let S, T ∈ L(Fn) be defined by T (x) = Ax and S(x) = Bx, where
x ∈ Fn. Let B be the standard basis for Fn. Then we know that [T ]B = A and
[S]B = B. Now we have

[TS]B = [T ]B[S]B = AB = I = [IFn ]B.

Thus TS = IFn . But Fn is finite dimensional, so we must have ST = IFn too.
Therefore we get

BA = [S]B[T ]B = [ST ]B = [IFn ]B = I,

as desired. Hence by definition we have B = A−1. �

Theorem 3.43. Let A ∈ Fm×n, and consider the linear system whose coefficient
matrix is A.
(i) If m < n, i.e. if the number of equations is less than the number of unknowns,

then the homogeneous linear system Ax = 0 has at least one nontrivial solution
x ∈ Fn − {0}.

(ii) If m > n, i.e. if the number of equations is more than the number of un-
knowns, then there is b ∈ Fm such that the nonhomogeneous linear system
Ax = b has no solution in Fn.

Proof. Let T ∈ L(Fn, Fm) be the linear map defined by T (x) := Ax for x ∈ Fn.
(i) We know that T (Fn) ⊂ Fm, so dimT (Fn) ≤ dimFm = m. Thus when

m < n we have

dim nullT = dimFn − dimT (Fn) ≥ dimFn − dimFm = n−m > 0.

Therefore nullT contains some nonzero vector x ∈ Fn, and we have Ax = Tx = 0.
(ii) When m > n we have

dimT (Fn) = dimFn − dim nullT ≤ dimFn = n < m = dimFm.

Therefore T (Fn) 6= Fm. In other words, T is not onto. Hence there is b ∈ Fm such
that b /∈ T (Fn), i.e. there is no x ∈ Fn such that Ax = Tx = b. �

Definition 3.44. The rank of a matrix A ∈ Fm×n is the dimension of the subspace
of Fm that the columns of A generate, i.e.

rankA := dim span(A.,1, . . . , A.,n).
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Remark. It is obvious that rankA ≤ min{m,n}, since span(A.,1, . . . , A.,n) is gen-
erated by n vectors, and is a subspace of Fm.

Theorem 3.45. Suppose that V,W are finite dimensional vector spaces, and B, C
are bases for them respectively. Then the rank of T ∈ L(V,W ) is equal to the rank
of its matrix [T ]BC , i.e.

rankT = dimT (V ) = rank [T ]BC .

Proof. Suppose n = dimV and m = dimW . Let A := [T ]BC , and let S ∈
L(Fn, Fm) be the linear map defined by S(x) := Ax for x ∈ Fn. By Proposition
3.23, we know that Se1, . . . , Sen generate S(Fn), where e1, . . . , en is the standard
basis of Fn. But Sej = Aej = A.,j . Thus we have

S(Fn) = span(Se1, . . . , Sen) = span(A.,1, . . . , A.,n).

Hence rankS = dimS(Fn) = dim span(A.,1, . . . , A.,n) = rankA.
Now let φB : V → Fn and φC : W → Fm be the coordinate isomorphisms.

We know that [Tv]C = A[v]B for every v ∈ V . In other words we have φC(Tv) =
S(φB(v)) for every v ∈ V . Hence T = φ−1C SφB. Thus

T (V ) = φ−1C SφB(V ) = φ−1C S(Fn),

since φB is onto and so we have Fn = φB(V ). Now note that φ−1C is invertible, so
it is one-to-one. Thus by Proposition 3.23 we have dimφ−1C S(Fn) = dimS(Fn).
Therefore we get

rankT = dimT (V ) = dimφ−1C S(Fn) = dimS(Fn) = rankS = rank [T ]BC ,

as desired. �

Theorem 3.46. Let A,B ∈ Fm×n, and suppose B is the reduced row echelon form
of A. Then the rank of A is equal to the number of nonzero rows of B.

Remark. Note that B is its own reduced row echelon form. Hence the rank of A
is equal to the rank of B. In other words, the rank of a matrix is the same as the
rank of its reduced row echelon form. Also note that the number of nonzero rows
of B is the same as the number of leading entries of B.

Proof. The number of nonzero rows of B are the same as the number of leading
entries of B. Now the theorem follows trivially from Proposition 2.45. �
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Remark. The above two theorems provide us an algorithm to compute the rank of
a matrix or a linear map between finite dimensional vector spaces. First we find the
matrix of the linear map with respect to some bases. Then we compute the reduced
row echelon form of that matrix. And finally we count the number of nonzero rows
of the matrix in reduced row echelon form. This algorithm will also enable us to
compute the nullity of the linear map by using the rank-nullity theorem.

The above algorithm is suitable for computing the rank of small matrices by
hand, but it is not appropriate for large-scale calculations that require computers.
To see this consider for example the matrix1 1 1

0 ε 0
0 0 δ

,
where ε, δ are small positive real numbers. Now the rank of this matrix is obviously
3. But if ε, δ are so small that are considered zero by a computer, then that
computer calculates the rank to be 1.

Theorem 3.47. Let A,B ∈ Fm×n, and suppose B is the reduced row echelon form
of A. Let B.,j1 , . . . , B.,jk be the columns of B that contain a leading entry, and let
B.,l1 , . . . , B.,ln−k be the columns of B that do not contain a leading entry. Then the
set of vectors

vl1 , . . . , vln−k ,

is a basis for the set of solutions of the homogeneous linear system Ax = 0, where
for p ≤ n− k the vector vlp ∈ Fn is given by

(vlp)i =


−Bq,lp i = jq, q ≤ k,
1 i = lp,

0 i = lp̃, p̃ 6= p, p̃ ≤ n− k.

Remark. Note that k is the number of leading entries of B, which by the previous
theorem is equal to the rank of A. Therefore the dimension of the set of solutions
of the homogeneous linear system Ax = 0 is

dim{x ∈ Fn : Ax = 0} = n− rankA.

This equality also follows from the rank-nullity theorem, when we apply it to the
linear map T ∈ L(Fn, Fm) that is defined by T (x) := Ax for x ∈ Fn.

Proof. Let W := {x ∈ Fn : Ax = 0}. Then Theorem 1.35 implies that vlp ∈ W
for every p. Because the system is homogeneous, so the constant term in the solution
is zero. Hence if we choose the free variables to be xlp = 1, and xlq = 0 for q 6= p,
then the general solution given in Theorem 1.35 becomes vlp .
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Now let T ∈ L(Fn, Fm) be the linear map defined by T (x) := Ax for x ∈ Fn.
Then A is the matrix of T with respect to the standard bases of Fn, Fm. Hence we
have rankT = rankA. On the other hand, it is obvious thatW = nullT . Therefore
we have

dimW = dim nullT = n− rankT = n− rankA = n− k,

since by the previous theorem we have rankA = k. Thus in order to show that
vl1 , . . . , vln−k form a basis for W , it suffices to show that they span W . But this is
exactly what we have proved in Theorem 1.35. �

Remark. In the above proof, it is also easy to show directly that vl1 , . . . , vln−k are
linearly independent. Because the lp-th component of vlp is 1, while for q 6= p the
lp-th component of vlq is 0. If we use this direct approach, we can avoid using the
rank-nullity theorem in the above proof.

Remark. Consider the nonhomogeneous linear system Ax = b, where b ∈ Fm.
Suppose that this system is consistent. Let x0 ∈ Fn be a solution of the system.
Then for any other solution x we have A(x− x0) = Ax− Ax0 = b− b = 0. Hence
x − x0 is a solution of the homogeneous system. Conversely if y is a solution of
the homogeneous system, then x0 + y is a solution of the nonhomogeneous system,
since A(x0 + y) = Ax0 +Ay = b+ 0 = b. Therefore we can write

{x ∈ Fn : Ax = b} = {x0 + x : x ∈ Fn, Ax = 0} =: x0 + {x ∈ Fn : Ax = 0}.

And we say that the set of solutions of the nonhomogeneous system is a translated
copy of the set of solutions of the corresponding homogeneous system.

Remark. When we want to concretely describe a subspace, we have to somehow
describe a spanning set for that subspace. Then we can extract a basis from the
given spanning set, and obtain a better understanding of the subspace. Sometimes
the spanning set is given to us directly. Then we can find a basis easily, as explained
in the remark after Proposition 3.32. Sometimes the subspace is described for us
as the image of a given linear map, or more indirectly as the null space of a given
linear map. The next theorem provides us a method to compute a basis for the
subspace in these cases. We should mention that the above cases are the main ways
of concretely describing a subspace.

Theorem 3.48. Suppose that V,W are finite dimensional vector spaces, and B, C
are bases for them respectively. Let φB : V → Fn and φC : W → Fm be the
coordinate isomorphisms. Let T ∈ L(V,W ), and let A = [T ]BC ∈ Fm×n. Suppose
B ∈ Fm×n is the reduced row echelon form of A. Let B.,j1 , . . . , B.,jk be the columns
of B that contain a leading entry, and let B.,l1 , . . . , B.,ln−k be the columns of B that
do not contain a leading entry. Then
(i) φ−1C (A.,j1), . . . , φ−1C (A.,jk) is a basis for the image of T .
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(ii) φ−1B (vl1), . . . , φ−1B (vln−k) is a basis for the null space of T , where for p ≤ n−k
the vector vlp ∈ Fn is given by

(vlp)i =


−Bq,lp i = jq, q ≤ k,
1 i = lp,

0 i = lp̃, p̃ 6= p, p̃ ≤ n− k.

Remark. Note that by Theorem 2.47, A.,j1 , . . . , A.,jk is a basis for the subspace
that the columns of A generate, so in particular k is the rank of A which is the
same as the rank of T . Also note that by the previous theorem vl1 , . . . , vln−k is a
basis for the set of solutions of the homogeneous linear system Ax = 0. Finally
note that we can compute φ−1B , φ−1C by the formula given in Proposition 3.32.

Proof. Let S ∈ L(Fn, Fm) be the linear map defined by S(x) := Ax for x ∈ Fn.
We know that [Tv]C = A[v]B for every v ∈ V . In other words we have φC(Tv) =
S(φB(v)) for every v ∈ V . Hence T = φ−1C SφB.

(i) By Proposition 3.23, we know that Se1, . . . , Sen generate S(Fn), where
e1, . . . , en is the standard basis of Fn. But Sej = Aej = A.,j . Thus we have

S(Fn) = span(Se1, . . . , Sen) = span(A.,1, . . . , A.,n).

Now we have
T (V ) = φ−1C SφB(V ) = φ−1C S(Fn),

since φB is onto and so we have Fn = φB(V ). Now note that φ−1C is invertible, so it
is one-to-one. Thus by Proposition 3.23, since A.,j1 , . . . , A.,jk is a basis for S(Fn),
then φ−1C (A.,j1), . . . , φ−1C (A.,jk) is a basis for φ−1C S(Fn) = T (V ).

(ii) Let x ∈ nullS = {x ∈ Fn : Ax = 0}. Then we have Tφ−1B x = φ−1C Sx =
φ−1C 0 = 0. Thus φ−1B x ∈ nullT . So φ−1B

(
nullS

)
⊂ nullT . On the other hand,

if v ∈ nullT then we have SφBv = φCTv = φC0 = 0. Hence φBv ∈ nullS, and
v = φ−1B φBv. Therefore

φ−1B
(
{x ∈ Fn : Ax = 0}

)
= φ−1B

(
nullS

)
= nullT.

Now note that φ−1B is invertible, so it is one-to-one. Thus by Proposition 3.23, since
vl1 , . . . , vln−k is a basis for the set of solutions of the homogeneous linear system
Ax = 0, then φ−1B (vl1), . . . , φ−1B (vln−k) is a basis for nullT . �

Theorem 3.49. Let A ∈ Fn×n. Then the following statements are equivalent.
(i) A is invertible.
(ii) rankA = n.
(iii) The reduced row echelon form of A is the identity matrix I ∈ Fn×n.
(iv) A is the product of finitely many elementary matrices in Fn×n.
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(v) For every b ∈ Fn the linear system Ax = b has exactly one solution x ∈ Fn.
(vi) There exists b ∈ Fn such that the linear system Ax = b has exactly one

solution x ∈ Fn.

Remark. A particular case of condition (vi), which often occurs, is “the homo-
geneous system Ax = 0 does not have a nontrivial solution”. Conversely, if the
homogeneous system Ax = 0 has a nontrivial solution, then condition (v) implies
that A is not invertible.
Remark. It is trivial to see that if A is invertible, then the unique solution of the
linear system Ax = b is x = A−1b.
Remark. Note that the equality rankA = n is equivalent to the fact that the
columns of A generate a subspace of Fn with dimension n, i.e. the columns of A
generate Fn. But A has n columns, so if they generate Fn they must form a basis
for Fn. Hence the equality rankA = n is equivalent to the fact that the columns
of A form a basis for Fn. Similarly, by using Theorem 3.50 we can show that the
equality rankA = n is equivalent to the fact that the rows of A form a basis for
Fn.

Proof. (i) =⇒ (ii): If Ax = 0 then

x = Ix = A−1Ax = A−10 = 0.

Thus {x ∈ Fn : Ax = 0} = {0}. Hence we have

n− rankA = dim{x ∈ Fn : Ax = 0} = dim{0} = 0.

(ii) =⇒ (iii): Let B ∈ Fn×n be the reduced row echelon form of A. We know
that the number of leading entries of B is equal to rankA = n. Therefore every
column of B must contain a leading entry, since no column can contain more than
one leading entry. So Proposition 1.34 implies that every column of B is an element
of the standard basis of Fn. This proposition also tells us that in a matrix which is
in reduced row echelon form, the i-th column from the left that contains a leading
entry is equal to ei. Hence we must have B.,j = ej for every j, since B.,j is the j-th
column from the left that contains a leading entry. Thus we obtain B = I.

(iii) =⇒ (iv): We know that there is a sequence of elementary matrices
E1, . . . , Ek such that E1 · · ·EkA = I, since I is the reduced row echelon form of
A. For example we can construct E1, . . . , Ek by applying the Gaussian elimination
to A. Now every elementary matrix is invertible, and its inverse is an elementary
matrix too. Hence we have A = E−1k · · ·E

−1
1 I = E−1k · · ·E

−1
1 as desired.

(iv) =⇒ (v): Suppose A = E1 · · ·Ek, where E1, . . . , Ek are elementary ma-
trices. Then Ax = b implies E1 · · ·Ekx = b. Therefore x = E−1k · · ·E

−1
1 b, since

elementary matrices are invertible. On the other hand we have

Ax = E1 · · ·EkE−1k · · ·E
−1
1 b = E1 · · ·Ek−1IE−1k−1 · · ·E

−1
1 b = · · · = Ib = b.
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Thus the system Ax = b has exactly one solution.
(v) =⇒ (vi): This is trivial.
(vi) =⇒ (i): Let T ∈ L(Fn) be the linear map defined by T (x) := Ax for

x ∈ Fn. Then A is the matrix of T with respect to the standard basis of Fn.
Suppose x0 is the unique solution of Ax = b. We know that

{x0} = {x ∈ Fn : Ax = b} = x0 + {x ∈ Fn : Ax = 0}.

Hence {x ∈ Fn : Ax = 0} must have exactly one element, because x0 + x uniquely
determines x. Thus {x ∈ Fn : Ax = 0} = {0}. Therefore

dim nullT = dim{x ∈ Fn : Ax = 0} = dim{0} = 0.

Hence T is one-to-one, and therefore it is invertible. Thus the matrix of T , i.e. A,
is also invertible by Theorem 3.40. �

Remark. Let A ∈ Fn×n. We know that the Gaussian elimination produces a
finite sequence of elementary matrices E1, . . . , Ek ∈ Fn×n such that Ek · · ·E1A is
the reduced row echelon form of A. Hence when A is invertible we have

Ek · · ·E1A = I.

But this implies that A−1 = Ek · · ·E1 = Ek · · ·E1I. The meaning of this equality is
that if we apply to I the same sequence of elementary row operations which convert
A to I, then we will obtain A−1.

This gives us an algorithm to check whether A is invertible, and to compute
its inverse if it is invertible. We apply the Gaussian elimination to A, and in each
step we apply the same operation to I too. We continue until we find the matrices
B,C, where B is the reduced row echelon form of A, and C is the matrix produced
from I. Now if B = I then A is invertible, and A−1 = C. And if B 6= I then A is
not invertible. �

Theorem 3.50. The rank of a matrix A ∈ Fm×n is equal to the dimension of the
subspace of Fn that the rows of A generate, i.e.

rankA = dim span(A1,., . . . , Am,.).

As a result we have
rankA = rankAT.

Remark. This is one of the most fascinating theorems in linear algebra. It states
that if we have a rectangular array of scalars, i.e. a matrix, then the maximum num-
ber of linearly independent columns is the same as the maximum number of linearly
independent rows. This fact is really nontrivial, considering that our assumptions
about the array of scalars are minimal.
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Remark. Some authors use the name row rank for the dimension of the subspace
of Fn that the rows of A generate, and they use the name column rank for the
dimension of the subspace of Fm that the columns of A generate. In this terminol-
ogy the above theorem says that the row rank of any matrix is equal to its column
rank.

Proof. Consider the system Ax = 0. If we write this system more explicitly in
terms of its equations, i.e. the rows of A, we get

A1,.x = 0,
...

Am,.x = 0.

Now suppose Ai1,., . . . , Aik,. are a basis for span(A1,., . . . , Am,.). Let B ∈ F k×n be
the matrix whose l-th row is Ail,. for l ≤ k. Then the system Bx = 0 is

Ai1,.x = 0,
...

Aik,.x = 0.

If x ∈ Fn satisfies Ax = 0, then it obviously satisfies Bx = 0 too. Because all the
equations of the system Bx = 0 are among the equations of Ax = 0. Conversely,
consider the equation Ai,.x = 0 for some i ≤ m. Then we know that there are
a1, . . . , ak ∈ F such that

Ai,. = a1Ai1,. + · · ·+ akAik,..

Hence if x ∈ Fn satisfies Bx = 0 then we have

Ai,.x =
(
a1Ai1,. + · · ·+ akAik,.

)
x

= a1Ai1,.x+ · · ·+ akAik,.x = a10 + · · ·+ ak0 = 0.

Thus x also satisfies Ax = 0. Therefore the two homogeneous systems have the
same set of solutions.

Now note that B ∈ F k×n, so rankB ≤ k. Hence we have

n− rankA = dim{x ∈ Fn : Ax = 0}
= dim{x ∈ Fn : Bx = 0} = n− rankB ≥ n− k.

Thus rankA ≤ k. But note that the rows of A are the columns of AT. Therefore

k = dim span(A1,., . . . , Am,.) = dim span(AT
.,1, . . . , A

T
.,m) = rankAT.
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So we have proved that rankA ≤ rankAT. If we repeat the above argument with
AT instead of A, we get

rankAT ≤ rank (AT)T = rankA.

Hence we obtain

rankA = rankAT = k = dim span(A1,., . . . , Am,.),

as desired. �



Chapter 4

Diagonalization

4.1 Eigenvalues and Eigenvectors

Notation. In this chapter we assume that F is a field, V is a nonzero vector space
over F , and T ∈ L(V ) is a linear operator.

One of the main goals in linear algebra is to understand the behavior of a linear
map T ∈ L(V ). In order to do this, an effective strategy is to decompose the vector
space V into smaller pieces, and then study the linear map T on those smaller
pieces. Now, each of those pieces must be a vector space itself, since we want to
study a linear map on it. Hence those pieces must be subspaces of V . In addition
we need to be able to restrict both the domain and the codomain of T to those
smaller subspaces, because we want to simplify the problem by replacing V with
a smaller vector space. Therefore those subspaces must be T -invariant, as we will
define below.

Definition 4.1. Suppose W is a subspace of V . We say W is T -invariant if

T (W ) ⊂W.

In other words, if u ∈W then Tu ∈W . In this case, the restriction of T to W is
the function T |W : W →W whose value at u ∈W is

T |W (u) := Tu.

Remark. It is easy to see that T |W is a linear map, i.e. T |W ∈ L(W ).

Exercise 4.2. Suppose W = span(v1, . . . , vk). Show that if for every j ≤ k we
have Tvj ∈W , then W is T -invariant.

Solution. By Propositions 3.23 and 2.22, we have

T (W ) = span(Tv1, . . . , T vk) ⊂ span(v1, . . . , vk) = W. �

83
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Remark. Suppose W is a one dimensional T -invariant subspace. Let v be a basis
for W . Then v is nonzero. We also have Tv ∈ W = span(v). Therefore Tv = λv
for some λ ∈ F . This observation motivates the next definition.

Definition 4.3. A scalar λ ∈ F is called an eigenvalue of the linear operator T
if there exists a vector v ∈ V such that v 6= 0, and

Tv = λv.

The nonzero vector v is called an eigenvector of T corresponding to λ.
Similarly, a scalar λ ∈ F is called an eigenvalue of the square matrix A ∈ Fn×n

if there exists a vector x ∈ Fn such that x 6= 0, and

Ax = λx.

The nonzero vector x is called an eigenvector of A corresponding to λ.

Theorem 4.4. Suppose V is finite dimensional, and B is a basis for V . Then
λ ∈ F is an eigenvalue of T if and only if it is an eigenvalue of [T ]B.

Proof. Suppose λ is an eigenvalue of T . Then there is a nonzero vector v ∈ V
such that Tv = λv. Hence we have [T ]B[v]B = [Tv]B = [λv]B = λ[v]B. Also note
that [v]B is nonzero, since the coordinate isomorphism φB is one-to-one. Thus λ is
an eigenvalue of [T ]B.

Conversely suppose that λ is an eigenvalue of [T ]B. Let n = dimV . Then there
is a nonzero vector x ∈ Fn such that [T ]Bx = λx. Now let v := φ−1B (x). Then
[v]B = φB

(
φ−1B (x)

)
= x. Therefore

[Tv]B = [T ]B[v]B = [T ]Bx = λx = λ[v]B = [λv]B.

Thus we must have Tv = λv, since the coordinate isomorphism φB is one-to-one. �

Proposition 4.5. Suppose λ ∈ F and A ∈ Fn×n. Then we have
(i) λ is an eigenvalue of T if and only if T − λI is not one-to-one.
(ii) λ is an eigenvalue of A if and only if A− λI is not invertible.

Remark. Note that an n×n matrix is invertible if and only if its associated linear
operator on Fn is one-to-one. But this is not true for an arbitrary linear operator
on a vector space, when the vector space is infinite dimensional.

Proof. (i) By definition, λ is an eigenvalue of T if and only if there is a nonzero
v ∈ V such that Tv = λv, or equivalently (T − λI)v = 0. But this is equivalent to
the fact that null(T − λI) 6= {0}, which is itself equivalent to the fact that T − λI
is not one-to-one, due to Proposition 3.20.
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(ii) By definition, λ is an eigenvalue of A if and only if there is a nonzero y ∈ Fn
such that Ay = λy, or equivalently (A − λI)y = 0. But this is equivalent to the
fact that the linear system (A− λI)x = 0 has a nontrivial solution, which is itself
equivalent to the fact that A− λI is not invertible, due to Theorem 3.49. �

Exercise 4.6. Suppose W is a T -invariant subspace of V , and w ∈ W is an
eigenvector of T |W corresponding to the eigenvalue λ. Show that w is also an
eigenvector of T corresponding to the eigenvalue λ.

Remark. In other words, the eigenvalues and eigenvectors of a restriction of an
operator are also eigenvalues and eigenvectors of the operator itself.

Solution. We have Tw = T |Ww = λw. Note that w ∈W ⊂ V , and w 6= 0. �

Exercise 4.7. Show that a square matrix A ∈ Fn×n is non-invertible if and only
if 0 is an eigenvalue of A.

Solution. If 0 is an eigenvalue of A then there is a nonzero y ∈ Fn such that
Ay = 0y = 0. Hence the homogeneous system Ax = 0 has a nontrivial solution.
Thus A is non-invertible by Theorem 3.49.

Conversely suppose that A is non-invertible. Then Theorem 3.49 implies that
the homogeneous system Ax = 0 has a nontrivial solution y ∈ Fn−{0}. Hence we
have Ay = 0 = 0y. Thus 0 is an eigenvalue of A. �

Theorem 4.8. Suppose A ∈ Fn×n is a diagonal matrix, and d1, . . . , dn are the
diagonal entries of A. Then λ ∈ F is an eigenvalue of A if and only if λ = dj for
some j ≤ n.

Proof. We assumed that

A =

d1 0
. . .

0 dn

.
Now for every j ≤ n we have Aej = A.,j = [0, . . . , 0, dj , 0, . . . , 0]T = djej . Hence
dj is an eigenvalue of A, since ej is nonzero. Conversely suppose that λ is an
eigenvalue of A. Then there is a nonzero x ∈ Fn such that Ax = λx. Suppose
x = [x1, . . . , xn]T. Then we have∑

j≤n
λxjej = λx = Ax = A

(∑
j≤n

xjej

)
=
∑
j≤n

xjAej =
∑
j≤n

xjdjej .

Thus we have
∑

j≤n(λ − dj)xjej = 0. But e1, . . . , en are linearly independent.
Therefore we must have (λ− dj)xj = 0 for every j ≤ n. On the other hand x 6= 0,
so xi 6= 0 for some i ≤ n. Hence we must have λ = di. �
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Theorem 4.9. Suppose A ∈ Fn×n is a triangular matrix, and d1, . . . , dn are the
diagonal entries of A. Then A is invertible if and only if dj 6= 0 for every j ≤ n.

Proof. In the following proof we assume that A is upper triangular, but the case
of lower triangular matrices can be deduced similarly. So we have

A =

d1 ∗
. . .

0 dn

,
where ∗ denotes the entries of A that may or may not be nonzero. Suppose every
dj is nonzero. Then we can multiply the j-th row of A by 1

dj
to convert A into the

matrix

A =

1 ∗
. . .

0 1

.
Next we can add suitable multiples of each row of A to the rows above it so that the
entries of A above the diagonal become zero. Hence we can convert A by elementary
row operations into the identity matrix I. Thus the reduced row echelon form of A
is I, and therefore A is invertible by Theorem 3.49.

Conversely suppose that at least one of d1, . . . , dn is zero. We have to show that
A is not invertible. Let T ∈ L(Fn) be the operator that maps x ∈ Fn to Tx := Ax.
Then we have [T ]B = A, where B is the standard basis of Fn. Note that for every
i ≤ n we have

Tei = Aei = A.,i = [∗, . . . , ∗, di, 0, . . . , 0]T = ∗e1 + · · ·+ ∗ei−1 + diei. (?)

Therefore we have Aei ∈ span(e1, . . . , ei) for every i ≤ n. Let j be the smallest
index for which dj = 0. Then equation (?) implies that

Tej = Aej = ∗e1 + · · ·+ ∗ej−1 + 0ej

= ∗e1 + · · ·+ ∗ej−1 ∈ span(e1, . . . , ej−1) ⊂ span(e1, . . . , ej).

On the other hand we know that

Tei = Aei ∈ span(e1, . . . , ei) ⊂ span(e1, . . . , ej−1) ⊂ span(e1, . . . , ej),

for every i ≤ j−1. HenceW := span(e1, . . . , ej) is T -invariant, as shown in Exercise
4.2. In addition, Propositions 3.23 and 2.22 imply that

T (W ) = span(Te1, . . . , T ej) ⊂ span(e1, . . . , ej−1) &W.

Therefore T |W is not onto. Thus it is not one-to-one either. So by Proposition 3.20
there is w ∈ W ⊂ Fn such that Tw = T |Ww = 0; and consequently T is also not
one-to-one. Hence T is not invertible, and by Theorem 3.40, A is not invertible
either. �



CHAPTER 4. DIAGONALIZATION 87

Remark. Notice the new method we used in the above proof to show that a linear
map T is not invertible. Instead of directly showing that T is not one-to-one, or it
is not onto, we have shown that there is a T -invariant subspace W such that T |W
is not onto. More generally, we can conclude that T is not invertible if there exists
a subspace W such that dimT (W ) < dimW . This fact is an easy consequence of
the rank-nullity theorem.

Theorem 4.10. Suppose A ∈ Fn×n is a triangular matrix, and d1, . . . , dn are the
diagonal entries of A. Then λ ∈ F is an eigenvalue of A if and only if λ = dj for
some j ≤ n.

Proof. Note that similarly to the previous theorem, A can be upper triangular
or lower triangular. Let us assume that A is lower triangular. Then we have

A =

d1 0
. . .

∗ dn

 =⇒ A− λI =

d1 − λ 0
. . .

∗ dn − λ

,
where ∗ denotes the entries that may or may not be nonzero. Now, Proposition 4.5
implies that λ is an eigenvalue of A if and only if A− λI is non-invertible. On the
other hand, by the previous theorem, A− λI is non-invertible if and only if one of
its diagonal entries, i.e. dj − λ for some j, is zero. Therefore λ is an eigenvalue of
A if and only if λ = dj for some j. �

Example 4.11. Consider the matrix

A =

[
a b
c d

]
∈ F 2×2.

We want to find the eigenvalues of A. Suppose λ is an eigenvalue of A. Then

A− λI =

[
a− λ b
c d− λ

]
is not invertible. Hence its rank is less than 2. Thus its reduced row echelon form
must have at least one zero row. If c = 0 then A is upper triangular, and as we have
seen its eigenvalues are a, d. So suppose that c 6= 0. Now we can apply elementary
row operations to A− λI, to obtain its reduced row echelon form[

c d− λ
0 b− 1

c (d− λ)(a− λ)

]
.

But the second row of this matrix must be zero, so we have b− 1
c (d−λ)(a−λ) = 0.

Therefore λ is a root of the quadratic equation

x2 − (a+ d)x+ ad− bc = 0.
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Note that when c = 0 the roots of this equation are a, d. It is easy to reverse the
above chain of reasoning, and show that any root of the above equation is also an
eigenvalue of A.

The above equation is called the characteristic equation of A. We can apply
the above method to find the eigenvalues of a matrix in Fn×n, but the calculations
are cumbersome and lengthy. We will devise an easier method to compute the
characteristic equation of a matrix, when we study the determinant in Chapter 7.

Theorem 4.12. The eigenvectors of a linear operator corresponding to distinct
eigenvalues are linearly independent.

Similarly, the eigenvectors of a square matrix corresponding to distinct eigen-
values are linearly independent.

Proof. Suppose λ1, . . . , λk are distinct eigenvalues of T . The proof is by induction
on k. Let v1, . . . , vk be eigenvectors of T corresponding to λ1, . . . , λk respectively.
If k = 1 then v1 is a linearly independent list, since v1 6= 0. Now suppose the claim
is true for k − 1, i.e. v1, . . . , vk−1 are linearly independent. We want to show that
v1, . . . , vk are also linearly independent. Suppose that for some a1, . . . , ak ∈ F we
have

a1v1 + · · ·+ akvk = 0.

Let S := T − λkI. Then we get

0 = S(0) = S(a1v1 + · · ·+ akvk) = a1Sv1 + · · ·+ akSvk.

But Svk = Tvk − λkvk = 0. And for j < k we have

Svj = Tvj − λkvj = λjvj − λkvj = (λj − λk)vj .

Therefore we have

0 = a1Sv1 + · · ·+ akSvk = a1(λ1 − λk)v1 + · · ·+ ak(λk−1 − λk)vk−1.

However, v1, . . . , vk−1 are linearly independent, so we must have aj(λj − λk) = 0
for every j < k. Hence we get aj = 0, because we know that λj 6= λk for j < k.
Thus we obtain

0 = a1v1 + · · ·+ akvk = 0v1 + · · ·+ 0vk−1 + akvk = akvk.

So we ak = 0 too, since vk 6= 0. Therefore v1, . . . , vk are linearly independent, as
desired. The case of matrices can be proved similarly. �

Theorem 4.13. Suppose V is finite dimensional, and n = dimV . Then every
T ∈ L(V ) has at most n distinct eigenvalues.

Similarly, every matrix A ∈ Fn×n has at most n distinct eigenvalues.
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Proof. Suppose λ1, . . . , λk are all the distinct eigenvalues of T , and v1, . . . , vk ∈ V
are eigenvectors of T corresponding to λ1, . . . , λk respectively. Then we know that
v1, . . . , vk are linearly independent. Hence we must have k ≤ dimV = n, as desired.
The case of matrices can be proved similarly. �

Definition 4.14. For m ∈ N we inductively define the powers of the linear oper-
ator T ∈ L(V ) to be

T 0 := IV , T
1 := T, . . . Tm := Tm−1T.

Also, for every polynomial

p(x) = a0 + a1x+ · · ·+ amx
m

with coefficients aj ∈ F , we define

p(T ) := a0IV + a1T + · · ·+ amT
m.

We say that the operator p(T ) is a polynomial in T .

Theorem 4.15. Suppose T, S ∈ L(V ). Then for all nonnegative integers m, k we
have
(i) If T commutes with S, then Tm commutes with Sk.
(ii) If T is invertible, then Tm is also invertible and

(Tm)−1 = (T−1)m.

(iii) TmT k = Tm+k.
(iv) (Tm)k = Tmk.
(v) If T, S commute, then we have (TS)m = TmSm.
(vi) For any two polynomials p, q ∈ F [x] we have

(p+ q)(T ) = p(T ) + q(T ), (pq)(T ) = p(T )q(T ).

As a result, p(T ) and q(T ) always commute.

Remark. The significance of part (vi) is that the addition and multiplication of
polynomials convert to the addition and multiplication of linear operators via the
map p 7→ p(T ).

Proof. The proofs can be found in Sections A.1, and A.5. The proofs of parts
(i) to (v) are by straightforward inductions. We only repeat the proof of part (vi)
here. Suppose p(x) = a0 + · · ·+amx

m and q(x) = b0 + · · ·+ bnx
n, where ai, bj ∈ F .
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Suppose n ≤ m. Let bj := 0 for n < j ≤ m. Then we have q(x) = b0 + · · ·+ bmx
m.

We also have

(p+ q)(x) = q(x) = (a0 + b0) + · · ·+ (am + bm)xm.

Therefore

(p+ q)(T ) =
∑
j≤m

(aj + bj)T
j =

∑
j≤m

(ajT
j + bjT

j)

=
∑
j≤m

ajT
j +

∑
j≤m

bjT
j =

∑
j≤m

ajT
j +

∑
j≤n

bjT
j = p(T ) + q(T ).

Next, let us consider pq. By definition we know that (pq)(x) =
∑

k≤m+n ckx
k,

where for k ≤ m+ n we have ck :=
∑β

i=α aibk−i, in which α = max{0, k −m} and
β = min{n, k}. Then by the generalized distributivity and Theorem A.68 we have

p(T )q(T ) =
(∑
i≤m

aiT
i
)(∑

j≤n
bjT

j
)

=
∑
i≤m

∑
j≤n

(aiT
i)(bjT

j) =
∑
i≤m

∑
j≤n

(aibj)(T
iT j)

=
∑
i≤m

∑
j≤n

(aibj)T
i+j =

∑
k≤m+n

∑
i+j=k

(aibj)T
k

=
∑

k≤m+n

( ∑
α≤i≤β

aibk−i

)
T k =

∑
k≤m+n

ckT
k = (pq)(T ).

Finally, to prove the last statement of the theorem, note that we have

p(T )q(T ) = (pq)(T ) = (qp)(T ) = q(T )p(T ),

because the multiplication of polynomials is commutative. �

Remark. As a consequence of the above theorem, we can easily show by induction
that if p1, . . . , pk ∈ F [x] then we have

(p1 + · · ·+ pk)(T ) = p1(T ) + · · ·+ pk(T ),

(p1p2 · · · pk)(T ) = p1(T )p2(T ) · · · pk(T ).

Exercise 4.16. Suppose W is a T -invariant subspace of V . Show that for every
m ∈ N, W is also Tm-invariant, and we have (T |W )m = Tm|W .

Solution. The proof is by induction on m. The case of m = 1 is obvious. So sup-
pose the result holds for some m. Let w ∈W . Then Tmw ∈W , since by induction
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hypothesis W is Tm-invariant. Thus we get Tm+1w = (TTm)w = T (Tmw) ∈ W ,
because W is T -invariant. Hence W is also Tm+1-invariant.

Now set S := T |W . Then by induction hypothesis we know that Sm = (T |W )m =
Tm|W . Therefore we have

Sm+1w = (SSm)w = S(Smw) = S(Tm|Ww) = S(Tmw)

= T (Tmw) = (TTm)w = Tm+1w = Tm+1|Ww.

Note that Tmw ∈W , so we can apply the operator S = T |W to it. Hence we have
(T |W )m+1 = Tm+1|W , since w was an arbitrary element of W . �

Proposition 4.17. Suppose p ∈ F [x]. Then the null space and the image of p(T )
are T -invariant subspaces.

Remark. In particular, the null space and the image of T are T -invariant.

Proof. Let v ∈ null p(T ). Then we have p(T )v = 0. Hence

p(T )(Tv) =
(
p(T )T

)
v =

(
Tp(T )

)
v = T

(
p(T )v

)
= T (0) = 0.

Thus Tv ∈ null p(T ),. Therefore null p(T ) is T -invariant.
Now suppose w ∈ p(T )(V ). Then there is v ∈ V such that w = p(T )v. Hence

we have
Tw = T

(
p(T )v

)
=
(
Tp(T )

)
v =

(
p(T )T

)
v = p(T )(Tv).

Thus Tw ∈ p(T )(V ). Therefore p(T )(V ) is T -invariant. �

Theorem 4.18. Suppose F is an algebraically closed field, and V is a nonzero
finite dimensional vector space over F . Then every linear operator T ∈ L(V ) has
at least one eigenvalue.

Similarly, every matrix A ∈ Fn×n has at least one eigenvalue.

Remark. This theorem is in particular true when F = C, since C is algebraically
closed.

Proof. Let n := dimV . Let v ∈ V be a nonzero vector. Then the n + 1 vec-
tors v, Tv, T 2v, . . . , Tnv must be linearly dependent. Therefore there are scalars
a0, a1, . . . , an ∈ F , where at least one of the aj ’s is nonzero, such that

a0v + a1Tv + · · ·+ anT
nv = 0.

Let us assume that m is the largest index for which am 6= 0. Then we have
a0v + · · ·+ amT

mv = 0. Now consider the polynomial

p(x) := a0 + a1x+ · · ·+ amx
m ∈ F [x].
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Then we have p(T )v = 0.
On the other hand, since F is algebraically closed, there are c1, . . . , cm ∈ F and

c ∈ F − {0} such that
p(x) = c(x− c1) · · · (x− cm).

Hence we have

0 = 1
c0 = 1

cp(T )v = (T − c1I) · · · (T − cmI)v.

Let j be the smallest index for which we have

wj := (T − cjI) · · · (T − cmI)v 6= 0.

Note that 1 < j ≤ m, since w1 = 1
cp(T )v = 0. Then we have

(T − cj−1I)wj = (T − cj−1I)(T − cjI) · · · (T − cmI)v = wj−1 = 0,

because j − 1 < j, and by our choice of j we must have wj−1 = 0. Therefore wj is
an eigenvector of T corresponding to the eigenvalue cj−1, i.e. T has an eigenvalue.

The case of matrices can be proved similarly. Alternatively, for A ∈ Fn×n we
can consider the operator T ∈ L(Fn) that maps x ∈ Fn to Tx := Ax. Then we
have [T ]B = A, where B is the standard basis of Fn. Now we know that T has an
eigenvalue. So by Theorem 4.4 we can conclude that A has an eigenvalue too. �

Example 4.19. The above theorem is not true when the field is not algebraically
closed. For example the matrix

A =

[
0 −1
1 0

]
∈ R2×2,

which describes a 90° rotation in R2, has no real eigenvalue. Because if λ ∈ R were
an eigenvalue of A, then

A− λI =

[
−λ −1
1 −λ

]
would be non-invertible. Hence the rank of A− λI must be 1, since it is obviously
a nonzero matrix. Thus we must have

[−λ,−1] = c [1,−λ],

for some c ∈ R. But this implies that −λc = 1 and −c = −λ. So we must have
−λ2 = 1 which is impossible. Note that if we consider A as a matrix in C2×2, then
we can easily show that ±i are the eigenvalues of A.
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Example 4.20. The above theorem is not true when the vector space is infinite
dimensional, even if the field is algebraically closed. For example consider the
forward shift S ∈ L(F∞)

S : (a1, a2, . . . ) 7→ (0, a1, a2, . . . ).

Then S does not have an eigenvalue. To show this, suppose to the contrary that λ
is an eigenvalue of S. Then for some nonzero (a1, a2, . . . ) ∈ F∞ we have

(0, a1, a2, . . . ) = S
(
(a1, a2, . . . )

)
= λ(a1, a2, . . . ) = (λa1, λa2, . . . ).

If λ = 0 then we must have aj = 0 for every j, which is a contradiction. So suppose
λ 6= 0. Then we have λa1 = 0, and λaj = aj−1 for every j ≥ 2. Hence we have
a1 = 0, and therefore a2 = 0, and therefore a3 = 0, and so forth. Thus again
we must have aj = 0 for every j, which is a contradiction. So S cannot have an
eigenvalue.

4.2 Diagonalizable Operators

Definition 4.21. Suppose that λ is an eigenvalue of T . The set that consists of
0 ∈ V and all the eigenvectors of T corresponding to λ, is called the eigenspace
of T corresponding to λ. We denote this set by Eλ(T ), or simply by Eλ when T is
clear from the context.

Remark. It is easy to see that

Eλ(T ) = null(T − λI),

where I is the identity map of V . As a consequence, we see that Eλ(T ) is a subspace.

Remark. Note that if λ is an eigenvalue of T , then Eλ(T ) is a nonzero subspace,
since it contains at least one nonzero eigenvector of T corresponding to λ. Thus in
particular when Eλ(T ) is finite dimensional we have dimEλ(T ) ≥ 1.

Remark. Suppose V is finite dimensional, and we know that λ is an eigenvalue of
T . Then the above description of Eλ(T ) as a null space, enables us to easily find a
basis for it by using Theorem 3.48.

Proposition 4.22. The eigenspaces of T are T -invariant subspaces.

Proof. Suppose λ is an eigenvalue of T . Let v ∈ Eλ(T ). Then we have

(T − λI)(Tv) =
(
(T − λI)T

)
v =

(
T (T − λI)

)
v = T

(
(T − λI)v

)
= T (0) = 0.

Note that T, (T − λI) commute, since (T − λI) is a polynomial in T . So we have
shown that Tv ∈ Eλ(T ). Hence Eλ(T ) is T -invariant. �
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Remark. Note that although every eigenvector of T generates a one dimensional
T -invariant subspace, the dimension of the eigenspace Eλ(T ) can be more than one.
Because Eλ(T ) can contain several linearly independent eigenvectors corresponding
to λ.

Remark. Let W := Eλ(T ) be an eigenspace of T . Then it is obvious that T |W =
λIW .

Theorem 4.23. Suppose that λ1, . . . , λk are distinct eigenvalues of T . Then the
eigenspaces Eλ1(T ), . . . , Eλk(T ) are independent subspaces.

Proof. Suppose vj ∈ Eλj , and v1 + · · · + vk = 0. We have to show that vj = 0
for every j. Suppose to the contrary that vj1 , . . . , vjm are nonzero for some m > 0,
and the rest of vj ’s are zero. Then we have

vj1 + · · ·+ vjm = 0. (∗)

But vji is an eigenvector of T corresponding to the eigenvalue λji , since vji 6= 0. In
addition, λj1 , . . . , λjm are distinct eigenvalues of T . Therefore vj1 , . . . , vjm must be
linearly independent. However, this is in contradiction with equation (∗), because
in (∗) the coefficient of each vji is 1, which is nonzero. Thus m must be zero, and
hence every vj must be zero, as desired. �

Definition 4.24. Suppose V is finite dimensional. Then the linear operator T is
called diagonalizable if V has a basis B such that [T ]B is a diagonal matrix.

Remark. Note that by Theorems 4.4 and 4.8, the eigenvalues of the diagonalizable
operator T are exactly the diagonal entries of the diagonal matrix [T ]B.

Theorem 4.25. Suppose V is finite dimensional, and B is a basis for V . Then we
have
(i) [T ]B is a diagonal matrix if and only if all the elements of B are eigenvectors

of T .
(ii) Suppose that [T ]B is a diagonal matrix. Let λ1, . . . , λk be all the distinct

eigenvalues of T . Then the diagonal entries of [T ]B are λ1, . . . , λk.
Furthermore, the number of times that each λj appears on the diagonal of
[T ]B is equal to dimEλj (T ).

Remark. Suppose [T ]B is diagonal. Then the above theorem implies that every
eigenvalue of T appears at least once among the diagonal entries of [T ]B, because
dimEλj (T ) ≥ 1 for every j. In addition, the following proof shows that for every j
there is at least one eigenvector in B corresponding to λj .

Finally, this theorem also implies that if T is diagonalizable, then the diagonal
matrix of T is uniquely determined. In other words, if B, C are bases for V such
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that [T ]B and [T ]C are diagonal, then the diagonal entires of [T ]B and [T ]C are the
same, and each diagonal entry appears the same number of times on the diagonals
of [T ]B and [T ]C . Of course, the arrangement of the diagonal entries in [T ]B and
[T ]C can be different.

Proof. Suppose B = {v1, . . . , vn}. We know that [vj ]B = ej for every j.
(i) First suppose [T ]B is diagonal, and d1, . . . , dn are its diagonal entries. Then

we have
[Tvj ]B =

(
[T ]B

)
.,j

= djej = dj [vj ]B = [djvj ]B.

Hence we have Tvj = djvj , because the coordinate isomorphism is one-to-one.
Therefore vj is an eigenvector of T , since it is a nonzero vector. In addition note
that every dj is an eigenvalue of T .

Conversely suppose that each vj is an eigenvector of T . Then we have Tvj = djvj
for some dj ∈ F . Therefore we get(

[T ]B
)
.,j

= [Tvj ]B = [djvj ]B = dj [vj ]B = djej .

Thus [T ]B is diagonal.
(ii) Let d1, . . . , dn be the diagonal entries of [T ]B. To simplify the notation let

A := [T ]B. In the previous part we have shown that every diagonal entry of A is
an eigenvalue of T . Now suppose λ is an eigenvalue of T . We have to show that λ
appears dimEλ times on the diagonal of A. We know that λ is also an eigenvalue
of A = [T ]B. But the eigenvalues of a diagonal matrix are its diagonal entries. So
λ appears on the diagonal of A. In particular, note that if λ = dj for some j, then
we have Tvj = djvj = λvj , as shown in the previous part. Thus there is at least
one eigenvector in B corresponding to λ.

Now suppose λ appears r times on the diagonal of A. Let C := A− λI. Then
the matrix C is diagonal, and exactly r of its diagonal entries are zero. Now if
we divide each nonzero row of C by the nonzero diagonal entry in that row, and
rearrange the rows so that the nonzero rows lie above the zero rows, we obtain the
reduced row echelon form of C. So the rank of C equals n − r, since its reduced
row echelon form has n− r nonzero rows. On the other hand we have

C = A− λI = [T ]B − λ[I]B = [T − λI]B.

Hence rank(T − λI) = rankC = n− r. Therefore we have

dimEλ = dim null(T − λI) = n− rank(T − λI) = n− (n− r) = r,

as desired. �
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One of the reasons of the importance of diagonalizable operators is that we
have a complete understanding of their action on a vector. To see this, suppose T
is diagonalizable, and B = {v1, . . . , vn} is a basis for V such that [T ]B is diagonal.
We know that the elements of B are eigenvectors of T . Now let v ∈ V , and suppose
that [v]B = [x1, . . . , xn]T. Suppose the jj-th diagonal entry of [T ]B is λj . Then as
we saw in the previous proof, λj is an eigenvector of T , and vj is an eigenvector
corresponding to λj . Hence we have

Tv = T (x1v1 + · · ·+ xnvn) = x1Tv1 + · · ·+ xnTvn = x1λ1v1 + · · ·+ xnλnvn.

Equivalently, we have

[Tv]B = [T ]B[v]B =

λ1x1...
λnxn

.
Therefore the action of a diagonalizable operator on a vector is that it scales each
coordinate of that vector, when we represent the vector in a basis consisting of the
eigenvectors of the operator. In other words, every diagonalizable operator is the
composition of several scalings.

Another advantage of diagonalizable operators is that calculations with diagonal
matrices are much simpler than calculations with arbitrary matrices. In addition as
we will see below, being diagonalizable is equivalent to having “enough” eigenvalues
and eigenvectors.

Theorem 4.26. Suppose V is finite dimensional. Then the following statements
are equivalent.
(i) T is diagonalizable.
(ii) V has a basis whose elements are eigenvectors of T .
(iii) T has distinct eigenvalues λ1, . . . , λk, and

V = Eλ1(T )⊕ · · · ⊕ Eλk(T ).

(iv) T has distinct eigenvalues λ1, . . . , λk, and

dimV =
k∑
j=1

dimEλj (T ).

Remark. Note that parts (iii) and (iv) of the theorem express that λ1, . . . , λk are
all the eigenvalues of T , and that they are also distinct.

Remark. Also note that the sum of eigenspaces of any operator is a direct sum,
since they are independent subspaces. Hence the nontrivial statement in part (iii)
is that the sum of eigenspaces of T is the whole space V .
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Proof. (i) ⇐⇒ (ii): By definition, T is diagonalizable if V has a basis B such
that [T ]B is a diagonal matrix. On the other hand, Theorem 4.25 says that [T ]B is
a diagonal matrix if and only if all the elements of B are eigenvectors of T. So T is
diagonalizable if and only if V has a basis B whose elements are eigenvectors of T .

(ii)⇐⇒ (iii): Note that the sum of eigenspaces of T is a direct sum, since they
are independent subspaces. Let

W := Eλ1(T )⊕ · · · ⊕ Eλk(T ).

First suppose V has a basis B whose elements are eigenvectors of T . Then each
element of B belongs to some Eλj (T ) ⊂W , since λ1, . . . , λk are all the eigenvalues
of T . Therefore we get

V = span(B) ⊂W ⊂ V,

since W is a subspace. Thus W = V as desired.
Conversely suppose that W = V . Let Bj be a basis for Eλj (T ) for each j.

Then by Theorem 2.55 we know that B :=
⋃
j≤k Bj is a basis for V . In addition

it is obvious that every element of B is an eigenvector of T . Furthermore, as we
mentioned in the remark after Theorem 4.25, every eigenvalue of T must have a
corresponding eigenvector in B. Hence λ1, . . . , λk are all the eigenvalues of T .

(iii)⇐⇒ (iv): Let W be as above. Then Theorem 2.55 implies that dimW =∑k
j=1 dimEλj (T ). Now suppose W = V . Then we get

dimV = dimW =
k∑
j=1

dimEλj (T ).

Conversely suppose dimV =
∑k

j=1 dimEλj (T ). Then we have dimV = dimW .
Therefore by Theorem 2.44 we must haveW = V , since V is finite dimensional. �

Remark. If we know the eigenvalues of the operator T , then part (iv) of the above
theorem provides us an algorithm to determine whether T is diagonalizable or not.
Suppose A is the matrix of T in some basis. Let λ be one of the eigenvalues of T .
Then we know that λ is also an eigenvalue of A. On the other hand, A− λI is the
matrix of T −λI. Therefore A−λI and T −λI have the same rank. Hence we have

dimEλ(T ) = dim null(T − λI) = n− dim(T − λI)(V ) = n− rank(A− λI),

where n = dimV . So in order to check the diagonalizability of T , we only need to
compute n− rank(A− λI) for each eigenvalue of T , and then check whether their
sum is equal to n or not.

Finally, suppose we have shown that T is diagonalizable, and λ1, . . . , λk are
all the distinct eigenvalues of T . Then in order to find a basis B for V so that
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[T ]B is diagonal, we can find a basis for each Eλj (T ) by using Theorem 3.48, and
then take the union of those bases. Because that union is a basis for V , since
V = Eλ1(T )⊕· · ·⊕Eλk(T ). In addition, we know that the elements of every Eλj (T )
are eigenvectors of T , so the elements of the constructed basis are eigenvectors of T
too. Hence Theorem 4.25 implies that [T ]B is diagonal. Let us employ this method
in the next two examples. �

Example 4.27. Let

A =

4 0 6
0 4 3
0 0 1

,
and consider the operator T ∈ L(R3) defined by T (x) := Ax for x ∈ R3. Let us
show that T is diagonalizable. We know that [T ]B = A, where B is the standard
basis of R3. Thus the eigenvalues of T and A are the same. Hence 1, 4 are the only
eigenvalues of T , since A is upper triangular. In addition we have

A− I =

3 0 6
0 3 3
0 0 0

, A− 4I =

0 0 6
0 0 3
0 0 −3

.
If we perform elementary row operations, we find the reduced row echelon form of
the above matrices to be

A− I →

1 0 2
0 1 1
0 0 0

, A− 4I →

0 0 1
0 0 0
0 0 0

.
We know that the rank of a matrix is the number of nonzero rows in its reduced
row echelon form. Thus we have rank(A− I) = 2 and rank(A− 4I) = 1. Hence as
we explained in the above remark, we have

dimE1(T ) = 3− rank(A− I) = 3− 2 = 1,

dimE4(T ) = 3− rank(A− 4I) = 3− 1 = 2.

Therefore we have

dimE1(T ) + dimE4(T ) = 3 = dimR3.

Thus T is diagonalizable.
In addition note that the eigenvectors of T and A are also the same, because

Tx = Ax for every x ∈ R3. Now by using Theorem 3.47, it is easy to find a
basis for the set of solutions of the homogeneous linear systems (A − I)x = 0 and
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(A − 4I)x = 0, which are equal to E1(T ) and E4(T ) respectively. Hence we find
the basis [2, 1,−1]T for E1(T ), and the basis e1, e2 for E4(T ). Then

B := {[2, 1,−1]T, e1, e2}

is a basis for R3 such that [T ]B is diagonal. Now we can use direct computation, or
use Theorem 4.25, to deduce that

[T ]B =

4 0 0
0 4 0
0 0 1

.
Example 4.28. Let

A =

[
1 1
0 1

]
,

and consider the operator T ∈ L(F 2) defined by T (x) := Ax for x ∈ F 2. Let us
show that T is not diagonalizable. We know that [T ]B = A, where B is the standard
basis of F 2. Thus the eigenvalues of T and A are the same. Hence 1 is the only
eigenvalue of T , since A is upper triangular. In addition we have

A− I =

[
0 1
0 0

]
.

Thus A − I is a matrix in reduced row echelon form. So its rank is equal to the
number of its nonzero rows, i.e. rank(A − I) = 1. Hence as we explained in the
above remark, we have

dimE1(T ) = 2− rank(A− I) = 2− 1 = 1 < 2 = dimF 2.

Therefore T is not diagonalizable. Note that T does not have “enough” eigenvectors
to generate its domain F 2.

Proposition 4.29. Suppose V is finite dimensional, and n = dimV . If T has n
distinct eigenvalues, then T is diagonalizable.

Proof. Suppose λ1, . . . , λn are the distinct eigenvalues of T . Then we have

n ≤
n∑
j=1

dimEλj (T ) ≤ dimV = n,

since dimEλj (T ) ≥ 1 for every j ≤ n. Thus
n∑
j=1

dimEλj (T ) = n = dimV.

Therefore T is diagonalizable due to the previous theorem. �
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Theorem 4.30. Suppose A,B ∈ Fn×n are similar matrices. Then λ ∈ F is an
eigenvalue of A if and only if it is an eigenvalue of B.

Proof. Suppose λ is an eigenvalue of A. Then there is a nonzero x ∈ Fn such
that Ax = λx. On the other hand, A,B are similar. Therefore there is an invertible
matrix C ∈ Fn×n so that B = C−1AC. Let y := C−1x ∈ Fn. Now we have

By = B(C−1x) = C−1ACC−1x = C−1AIx

= C−1Ax = C−1(λx) = λC−1x = λy.

In addition we must have y = C−1x 6= 0, since if C−1x = 0 then we would have

x = Ix = CC−1x = C0 = 0,

which is contrary to our assumption. Therefore λ is also an eigenvalue of B. The
converse holds trivially, because we have A = CBC−1 = D−1BD, where D :=
C−1. �

Theorem 4.31. Let A ∈ Fn×n. Suppose Fn has a basis consisting of the eigenvec-
tors of A. Let C ∈ Fn×n be the matrix whose columns are this basis of eigenvectors.
Then C is invertible, and C−1AC is a diagonal matrix whose diagonal entries are
the eigenvalues of A.

Remark. In other words A is similar to a diagonal matrix. Also, note that the last
sentence of the theorem means that all the eigenvalues of A appear on the diagonal
of C−1AC, and every diagonal entry of C−1AC is an eigenvalue of A.

Proof. First note that

rankC = dim span(C.,1, . . . , C.,n) = n,

since the columns of C form a basis for Fn. So C is invertible by Theorem 3.49. In
addition we know that for every j there is λj ∈ F such that AC.,j = λjC.,j . Hence
we have

(C−1AC).,j = (C−1AC)ej = C−1A(Cej) = C−1AC.,j

= C−1(λjC.,j) = λjC
−1C.,j = λj(C

−1C).,j = λjI.,j = λjej .

Note that we have used Theorem 1.16 in the above line. Therefore C−1AC is a
diagonal matrix, as shown in Exercise 1.19. But by Theorem 4.8, the diagonal
entries of a diagonal matrix are the same as its eigenvalues. Furthermore, the
eigenvalues of similar matrices are the same, as shown in the previous theorem.
Thus the diagonal entries of C−1AC are exactly the eigenvalues of A. �



Chapter 5

Inner Product Spaces

5.1 Inner Products and Norms

In this chapter, we are going to study the notions of length of a vector, and angle
between two vectors. To do this, we need to equip our vector space with an inner
product, as defined below. Let us also mention that we are only interested in the
notion of right angle between two vectors, i.e. when the two vectors are orthogonal.
So we will not assign a measure of angle between two arbitrary vectors, however it
is not hard to do so with the tools we develop in this chapter.

Definition 5.1. Suppose the field F is either R or C. Let V be a vector space over
F . An inner product on V is a function

〈 , 〉 : V × V → F

that satisfies
(i) 〈 , 〉 is positive definite, which means that for all v ∈ V we have

〈v, v〉 ≥ 0,

i.e. 〈v, v〉 is a nonnegative real number; and in addition for all v ∈ V we have

〈v, v〉 = 0 =⇒ v = 0.

(ii) 〈 , 〉 is conjugate symmetric, i.e. for all u, v ∈ V we have

〈u, v〉 = 〈v, u〉.

(iii) 〈 , 〉 is linear with respect to its first variable, i.e. for all u, v, w ∈ V and
a ∈ F we have

〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉, 〈av, w〉 = a〈v, w〉.

101
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A vector space equipped with an inner product is called an inner product space.

Remark. When F = R, inner products are symmetric, i.e. for all u, v ∈ V we have

〈u, v〉 = 〈v, u〉.

Because the conjugate of a real number equals itself. But when F = C, we cannot
require inner products to be symmetric, since if we do that we will lose the positive
definiteness. To see this suppose v ∈ V is a nonzero vector. Then we must have
〈v, v〉 > 0. Now consider the vector iv, where i2 = −1. If we assume that the inner
product is symmetric we get

〈iv, iv〉 = i〈v, iv〉 = i〈iv, v〉 = i2〈v, v〉 = −〈v, v〉 < 0,

which is a contraction.

Remark. We can easily show that for all v ∈ V we have

〈v, 0〉 = 0 = 〈0, v〉.

Because 〈0, v〉 = 〈0 + 0, v〉 = 〈0, v〉 + 〈0, v〉, so 〈0, v〉 = 0. On the other hand we
have 〈v, 0〉 = 〈0, v〉 = 0̄ = 0, as desired. As a particular case we have 〈0, 0〉 = 0.
Hence we can write

〈v, v〉 = 0 ⇐⇒ v = 0.

Remark. In general, an inner product is not linear with respect to its second
variable. But it is always conjugate linear with respect to its second variable, i.e.
for all u, v, w ∈ V and a ∈ F we have

〈w, u+ v〉 = 〈w, u〉+ 〈w, v〉, 〈w, av〉 = ā〈w, v〉.

Because we have

〈w, u+ av〉 = 〈u+ av, w〉 = 〈u,w〉+ a〈v, w〉
= 〈u,w〉+ ā〈v, w〉 = 〈w, u〉+ ā〈w, v〉.

Now by putting a = 1 or u = 0, we get the above identities. Note that when F = R,
the conjugate linearity is the same as linearity, since ā = a for all a ∈ R. Therefore
inner products on real vector spaces are also linear with respect to their second
variables.

Remark. It is easy to show by induction that for all uj , vj ∈ V and aj ∈ F we
have

〈a1u1 + · · ·+ akuk, v〉 = a1〈u1, v〉+ · · ·+ ak〈uk, v〉,
〈u, a1v1 + · · ·+ akvk〉 = ā1〈u, v1〉+ · · ·+ āk〈u, vk〉.
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Example 5.2. The standard inner products on Rn and Cn are the prototypes of
inner products. Let x, y ∈ Rn and z, w ∈ Cn. Then their inner products is defined
as follows

〈x, y〉 = x1y1 + · · ·+ xnyn, 〈w, z〉 = w1z̄1 + · · ·+ wnz̄n.

To prove that these are indeed inner products, note that their conjugate symmetry
and positive definiteness follow easily from the definition. Now remember that we
consider x, y, w, z to be column vectors, so we have the following expressions for
the inner products

〈x, y〉 = yTx = xTy, 〈w, z〉 = z∗w = wTz̄,

where z∗ is the conjugate transpose of z as defined in Definition 1.26, and z̄ is the
column vector whose j-th component is z̄j . These expressions make it obvious that
the standard inner products are also linear with respect to the first variable, due
to the properties of matrix multiplication.

Remark. Let us mention a simple fact about Cn, which will be useful later. Let
z ∈ Cn. Then for every j ≤ n there are xj , yj ∈ R such that zj = xj + iyj . Let

x := [x1, . . . , xn]T, y := [y1, . . . , yn]T ∈ Rn.

Then it is trivial to check that z = x+ iy.

Example 5.3. Suppose V is an inner product space, and W is a subspace of V .
ThenW is also an inner product space with the inner product inherited from V , i.e.
if we denote the inner product of V by 〈 , 〉, then it is easy to see that 〈 , 〉|W×W
is an inner product on W .

Notation. In the rest of this chapter, we assume that F is either R or C, and
V is a nonzero inner product space over F with the inner product 〈 , 〉. Also,
we always assume that Fn is equipped with its standard inner product, unless
otherwise specified.

Definition 5.4. The norm of a vector v ∈ V is the nonnegative real number

‖v‖ :=
√
〈v, v〉.

Example 5.5. Let z ∈ Fn. Then the norm of z with respect to the standard inner
product is

‖z‖ =
√
|z1|2 + · · ·+ |zn|2.

Proposition 5.6. For every v ∈ V and a ∈ F we have
(i) ‖v‖ ≥ 0, and ‖v‖ = 0 ⇐⇒ v = 0.
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(ii) ‖av‖ = |a|‖v‖.

Proof. (i) Since 〈v, v〉 ≥ 0, we have ‖v‖ =
√
〈v, v〉 ≥ 0. In addition we have

‖v‖ = 0 ⇐⇒ 〈v, v〉 = 0 ⇐⇒ v = 0.

(ii) We have

‖av‖ =
√
〈av, av〉 =

√
aā〈v, v〉 =

√
|a|2〈v, v〉 = |a|

√
〈v, v〉 = |a|‖v‖. �

Definition 5.7. Let u, v ∈ V . We say u, v are orthogonal if 〈u, v〉 = 0.

Remark. Note that if 〈u, v〉 = 0 then we also have 〈v, u〉 = 〈u, v〉 = 0̄ = 0.

Remark. As we have seen before, the zero vector is orthogonal to every vector. It
is easy to see that if a vector v is orthogonal to every vector, then v must be zero.
Because v must be orthogonal to itself too, i.e. 〈v, v〉 = 0. Therefore v = 0.

Pythagorean Theorem. Suppose u, v ∈ V are orthogonal. Then we have

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Proof. We know that 〈u, v〉 = 0 = 〈v, u〉. Thus we have

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u+ v〉+ 〈v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= 〈u, u〉+ 〈v, v〉 = ‖u‖2 + ‖v‖2. �

Cauchy-Schwarz Inequality. For every u, v ∈ V we have

|〈u, v〉| ≤ ‖u‖‖v‖.

Proof. If v = 0 then the inequality holds trivially. So suppose that v 6= 0. Let

w := u− 〈u, v〉
‖v‖2

v.

Let a := 〈u,v〉
‖v‖2 . Then we have

〈w, v〉 = 〈u− av, v〉 = 〈u, v〉 − a〈v, v〉

= 〈u, v〉 − 〈u, v〉
‖v‖2

‖v‖2 = 〈u, v〉 − 〈u, v〉 = 0.
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Therefore we also have 〈w, av〉 = ā〈w, v〉 = 0. Thus the Pythagorean theorem
implies that

‖u‖2 = ‖w + av‖2 = ‖w‖2 + ‖av‖2 ≥ ‖av‖2 = |a|2‖v‖2

=
|〈u, v〉|2

‖v‖4
‖v‖2 =

|〈u, v〉|2

‖v‖2
.

So we get |〈u, v〉|2 ≤ ‖u‖2‖v‖2, which implies the desired inequality. �

Second Proof. First note that 〈u, v〉 + 〈v, u〉 = 〈u, v〉 + 〈u, v〉 = 2Re
(
〈u, v〉

)
. If

v = 0 then the inequality holds trivially. So suppose that v 6= 0. Now let t ∈ R.
Then we have

0 ≤ ‖u+ tv‖2 = 〈u+ tv, u+ tv〉
= 〈u, u〉+ 〈u, tv〉+ 〈tv, u〉+ 〈tv, tv〉
= 〈u, u〉+ t〈u, v〉+ t〈v, u〉+ t2〈v, v〉
= ‖u‖2 + 2tRe

(
〈u, v〉

)
+ t2‖v‖2.

Since this inequality holds for all t ∈ R, and ‖v‖2 > 0, the discriminant of the above
quadratic function in t must be nonpositive, i.e.

[
Re
(
〈u, v〉

)]2 − ‖u‖2‖v‖2 ≤ 0. So
we get ∣∣Re

(
〈u, v〉

)∣∣ ≤ ‖u‖‖v‖. (∗)

If 〈u, v〉 ∈ R then 〈u, v〉 = Re
(
〈u, v〉

)
and we have the desired inequality. Otherwise

there are r, θ ∈ R so that 〈u, v〉 = reiθ. Note that we must have r = |〈u, v〉|, since
|eiθ| = 1. Then we have

〈u, eiθv〉 = eiθ〈u, v〉 = e−iθ〈u, v〉 = e−iθreiθ = r ∈ R.

Thus r = Re
(
〈u, eiθv〉

)
. Hence the inequality (∗) implies that

|〈u, v〉| = r =
∣∣Re
(
〈u, eiθv〉

)∣∣ ≤ ‖u‖‖eiθv‖ = ‖u‖|eiθ|‖v‖ = ‖u‖‖v‖,

as desired. �

Remark. The vector 〈u,v〉‖v‖2 v in the first proof above is the orthogonal projection
of the vector u on the subspace generated by v. We will study the orthogonal
projections later in this chapter. See Example 5.26.

Example 5.8. Let x, y ∈ Rn. Then the Cauchy-Schwarz inequality for the stan-
dard inner product of Rn can be written as

|x1y1 + · · ·+ xnyn|2 ≤ (x21 + · · ·+ x2n)(y21 + · · ·+ y2n).
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Triangle Inequality. For every u, v ∈ V we have

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Proof. By the Cauchy-Schwarz inequality we have

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉

≤ ‖u‖2 + ‖u‖‖v‖+ ‖v‖‖u‖+ ‖v‖2 =
(
‖u‖+ ‖v‖

)2
.

Thus we get the desired inequality. �

Remark. It is easy to show by induction that

‖v1 + · · ·+ vk‖ ≤ ‖v1‖+ · · ·+ ‖vk‖.

Example 5.9. Let x, y ∈ Rn. Then the triangle inequality for the standard norm
of Rn can be written as√

(x1 + y1)2 + · · ·+ (xn + yn)2 ≤
√
x21 + · · ·+ x2n +

√
y21 + · · ·+ y2n.

Remark. The first part of the next theorem is the converse of the Pythagorean
theorem when F = R. The other two parts tell us when we have the equality in
the Cauchy-Schwarz and triangle inequalities.

Theorem 5.10. Let u, v ∈ V .
(i) If F = R, and ‖u+ v‖2 = ‖u‖2 + ‖v‖2, then 〈u, v〉 = 0.
(ii) If |〈u, v〉| = ‖u‖‖v‖ then either u = av, or v = au, for some a ∈ F .
(iii) If ‖u+ v‖ = ‖u‖+ ‖v‖ then either u = av, or v = au, for some a ∈ [0,∞).

Proof. (i) Since F = R we have 〈u, v〉 = 〈v, u〉. Therefore we have

‖u‖2 + ‖v‖2 = ‖u+ v‖2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 2〈u, v〉+ 〈v, v〉 = ‖u‖2 + 2〈u, v〉+ ‖v‖2.

Thus we must have 〈u, v〉 = 0.
(ii) If v = 0 then we have v = 0u. So suppose that v 6= 0. Let a := 〈u,v〉

‖v‖2 and
w := u − av. Now look at the first proof of the Cauchy-Schwarz inequality. In
that proof, the only inequality is ‖w‖2 + ‖av‖2 ≥ ‖av‖2. So if we have the equality
instead of the inequality, we must have ‖w‖ = 0. Thus w = 0, and hence we get
u = av, as desired.

(iii) Remember that 〈u, v〉+〈v, u〉 = 〈u, v〉+〈u, v〉 = 2Re
(
〈u, v〉

)
. Now we have

‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 =
(
‖u‖+ ‖v‖

)2
= ‖u+ v‖2

= 〈u+ v, u+ v〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= ‖u‖2 + 2Re

(
〈u, v〉

)
+ ‖v‖2.
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Hence we get ‖u‖‖v‖ = Re
(
〈u, v〉

)
≤ |〈u, v〉| ≤ ‖u‖‖v‖. Thus we have the equality

in the Cauchy-Schwarz inequality. Therefore we either u = av, or v = au, for
some a ∈ F . In addition we have |〈u, v〉| = Re

(
〈u, v〉

)
. Thus we must have

Im
(
〈u, v〉

)
= 0. So 〈u, v〉 is a real number. It is also nonnegative, since 〈u, v〉 =

Re
(
〈u, v〉

)
= |〈u, v〉|. Now suppose v = au, the other case is similar. If u = 0 then

v = 0, and we can set a = 0. So suppose u 6= 0. Then 〈u, u〉 = ‖u‖2 ∈ (0,∞), and
we have

ā = ā
〈u, u〉
〈u, u〉

=
〈u, au〉
〈u, u〉

=
〈u, v〉
〈u, u〉

∈ [0,∞).

Therefore a ∈ [0,∞) as desired. �

Parallelogram Law. For every u, v ∈ V we have

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.

Remark. The reason that this identity is called the parallelogram law is that in
a parallelogram, the sum of the squares of the lengths of the diagonals equals the
sum of the squares of the lengths of the four sides.

Proof. We have

‖u+ v‖2 + ‖u− v‖2 = 〈u+ v, u+ v〉+ 〈u− v, u− v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉

+ 〈u, u〉 − 〈u, v〉 − 〈v, u〉+ 〈v, v〉
= 2‖u‖2 + 2‖v‖2. �

Remark. A norm on a real or complex vector space V is a function ‖ ‖ : V →
[0,∞) that satisfies the properties listed in Proposition 5.6 and the triangle in-
equality. Although here we only study those norms that are associated to an inner
product, there are norms that are not induced by any inner product. It can be
shown that a norm is induced by an inner product if and only if it satisfies the
parallelogram law. The proof of this fact is a little tricky, and we do not present it
here, but let us mention that the starting point is to define our candidate for the
inner product as in the next theorem, and then to show that it is indeed an inner
product which induces our norm.

Polarization Identities. Let u, v ∈ V .
(i) When F = R we have

〈u, v〉 =
1

4
‖u+ v‖2 − 1

4
‖u− v‖2.
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(ii) When F = C we have

〈u, v〉 =
1

4
‖u+ v‖2 − 1

4
‖u− v‖2 +

i

4
‖u+ iv‖2 − i

4
‖u− iv‖2.

Remark. These identities are useful when we want to express the inner product
in terms of the norm. For example, we will use them in Section 6.4 to show that
an operator preserves the norm if and only if it preserves the inner product.

Proof. (i) We have

‖u+ v‖2 − ‖u− v‖2 = 〈u+ v, u+ v〉 − 〈u− v, u− v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉

−
(
〈u, u〉 − 〈u, v〉 − 〈v, u〉+ 〈v, v〉

)
= 2〈u, v〉+ 2〈v, u〉.

Since F = R we have 〈u, v〉 = 〈v, u〉. So we get ‖u+ v‖2 − ‖u− v‖2 = 4〈u, v〉.
(ii) We have shown that ‖u+ v‖2 − ‖u− v‖2 = 2〈u, v〉+ 2〈v, u〉. If we replace

v by iv in this identity, we get

‖u+ iv‖2 − ‖u− iv‖2 = 2〈u, iv〉+ 2〈iv, u〉
= 2̄i〈u, v〉+ 2i〈v, u〉 = −2i〈u, v〉+ 2i〈v, u〉.

Now if we multiply the above equation by i, and then add it to the first equation,
we obtain

‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

= 2〈u, v〉+ 2〈v, u〉 − 2i2〈u, v〉+ 2i2〈v, u〉
= 2〈u, v〉+ 2〈v, u〉+ 2〈u, v〉 − 2〈v, u〉 = 4〈u, v〉. �

5.2 Orthonormal Bases

Definition 5.11. A list of vectors v1, . . . , vm ∈ V is called orthonormal if ‖vj‖ =
1 for every j, and 〈vj , vk〉 = 0 for every j 6= k. We also consider the empty list
to be orthonormal. An orthonormal basis for V is a basis for V which is also
orthonormal.

Remark. In other words, a list of vectors v1, . . . , vm is orthonormal if

〈vj , vk〉 =

{
1 j = k,

0 j 6= k.
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Example 5.12. It is easy to see that the standard bases of Rn,Cn are orthonormal
bases.

Theorem 5.13. An orthonormal list of vectors is linearly independent.

Remark. This theorem provides a link between orthonormality, which is defined
using the inner product, and linear independence, which is defined using the linear
structure of the vector space.

Proof. We know that the empty list is linearly independent by definition. Now
suppose v1, . . . , vm ∈ V is an orthonormal list. Suppose a1v1 + · · ·+ amvm = 0 for
some scalars aj ∈ F . Then for every j we have

0 = 〈0, vj〉 = 〈a1v1 + · · ·+ amvm, vj〉 = a1〈v1, vj〉+ · · ·+ am〈vm, vj〉
= a10 + · · ·+ aj−10 + aj1 + aj+10 + · · ·+ am0 = aj .

Thus v1, . . . , vm are linearly independent. �

Remark. In the light of the above theorem, an orthonormal list of vectors v1, . . . , vn
is an orthonormal basis for V , if it generates V .

Theorem 5.14. Suppose v1, . . . , vn is an orthonormal basis for V . Let

v = a1v1 + · · ·+ anvn, w = b1v1 + · · ·+ bnvn,

where aj , bj ∈ F . Then we have
(i) aj = 〈v, vj〉 for every j ≤ n.
(ii) ‖v‖2 = |a1|2 + · · ·+ |an|2.
(iii) 〈v, w〉 = a1b̄1 + · · ·+ anb̄n.

Remark. If we denote the orthonormal basis by B, then we have

〈v, w〉 = a1b̄1 + · · ·+ anb̄n = [w]∗B[v]B.

In other words, the inner product of V corresponds to the standard inner product
of Fn, when we use the coordinates with respect to an orthonormal basis.

Proof. (i) We have

〈v, vj〉 = 〈a1v1 + · · ·+ anvn, vj〉 = a1〈v1, vj〉+ · · ·+ an〈vn, vj〉
= a10 + · · ·+ aj−10 + aj1 + aj+10 + · · ·+ an0 = aj .
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(ii) We know that 〈v, vj〉 = aj . Therefore we have

‖v‖2 = 〈v, v〉 = 〈v, a1v1 + · · ·+ anvn〉
= ā1〈v, v1〉+ · · ·+ ān〈v, vn〉
= ā1a1 + · · ·+ ānan = |a1|2 + · · ·+ |an|2.

(iii) We know that 〈v, vj〉 = aj . Therefore we have

〈v, w〉 = 〈v, b1v1 + · · ·+ bnvn〉 = b̄1〈v, v1〉+ · · ·+ b̄n〈v, vn〉
= b̄1a1 + · · ·+ b̄nan = a1b̄1 + · · ·+ anb̄n. �

Remark. It is easy to see that the relations in the above theorem do not necessarily
hold when the basis is not orthonormal.

Gram-Schmidt Process. Suppose v1, . . . , vm ∈ V are linearly independent. We
inductively define the vectors w1, . . . , wm as follows. Set

w̃1 := v1, w1 :=
1

‖w̃1‖
w̃1 =

1

‖v1‖
v1,

and for k ≥ 1 set

w̃k+1 := vk+1 −
k∑
j=1

〈vk+1, wj〉wj , wk+1 :=
1

‖w̃k+1‖
w̃k+1.

Then w1, . . . , wm are orthonormal, and for k ≤ m we have

span(w1, . . . , wk) = span(v1, . . . , vk).

Remark. We will see that since v1, . . . , vm are linearly independent, all the vectors
w̃1, . . . , w̃m are nonzero. Thus their norms are nonzero, and therefore w1, . . . , wm
exist. However, it can be shown that if we apply the Gram-Schmidt process to a
linearly dependent list v1, . . . , vm, then for some k ≥ 1 we will have w̃k = 0, and
consequently we cannot continue the process after that. Hence the Gram-Schmidt
process can also detect the linear independence of a list of vectors.

Remark. Note that if we change the order of the vectors v1, . . . , vm, then their
span does not change; however, the vectors w1, . . . , wm will change.

Proof. We show by induction on k that w̃1, . . . , w̃k are nonzero, w1, . . . , wk are
orthonormal, and span(w1, . . . , wk) = span(v1, . . . , vk). For k = 1 we have w̃1 =
v1 6= 0, since v1 belongs to a linearly independent set. So w1 is defined, and we
obviously have ‖w1‖ = 1. Thus w1 is an orthonormal list. Since w1, v1 are scalar
multiples of each other, we have span(w1) = span(v1).
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Now suppose the above claims are true for some k. We need to prove them
for k + 1. We know that w̃1, . . . , w̃k are nonzero. Suppose to the contrary that
w̃k+1 = 0. Then we have

vk+1 =
k∑
j=1

〈vk+1, wj〉wj ∈ span(w1, . . . , wk) = span(v1, . . . , vk),

which is a contradiction, because v1, . . . , vk, vk+1 are linearly independent. So
w̃k+1 6= 0 too.

We know that w1, . . . , wk are orthonormal, and it is obvious that ‖wk+1‖ = 1.
So in order to prove that w1, . . . , wk, wk+1 are orthonormal, it suffices to show that
wk+1 is orthogonal to w1, . . . , wk. Let i ≤ k. Then we have

〈w̃k+1, wi〉 = 〈vk+1, wi〉 −
∑
j≤k

〈
〈vk+1, wj〉wj , wi

〉
= 〈vk+1, wi〉 −

∑
j≤k
〈vk+1, wj〉〈wj , wi〉

= 〈vk+1, wi〉 − 〈vk+1, wi〉〈wi, wi〉 = 〈vk+1, wi〉 − 〈vk+1, wi〉 = 0.

Hence we have 〈wk+1, wi〉 = 1
‖w̃k+1‖〈w̃k+1, wi〉 = 0. Thus w1, . . . , wk, wk+1 are

orthonormal too.
Finally we know that

w1, . . . , wk ∈ span(w1, . . . , wk) = span(v1, . . . , vk) ⊂ span(v1, . . . , vk+1).

On the other hand we have

w̃k+1 = vk+1 −
∑
j≤k
〈vk+1, wj〉wj ∈ span(w1, . . . , wk, vk+1) ⊂ span(v1, . . . , vk+1).

Note that we have applied Proposition 2.22 here. Thus we have

wk+1 =
1

‖w̃k+1‖
w̃k+1 ∈ span(v1, . . . , vk+1).

Hence Proposition 2.22 implies that

span(w1, . . . , wk, wk+1) ⊂ span(v1, . . . , vk+1).

Similarly we have

v1, . . . , vk ∈ span(v1, . . . , vk) = span(w1, . . . , wk) ⊂ span(w1, . . . , wk+1),



CHAPTER 5. INNER PRODUCT SPACES 112

and

vk+1 = w̃k+1 +
∑
j≤k
〈vk+1, wj〉wj

= ‖w̃k+1‖wk+1 +
∑
j≤k
〈vk+1, wj〉wj ∈ span(w1, . . . , wk+1).

Thus we get span(v1, . . . , vk+1) ⊂ span(w1, . . . , wk+1), and therefore the two sub-
spaces are equal. �

Remark. In the last part of the above proof we could have also argued as follows.
We know that v1, . . . , vk+1 are linearly independent, hence their span is a k + 1
dimensional vector space. Also, w1, . . . , wk+1 are orthonormal, so they are linearly
independent. Therefore their span is a k + 1 dimensional subspace, which is con-
tained in the k + 1 dimensional space generated by v1, . . . , vk+1. Thus we must
have span(w1, . . . , wk+1) = span(v1, . . . , vk+1).

Theorem 5.15. Every finite dimensional inner product space has an orthonormal
basis.

Proof. If the vector space is the zero vector space, then the empty list is an
orthonormal basis for it. Now let v1, . . . , vn be a basis for the nonzero inner product
space V . Let w1, . . . , wn be the orthonormal list constructed from v1, . . . , vn using
the Gram-Schmidt process. Then we have

span(w1, . . . , wn) = span(v1, . . . , vn) = V.

Therefore w1, . . . , wn is an orthonormal basis for V . �

Theorem 5.16. Every orthonormal list of vectors in a finite dimensional inner
product space can be extended to an orthonormal basis.

Remark. In the following proof we actually provide an algorithm to extend a given
orthonormal list to an orthonormal basis.

Proof. Suppose u1, . . . , uk is an orthonormal list. Then it is also linearly inde-
pendent. Thus we can extend it to a basis u1, . . . , uk, v1, . . . , vn. Remember that we
have developed several ways to extend a given linearly independent set to a basis.
Now by applying the Gram-Schmidt process to the basis u1, . . . , uk, v1, . . . , vn, we
construct an orthonormal basis w1, . . . , wk, wk+1, . . . , wk+n. It suffices to show that
wj = uj for j ≤ k. We prove this by strong induction on j. For j = 1 we have
w1 = 1

‖u1‖u1 = u1, since ‖u1‖ = 1. Suppose the claim is true for j = 1, 2, . . . , l.
Then we have

w̃l+1 = ul+1 −
∑
j≤l
〈ul+1, wj〉wj = ul+1 −

∑
j≤l
〈ul+1, uj〉uj = ul+1,
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since 〈ul+1, uj〉 = 0 for j ≤ l. Hence we have

wl+1 =
1

‖w̃l+1‖
w̃l+1 =

1

‖ul+1‖
ul+1 = ul+1,

because ‖ul+1‖ = 1. Therefore we have constructed an orthonormal basis u1, . . . , uk,
wk+1, . . . , wk+n as desired. �

Remark. Suppose v1, . . . , vm ∈ V are orthonormal. Then as shown in the above
proof, if we apply the Gram-Schmidt process to the list v1, . . . , vm, the resulting
list is v1, . . . , vm itself.

5.3 Orthogonal Projections

Definition 5.17. Suppose W is a subspace of V . The orthogonal complement
of W is

W⊥ := {v ∈ V : 〈v, w〉 = 0 for every w ∈W}.

Example 5.18. We have V ⊥ = {0}. Because if a vector v belongs to V ⊥ then it is
orthogonal to every vector in V . In particular v is orthogonal to itself, so we must
have v = 0. On the other hand it is obvious that 0 is orthogonal to all vectors in
V . Similarly we have {0}⊥ = V . Because every vector is orthogonal to the zero
vector.

Example 5.19. Suppose U,W are subspaces of V , and U ⊂ W . Then we have
W⊥ ⊂ U⊥. Because if v ∈ W⊥ then v is orthogonal to every vector in W . In
particular, v is orthogonal to every vector in U . Hence v ∈ U⊥.

Remark. A simple fact that is useful when we deal with orthogonal complements
is that if v ∈ V is orthogonal to each w1, . . . , wm ∈ V , then v is orthogonal to
every vector in span(w1, . . . , wm). Because if w ∈ span(w1, . . . , wm) then there are
a1, . . . , am ∈ F such that w = a1w1 + · · ·+ amwm. Hence we have

〈v, w〉 = 〈v, a1w1 + · · ·+ amwm〉
= ā1〈v, w1〉+ · · ·+ ām〈v, wm〉 = ā10 + · · ·+ ām0 = 0.

Theorem 5.20. Suppose W is a subspace of V . Then W⊥ is also a subspace of
V , and we have

W ∩W⊥ = {0}.

Remark. This theorem implies that W,W⊥ are independent subspaces.
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Proof. First note that 0 ∈W⊥, since 0 is orthogonal to every vector in W . Now
let u, v ∈W⊥ and a ∈ F . Then for every w ∈W we have

〈u+ av, w〉 = 〈u,w〉+ a〈v, w〉 = 0 + a0 = 0.

Hence u + av ∈ W⊥. Therefore W⊥ is a subspace. Next suppose v ∈ W ∩W⊥.
Then v ∈W⊥, so it is orthogonal to every vector inW . In particular v is orthogonal
to itself, i.e. 〈v, v〉 = 0. Thus we must have v = 0. �

Theorem 5.21. Suppose W is a finite dimensional subspace of V . Then we have
(i) W ⊕W⊥ = V .
(ii) (W⊥)⊥ = W .

Proof. (i) Let w1, . . . , wm be an orthonormal basis for W . Then for v ∈ V set

w := 〈v, w1〉w1 + · · ·+ 〈v, wm〉wm, u := v − w.

It is obvious that w ∈W . We claim that u ∈W⊥. For every j ≤ m we have

〈w,wj〉 =
〈
〈v, w1〉w1 + · · ·+ 〈v, wm〉wm, wj

〉
= 〈v, w1〉〈w1, wj〉+ · · ·+ 〈v, wm〉〈wm, wj〉 = 〈v, wj〉.

Hence 〈u,wj〉 = 〈v, wj〉 − 〈w,wj〉 = 0. Thus u is orthogonal to every vector in
span(w1, . . . , wm) = W . So u ∈W⊥. Therefore we have

v = w + u ∈W +W⊥ = W ⊕W⊥.

Note that W,W⊥ are independent subspaces, so their sum is a direct sum. Hence
we have V ⊂W ⊕W⊥. Since the reverse inclusion is trivial, we get the desired.

(ii) Let w ∈ W . Then we know that every vector in W⊥ is orthogonal to w.
Hence w is also orthogonal to every vector in W⊥. Thus w ∈ (W⊥)⊥. Therefore
we have

W ⊂ (W⊥)⊥.

Note that we did not need the finite dimensionality of W for the above relation to
hold. Now let v ∈ (W⊥)⊥ ⊂ V . In order to prove (W⊥)⊥ ⊂ W , it suffices to show
that v ∈ W . We know that V = W ⊕W⊥. Thus v = w + u, where w ∈ W and
u ∈W⊥. But w, u are orthogonal, so by the Pythagorean theorem we have

‖v‖2 = ‖w‖2 + ‖u‖2. (∗)

On the other hand, v, u are also orthogonal. Hence we have

0 = 〈v, u〉 = 〈v, v − w〉 = 〈v, v〉 − 〈v, w〉.
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Therefore ‖v‖2 = 〈v, v〉 = 〈v, w〉 ≤ ‖v‖‖w‖. Now if v = 0 then we trivially have
v ∈ W as desired. Otherwise we can cancel ‖v‖ from both sides of the above
inequality to obtain ‖v‖ ≤ ‖w‖. Thus the equation (∗) implies

‖w‖2 + ‖u‖2 = ‖v‖2 ≤ ‖w‖2.

Hence we must have ‖u‖ = 0. Therefore u = 0, and we get v = w ∈ W as
desired. �

Remark. The above theorem is not true in general, whenW is infinite dimensional.

Remark. Note that in the above proof, in order to prove that (W⊥)⊥ ⊂ W , we
did not use the finite dimensionality of W directly. We only used the fact that
V = W ⊕W⊥. So, as a result, we can conclude that if V = W ⊕W⊥ then

W⊥ ⊕ (W⊥)⊥ = W⊥ ⊕W = W ⊕W⊥ = V.

Theorem 5.22. Suppose V is finite dimensional, and W is a subspace of V .
(i) We have

dimW + dimW⊥ = dimV.

(ii) Let w1, . . . , wm be an orthonormal basis for W , and suppose vm+1, . . . , vn ∈ V
are such that w1, . . . , wm, vm+1, . . . , vn is an orthonormal basis for V . Then
vm+1, . . . , vn is an orthonormal basis for W⊥.

(iii) Let w1, . . . , wm be an orthonormal basis for W , and let vm+1, . . . , vn be an
orthonormal basis for W⊥. Then w1, . . . , wm, vm+1, . . . , vn is an orthonormal
basis for V .

Remark. The orthonormal basis of W is an orthonormal list in V . In the proof of
Theorem 5.16 we have provided an algorithm to extend a given orthonormal list to
an orthonormal basis for V . So if we combine that algorithm with the part (ii) of
this theorem, we have an algorithm to find an orthonormal basis for W⊥ by using
an orthonormal basis for W .

Proof. (i) Since W is also finite dimensional we have V = W ⊕W⊥. Thus by
Theorem 2.55 we get

dimV = dim(W ⊕W⊥) = dimW + dimW⊥.

(ii) For every i, j we have 〈vi, wj〉 = 0, so each vi is orthogonal to every vector
in span(w1, . . . , wm) = W . Hence vm+1, . . . , vn ∈W⊥. But we know that

dimW⊥ = dimV − dimW = n−m.
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On the other hand, vm+1, . . . , vn is an orthonormal list, so it is linearly independent.
Now, vm+1, . . . , vn is a linearly independent set of vectors in W⊥ that has the same
number of vectors as dimW . Therefore vm+1, . . . , vn is a basis for W⊥.

(iii)We know that w1, . . . , wm, vm+1, . . . , vn is a basis for V , since V = W⊕W⊥.
So we only need to show that this set is orthonormal. We know that every vector
in this list has norm one. We also know that when i 6= j, wi, wj are orthogonal;
and when k 6= l, vk, vl are orthogonal. Finally note that for every i, k, wi, vk are
orthogonal too, because one of them is in W and the other one is in W⊥. �

Definition 5.23. Suppose W is a subspace of V such that V = W ⊕W⊥. Then
for every v ∈ V there are unique vectors w ∈W and u ∈W⊥ such that v = w+ u.
The function

P : V −→ V
v 7→ w

is called the orthogonal projection on W . We also say that w is the orthogonal
projection of v on W .

Remark. Note that P is a well defined function, since w is uniquely determined
by v.

Remark. IfW is an arbitrary subspace of V , then the orthogonal projection onW
does not necessarily exist. But due to Theorem 5.21, when W is finite dimensional,
the orthogonal projection on W exists. Also, due to the argument in a remark
after the aforementioned theorem, if the orthogonal projection on W exists then
the orthogonal projection on W⊥ exists too.

Theorem 5.24. Suppose W is a subspace of V , and P is the orthogonal projection
on W . Then we have
(i) P is a linear operator, i.e. P ∈ L(V ).
(ii) P |W = IW .
(iii) P 2 = P .
(iv) P (V ) = W , and nullP = W⊥.
(v) v − Pv ∈W⊥ for every v ∈ V , so in particular 〈v − Pv, Pv〉 = 0.
(vi) ‖Pv‖ ≤ ‖v‖ for every v ∈ V .
(vii) IV − P is the orthogonal projection on W⊥.

Proof. Since P exists, we must have V = W ⊕W⊥. Let v ∈ V . Then we have
v = w + u, for some uniquely determined w ∈ W and u ∈ W⊥. Hence Pv = w by
definition.

(i) Let ṽ ∈ V and a ∈ F . Then we have ṽ = w̃+ũ, for some uniquely determined
w̃ ∈W and ũ ∈W⊥. Hence P ṽ = w̃. Therefore we have

v + aṽ = w + u+ aw̃ + aũ = w + aw̃ + u+ aũ.



CHAPTER 5. INNER PRODUCT SPACES 117

But w + aw̃ ∈W and u+ aũ ∈W⊥. Thus we have

P (v + aṽ) = w + aw̃ = Pv + aP ṽ.

Therefore P is linear.
(ii) Let w̃ ∈ W . Then we have w̃ = w̃ + 0, where w̃ ∈ W and 0 ∈ W⊥. Hence

by definition of P we have Pw̃ = w̃ = IW w̃.
(iii) We have Pv = w ∈W , so P 2v = P (Pv) = IW (Pv) = Pv.
(iv) Let w̃ ∈ W . Then we have w̃ = Pw̃ ∈ P (V ). So W ⊂ P (V ). On the

other hand, for every v ∈ V we have Pv ∈ W . Hence P (V ) = W . Now let
ũ ∈ W⊥. Then ũ = 0 + ũ, where 0 ∈ W and ũ ∈ W⊥. Thus Pũ = 0. Therefore
W⊥ ⊂ nullP . Conversely suppose v ∈ nullP . Then we have w = Pv = 0. Hence
v = w + u = 0 + u = u ∈W⊥. Thus W⊥ = nullP .

(v) We have v − Pv = v − w = u ∈ W⊥. We also know that Pv = w ∈ W .
Therefore we must have 〈v − Pv, Pv〉 = 0.

(vi) We know that 〈v, Pv〉 − 〈Pv, Pv〉 = 〈v − Pv, Pv〉 = 0. Hence

‖Pv‖2 = 〈Pv, Pv〉 = 〈v, Pv〉 ≤ ‖v‖‖Pv‖.

Now if Pv = 0 then we trivially have ‖Pv‖ = 0 ≤ ‖v‖ as desired. Otherwise we
can cancel ‖Pv‖ from both sides of the above inequality to obtain ‖Pv‖ ≤ ‖v‖.

(vii) As we have explained in the remark before this theorem, since the orthog-
onal projection on W exists, the orthogonal projection on W⊥ exists too. Now we
have v = u+ w, where u ∈ W⊥ and w ∈ W ⊂ (W⊥)⊥. Hence u is the orthogonal
projection of v on W⊥. We also have

u = v − w = IV v − Pv = (IV − P )v.

Therefore IV − P is the orthogonal projection on W⊥. �

Theorem 5.25. Suppose W is a finite dimensional subspace of V , and w1, . . . , wm
is an orthonormal basis for W . Let P be the orthogonal projection on W . Then for
every v ∈ V we have

Pv = 〈v, w1〉w1 + · · ·+ 〈v, wm〉wm.

Proof. Set

w := 〈v, w1〉w1 + · · ·+ 〈v, wm〉wm, u := v − w.

Then v = w + u. It is obvious that w ∈ W . Also, we have shown in the proof of
Theorem 5.21 that u ∈W⊥. Hence Pv = w. �
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Example 5.26. Let w ∈ V − {0}, and consider the one-dimensional subspace
span(w). Then w1 := 1

‖w‖w is an orthonormal basis for span(w). Hence the above
theorem implies that the orthogonal projection of v ∈ V on span(w) is

Pv = 〈v, w1〉w1 =
〈
v,

w

‖w‖
〉 w

‖w‖
=
〈v, w〉
‖w‖2

w.

Theorem 5.27. Suppose W is a subspace of V , and P is the orthogonal projection
on W . Let v ∈ V . Then for every w ∈W we have

‖v − Pv‖ ≤ ‖v − w‖.

Furthermore, if ‖v − Pv‖ = ‖v − w‖ for some w ∈W , then w = Pv.

Remark. In other words, Pv is the unique vector in W that has the least distance
to v. This result provides a geometric characterization for the orthogonal projection
P .

Proof. We know that there is u ∈ W⊥ such that v = Pv + u. Then for every
w ∈ W we have v − w = Pv − w + u. But Pv − w ∈ W , so u is orthogonal to
Pv − w. Hence by the Pythagorean theorem we have

‖v − w‖2 = ‖Pv − w‖2 + ‖u‖2 ≥ ‖u‖2 = ‖v − Pv‖2, (∗)

since u = v − Pv. Thus ‖v − w‖ ≥ ‖v − Pv‖. Now if ‖v − w‖ = ‖v − Pv‖ = ‖u‖
then the formula (∗) implies that ‖Pv − w‖ = 0. Therefore we get w = Pv. �

Remark. Although the above theorem seems to be a simple geometric result, it
is very powerful, and it has many applications. The reason is that there are many
problems that can be reformulated as the problem of minimizing the distance to a
given subspace, especially a subspace of an infinite dimensional vector space. We
should mention that when the subspace is infinite dimensional, the usual compact-
ness techniques of analysis do not work, and we need new tools to establish the
existence of the minimizer. But the above theorem tells us that if we find the or-
thogonal projection operator, we have essentially solved the minimization problem
too.

Remark. If an orthonormal basis for a subspace W is given to us, then we can
easily compute the orthogonal projection on W by using Theorem 5.25. But if
instead we just have a basis for W , then we need to construct an orthonormal
basis first. The next theorem allows us to compute the orthogonal projection on W
without constructing an orthonormal basis for it. We will assume that W ⊂ Fn,
since this is the most important case in applications.



CHAPTER 5. INNER PRODUCT SPACES 119

Theorem 5.28. Suppose W is a subspace of Fn, and P is the orthogonal projection
on W . Let w1, . . . , wm ∈ Fn be a basis for W , and let A ∈ Fn×m be the matrix
whose j-th column is wj. Then A∗A ∈ Fm×m is invertible, and for any y ∈ Fn we
have

Py = A(A∗A)−1A∗y.

Remark. Note that A∗ is the conjugate transpose of the matrix A, as defined
in Definition 1.26. Also note that in general (A∗A)−1 6= A−1(A∗)−1, since when
m < n, A,A∗ are not square matrices, and therefore they cannot have an inverse.

Proof. First let us show that A∗A is invertible. Suppose A∗Ax = 0 for some
x ∈ Fm. Then we have

0 = 〈0, x〉 = 〈A∗Ax, x〉 = x∗(A∗Ax) = (x∗A∗)(Ax)

= (Ax)∗(Ax) = 〈Ax,Ax〉 = ‖Ax‖2.

Thus Ax = 0. Hence we have

0 = Ax =
∑
j≤m

xjA.,j =
∑
j≤m

xjwj .

Therefore xj = 0 for every j, since w1, . . . , wm are linearly independent. Hence the
linear system A∗Ax = 0 has only one solution x = 0. Thus by Theorem 3.49 the
matrix A∗A is invertible.

Now let x := (A∗A)−1A∗y. Then Ax =
∑

j≤m xjA.,j =
∑

j≤m xjwj ∈ W . Set
z := y − Ax. We claim that z ∈ W⊥. Note that A∗Ax = A∗y. Also note that for
every i ≤ m we have w∗i = (A.,i)

∗ = A∗i,.. Hence we have

〈Ax,wi〉 = w∗i (Ax) = A∗i,.(Ax) =
(
A∗(Ax)

)
i,.

=
(
(A∗A)x

)
i,.

=
(
A∗y

)
i,.

= A∗i,.y = w∗i y = 〈y, wi〉.

Therefore we have 〈z, wi〉 = 〈y, wi〉 − 〈Ax,wi〉 = 0. Thus z is orthogonal to every
vector in span(w1, . . . , wm) = W . Hence z ∈ W⊥ as desired. Then we have
y = Ax+z, where Ax ∈W and z ∈W⊥. Therefore Ax is the orthogonal projection
of y on W , i.e. Py = Ax = A(A∗A)−1A∗y. �

Remark. In the above theorem, it is easy to see that W = {Ax : x ∈ Fm}. Let

x0 := (A∗A)−1A∗y.

We know that Ax0 = Py is the closest vector in W to y. So for every x ∈ Fm we
have

‖Ax0 − y‖ ≤ ‖Ax− y‖.
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Let us present an application of the above observation. Suppose we have a
collection of data points (ai, bi) ∈ R2 for i = 1, . . . , n, and we guess that there is a
linear relation between bi and ai, i.e. there are scalars β0, β1 such that bi = β0+β1ai.
But in practice we cannot hope that the linear relation between bi and ai is exact,
since there may be measurement errors, and/or other noises that we cannot measure
at all. Hence instead of looking for an exact linear relation, we will look for a linear
relation with the least error, i.e. we want to find β0, β1 such that∑

i≤n
|β0 + β1ai − bi|2

is as small as possible. This is called the method of least squares. We can solve
this problem by the tools that we have developed. Let A be the n×2 matrix whose
i-th row is [1, ai], and let y = [b1, . . . , bn]T. Then we want to find β = [β0, β1]

T such
that for every x = [x1, x2]

T we have

‖Aβ − y‖2 =
∑
i≤n
|β0 + β1ai − bi|2 ≤

∑
i≤n
|x1 + x2ai − bi|2 = ‖Ax− y‖2.

Now the above remark tells us that if the two columns of A are linearly independent,
then [

β0
β1

]
= β = (A∗A)−1A∗y

has the desired property.
Note that the linear independence of the columns of A means that [a1, . . . , an]T

is not a multiple of [1, 1, . . . , 1]T, which is equivalent to having ai 6= aj for some i, j.
Now suppose this is the case, and let us compute a closed formula for β0, β1. We
have

A∗A =

[
1 · · · 1
a1 · · · an

]1 a1
...

...
1 an

 =

[
n a1 + · · ·+ an

a1 + · · ·+ an a21 + · · ·+ a2n

]
,

A∗y =

[
1 · · · 1
a1 · · · an

]b1...
bn

 =

[
b1 + · · ·+ bn

a1b1 + · · ·+ anbn

]
.

Let ma := 1
n

∑
i≤n ai and mb := 1

n

∑
i≤n bi be the mean of ai’s and bi’s respectively.
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Let σ2a := 1
n

∑
i≤n(ai − ā)2 be the variance of ai’s. Then we have

nσ2a =
∑
i≤n

(ai −ma)
2 =

∑
i≤n

a2i − 2
∑
i≤n

aima + nm2
a

=
∑
i≤n

a2i − 2ma

∑
i≤n

ai + nm2
a

=
∑
i≤n

a2i − 2ma(nma) + nm2
a =

∑
i≤n

a2i − nm2
a.

Therefore
∑

i≤n a
2
i = nσ2a + nm2

a. Hence we have

A∗A = n

[
1 ma

ma σ2a +m2
a

]
=⇒ (A∗A)−1 =

1

nσ2a

[
σ2a +m2

a −ma

−ma 1

]
.

Now let σ2ab := 1
n

∑
i≤n(ai −ma)(bi −mb) be the covariance of ai’s and bi’s. We

have

nσ2ab =
∑
i≤n

(ai −ma)(bi −mb)

=
∑
i≤n

aibi −ma

∑
i≤n

bi −mb

∑
i≤n

ai + nmamb

=
∑
i≤n

aibi −ma(nmb)−mb(nma) + nmamb =
∑
i≤n

aibi − nmamb.

To simplify the notation let mab := 1
n

∑
i≤n aibi; so we have σ2ab = mab − mamb.

Then we get[
β0
β1

]
= (A∗A)−1A∗y =

1

nσ2a

[
σ2a +m2

a −ma

−ma 1

] [
nmb

nmab

]
=

1

σ2a

[
σ2amb +m2

amb −mamab

−mamb +mab

]
=

1

σ2a

[
σ2amb −maσ

2
ab

σ2ab

]
.

So we have

β1 =
σ2ab
σ2a

, β0 = −ma
σ2ab
σ2a

+mb = −maβ1 +mb.

If we employ σ2ab = mab −mamb and σ2a +m2
a = 1

n

∑
a2i , we can also write

β1 =
n
∑
aibi −

(∑
ai
)(∑

bi
)

n
(∑

a2i
)
−
(∑

ai
)2 , β0 =

(∑
bi
)(∑

a2i
)
−
(∑

ai
)(∑

aibi
)

n
(∑

a2i
)
−
(∑

ai
)2 .

Finally let us mention that the line t 7→ β0 + β1t in R2, which is called the re-
gression line, satisfies β0 + β1ma = mb. So the regression line passes through the
mean of the data points. �



Chapter 6

Operators on Inner Product
Spaces

6.1 The Adjoint of an Operator

Notation. In this chapter, we assume that F is either R or C, and V is a nonzero
inner product space over F with the inner product 〈 , 〉. We also assume that
T ∈ L(V ) unless otherwise specified.

Theorem 6.1. Suppose that V is finite dimensional, and f ∈ L(V, F ) is a linear
functional on V . Then there exists a unique vector u ∈ V such that

f(v) = 〈v, u〉

for every v ∈ V .

Proof. Let v1, . . . , vn be an orthonormal basis for V . Let bj := f(vj) for every
j ≤ n, and let u :=

∑
j≤n bjvj . For every v ∈ V there are aj ∈ F such that

v =
∑

j≤n ajvj . Hence by Theorem 5.14 we have

〈v, u〉 =
∑
j≤n

aj b̄j =
∑
j≤n

ajf(vj) = f
(∑
j≤n

ajvj

)
= f(v).

Thus u has the desired property. Now if w ∈ V also satisfies 〈v, w〉 = f(v) for every
v ∈ V , then we have

〈v, u− w〉 = 〈v, u〉 − 〈v, w〉 = f(v)− f(v) = 0,

for every v ∈ V . Therefore we must have u− w = 0. So u is unique. �

122
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Remark. Let A ∈ Fn×m, and let A∗ ∈ Fm×n be the conjugate transpose of A.
Then for x ∈ Fm and y ∈ Fn we have

〈Ax, y〉 = y∗(Ax) = (y∗A)x = (y∗(A∗)∗)x = (A∗y)∗x = 〈x,A∗y〉.

This equality motivates the next definition.

Definition 6.2. Suppose V,W are inner product spaces over F , and T ∈ L(V,W ).
A function T ∗ : W → V is called an adjoint of T if

〈Tv,w〉 = 〈v, T ∗w〉

for every v ∈ V and w ∈W .

Remark. Note that in the above equality, Tv,w are multiplied using the inner
product of W , and v, T ∗w are multiplied using the inner product of V .

Theorem 6.3. Suppose V,W are inner product spaces over F , and T ∈ L(V,W )
has an adjoint T ∗. Then the function T ∗ is uniquely determined by T . Furthermore,
T ∗ is linear, i.e. T ∗ ∈ L(W,V ).

Proof. Suppose that S : W → V is also a function such that 〈Tv,w〉 = 〈v, Sw〉
for every v ∈ V and w ∈W . Then we have

〈v, T ∗w − Sw〉 = 〈v, T ∗w〉 − 〈v, Sw〉 = 〈Tv,w〉 − 〈Tv,w〉 = 0.

Thus T ∗w − Sw is orthogonal to every v ∈ V , so it must be zero, i.e. T ∗w = Sw.
But w is an arbitrary element ofW , hence we get T ∗ = S. Therefore T ∗ is uniquely
determined by T .

Now let u,w ∈W and a ∈ F . Then for every v ∈ V we have

〈v, T ∗(w + au)〉 = 〈Tv,w + au〉 = 〈Tv,w〉+ ā〈Tv, u〉
= 〈v, T ∗w〉+ ā〈v, T ∗u〉 = 〈v, T ∗w + aT ∗u〉.

Hence T ∗(w + au) − T ∗w − aT ∗u is orthogonal to every v ∈ V , so we must have
T ∗(w + au) = T ∗w + aT ∗u. Therefore T ∗ is linear. �

Theorem 6.4. Suppose V,W are inner product spaces over F , and V is finite
dimensional. Then every T ∈ L(V,W ) has adjoint.

Proof. Let w ∈ W , and define f(v) := 〈Tv,w〉 for v ∈ V . It is easy to see that
f is linear. Let v, ṽ ∈ V and a ∈ F . Then we have

f(v + aṽ) = 〈T (v + aṽ), w〉 = 〈Tv + aT ṽ, w〉
= 〈Tv,w〉+ a〈T ṽ, w〉 = f(v) + af(ṽ).
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Thus f is a linear functional on V . Hence by Theorem 6.1 there is a unique vector
u ∈ V such that for every v ∈ V we have

〈Tv,w〉 = f(v) = 〈v, u〉.

Now we can define T ∗w := u. Note that T ∗ is a well defined function, since for
each w, the vector u is uniquely determined. �

Remark. Suppose that in the above theorem, W is infinite dimensional. Then
we know that T (V ) is still finite dimensional. Also for w ∈ (T (V ))⊥ we have
〈Tv,w〉 = 0 for every v ∈ V . Hence we must have T ∗w = 0. Therefore if we
determine the value of T ∗ on the finite dimensional subspace T (V ), then we can
easily define T ∗ on all of W . Because we know that W = T (V ) ⊕ (T (V ))⊥, so if
w ∈ W has the decomposition w = w1 + w2 where w1 ∈ T (V ) and w2 ∈ (T (V ))⊥,
then we can define T ∗w := T ∗w1. Note that we do not need this reasoning in the
above proof. We only presented it here to emphasize that the finite dimensionality
of W is not needed in the above theorem.

Remark. We are mainly interested in the case of operators on an inner product
space, i.e. when W = V . So we will only consider this case from now on, although
the results of this section are true in the more general setting.

Theorem 6.5. Suppose V is finite dimensional, and B = {v1, . . . , vn} is an or-
thonormal basis for V . Let T ∈ L(V ). Then the jk-th entry of the matrix [T ]B
is

([T ]B)jk = 〈Tvk, vj〉.

Remark. Note that this theorem, and the next one, are not true when the basis
B is not orthonormal.

Proof. Note that the k-th column of the matrix [T ]B is [Tvk]B. So the jk-th entry
of [T ]B is the j-th component of [Tvk]B. Now suppose Tvk = a1v1 + · · · + anvn
for some ai ∈ F . Then the j-th component of [Tvk]B is the coefficient of vj in the
above expansion, i.e. aj . But Theorem 5.14 implies that aj = 〈Tvk, vj〉. Hence we
have ([T ]B)jk = 〈Tvk, vj〉 as desired. �

Theorem 6.6. Suppose V is finite dimensional, and B is an orthonormal basis for
V . Let T ∈ L(V ). Then

[T ∗]B = [T ]∗B.

Remark. Note that [T ]∗B is the conjugate transpose of the matrix [T ]B, as defined
in Definition 1.26.
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Proof. Suppose B = {v1, . . . , vn}. Let A := [T ]B and B := [T ∗]B. Then by
applying the previous theorem to T, T ∗ we get

Bjk = 〈T ∗vk, vj〉 = 〈vj , T ∗vk〉 = 〈Tvj , vk〉 = Akj ,

for every j, k ≤ n. Therefore we have B = A∗ as desired. �

Theorem 6.7. Suppose S, T ∈ L(V ) have adjoints. Let a ∈ F . Then we have
(i) S + T has adjoint, and (S + T )∗ = S∗ + T ∗.
(ii) aT has adjoint, and (aT )∗ = āT ∗.
(iii) ST has adjoint, and (ST )∗ = T ∗S∗.
(iv) IV has adjoint, and I∗V = IV .
(v) T ∗ has adjoint, and (T ∗)∗ = T .

Proof. Note that in all of the following parts, we are tacitly using the fact that
the adjoint of an operator is unique, when it exists.

(i) We have

〈(S + T )v, w〉 = 〈Sv + Tv,w〉 = 〈Sv,w〉+ 〈Tv,w〉
= 〈v, S∗w〉+ 〈v, T ∗w〉 = 〈v, S∗w + T ∗w〉 = 〈v, (S∗ + T ∗)w〉,

for every v, w ∈ V . Therefore by definition S+T has adjoint, and we have (S+T )∗ =
S∗ + T ∗.

(ii) We have

〈(aT )v, w〉 = 〈aTv,w〉 = a〈Tv,w〉
= a〈v, T ∗w〉 = 〈v, āT ∗w〉 = 〈v, (āT ∗)w〉,

for every v, w ∈ V . Hence by definition aT has adjoint, and we have (aT )∗ = āT ∗.
(iii) We have

〈(ST )v, w〉 = 〈S(Tv), w〉 = 〈Tv, S∗w〉
= 〈v, T ∗(S∗w)〉 = 〈v, (T ∗S∗)w〉,

for every v, w ∈ V . Hence by definition ST has adjoint, and we have (ST )∗ = T ∗S∗.
(iv) We have 〈IV v, w〉 = 〈v, w〉 = 〈v, IV w〉 for every v, w ∈ V . Therefore by

definition IV has adjoint, and we have I∗V = IV .
(v) We have

〈T ∗v, w〉 = 〈w, T ∗v〉 = 〈Tw, v〉 = 〈v, Tw〉,

for every v, w ∈ V . Hence by definition T ∗ has adjoint, and we have (T ∗)∗ = T . �
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Remark. If T has adjoint then by definition we have 〈Tv,w〉 = 〈v, T ∗w〉 for every
v, w ∈ V . Now the above theorem implies that we also have

〈v, Tw〉 = 〈v, (T ∗)∗w〉 = 〈T ∗v, w〉.

Theorem 6.8. Suppose V is finite dimensional, and T ∈ L(V ) is invertible. Then
T ∗ is invertible, and we have

(T ∗)−1 = (T−1)∗.

Proof. First note that T and T−1 have adjoints, since V is finite dimensional.
Then we have

(T−1)∗T ∗ = (TT−1)∗ = I∗V = IV ,

T ∗(T−1)∗ = (T−1T )∗ = I∗V = IV .

Thus T ∗ is invertible, and its inverse is (T−1)∗. �

Theorem 6.9. Suppose T ∈ L(V ) has adjoint. Then we have
(i) nullT ∗ = (T (V ))⊥.
(ii) If V is finite dimensional, then T ∗(V ) = (nullT )⊥.

Remark. We can obviously change the role of T, T ∗ in the above relations, since
(T ∗)∗ = T . Hence we can also write
(iii) nullT = null (T ∗)∗ = (T ∗(V ))⊥.
(iv) If V is finite dimensional, then T (V ) = (T ∗)∗(V ) = (nullT ∗)⊥.

Proof. (i) Let v ∈ nullT ∗, and w ∈ T (V ). Then there is u ∈ V such that
w = Tu. Thus we have

〈v, w〉 = 〈v, Tu〉 = 〈T ∗v, u〉 = 〈0, u〉 = 0.

Hence v ∈ (T (V ))⊥. On the other hand if v ∈ (T (V ))⊥ then for every u ∈ V we
have

〈T ∗v, u〉 = 〈v, Tu〉 = 0,

since Tu ∈ T (V ). Therefore we must have T ∗v = 0 as desired.
(ii) We know that nullT = (T ∗(V ))⊥. We also know that T ∗(V ) ⊂ V is finite

dimensional. Hence by Theorem 5.21 we get

(nullT )⊥ =
(
(T ∗(V ))⊥

)⊥
= T ∗(V ). �

Remark. The above theorem provides a new tool for computing the orthogonal
complement of a subspace, when that subspace is given as the image or the null
space of an operator.
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Theorem 6.10. Suppose T ∈ L(V ) has adjoint, and W is a T -invariant subspace
of V . Then W⊥ is T ∗-invariant.

Proof. Let v ∈W⊥ and w ∈W . Then we have

〈T ∗v, w〉 = 〈v, Tw〉 = 0,

since Tw ∈ W and v ∈ W⊥. Hence T ∗v is orthogonal to every w ∈ W . Thus
T ∗v ∈W⊥, and therefore W⊥ is T ∗-invariant. �

6.2 Self-Adjoint Operators

Definition 6.11. Suppose the operator T ∈ L(V ) has adjoint. Then T is called
self-adjoint if T ∗ = T . In other words, T is self-adjoint if

〈Tv,w〉 = 〈v, Tw〉

for every v, w ∈ V .
Also, a square matrix A ∈ Fn×n is called self-adjoint, or Hermitian, if A∗ =

A; and it is called symmetric if AT = A.

Remark. It is obvious that for a square matrix A ∈ Rn×n, being self-adjoint is the
same as being symmetric.

Theorem 6.12. Suppose V is finite dimensional, and B is an orthonormal basis
for V . Then T ∈ L(V ) is self-adjoint if and only if [T ]B is self-adjoint.

Remark. This theorem is not true if the basis B is not orthonormal.

Proof. Let A := [T ]B. Then A∗ = [T ∗]B, since B is orthonormal. Hence we have

T = T ∗ ⇐⇒ [T ]B = [T ∗]B ⇐⇒ A = A∗.

Note that we have used the fact that an operator is uniquely determined by its
matrix. �

Exercise 6.13. Suppose W is a subspace of V , and P is the orthogonal projection
on W . Show that P is self-adjoint.

Solution. We know that V = W ⊕W⊥. Let v, ṽ ∈ V . Then there are uniquely
determined vectors w, w̃ ∈W and u, ũ ∈W⊥, such that v = w + u and ṽ = w̃ + ũ.
By definition we have Pv = w, P ṽ = w̃. Now we have

〈Pv, ṽ〉 = 〈w, w̃ + ũ〉 = 〈w, w̃〉+ 〈w, ũ〉 = 〈w, w̃〉+ 0

= 〈w, w̃〉+ 〈u, w̃〉 = 〈w + u, w̃〉 = 〈v, w̃〉 = 〈v, P ṽ〉.

Hence P is self-adjoint. �
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Theorem 6.14. The eigenvalues of a self-adjoint operator are real.
Similarly, the eigenvalues of a self-adjoint matrix A ∈ Fn×n are real.

Proof. Suppose T is a self-adjoint operator, and v is an eigenvector of T corre-
sponding to the eigenvalue λ. If F = R then λ is a real number by definition. If
F = C then we have

λ̄〈v, v〉 = 〈v, λv〉 = 〈v, Tv〉 = 〈Tv, v〉 = 〈λv, v〉 = λ〈v, v〉.

But v 6= 0 so 〈v, v〉 6= 0. Hence we must have λ̄ = λ, and therefore λ is real. The
case of self-adjoint matrices can be proved similarly, by using the standard inner
product of Fn. �

Theorem 6.15. The eigenvectors of a self-adjoint operator corresponding to dis-
tinct eigenvalues are orthogonal.

Similarly, the eigenvectors of a self-adjoint matrix A ∈ Fn×n corresponding to
distinct eigenvalues are orthogonal.

Proof. Suppose T is a self-adjoint operator, and v, w are eigenvectors of T cor-
responding to distinct eigenvalues λ, µ respectively. Then we have

λ〈v, w〉 = 〈λv,w〉 = 〈Tv,w〉 = 〈v, Tw〉 = 〈v, µw〉 = µ̄〈v, w〉 = µ〈v, w〉,

where in the last equality we used the fact that µ is real. But λ 6= µ, so we must
have 〈v, w〉 = 0 as desired. The case of matrices can be proved similarly, by using
the standard inner product of Fn. �

Proposition 6.16. Suppose T ∈ L(V ) is self-adjoint, and W ⊂ V is a T -invariant
subspace. Then T |W ∈ L(W ) is also self-adjoint.

Proof. Let S := T |W . Then for w ∈W we have Sw = Tw. Now remember that
the inner product on W is just the restriction of the inner product of V . Hence for
u,w ∈W we have

〈Sw, u〉 = 〈Tw, u〉 = 〈w, Tu〉 = 〈w, Su〉. �

Theorem 6.17. Suppose V is finite dimensional, and T ∈ L(V ) is self-adjoint.
Then T has at least one eigenvalue.

Similarly, every symmetric matrix A ∈ Rn×n has at least one real eigenvalue.

Remark. We know that every matrix in Cn×n has at least one eigenvalue, since
C is algebraically closed. So we only included real self-adjoint matrices, i.e. real
symmetric matrices, in the above theorem.
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Proof. We know that every operator on a nonzero finite dimensional complex
vector space has at least one eigenvalue, since C is algebraically closed. So we only
need to prove the theorem when F = R. Suppose B is an orthonormal basis for V ,
and A := [T ]B ∈ Rn×n, where n = dimV . We know that A is a self-adjoint matrix.
So A is a real symmetric matrix. Now consider the linear map S : Cn → Cn which
maps z ∈ Cn to Sz := Az. Then we have [S]C = A, where C is the standard basis
of Cn. Therefore S is a self-adjoint operator, since A is self-adjoint, and C is an
orthonormal basis.

Now we know that S has at least one eigenvalue λ ∈ C. But S is self-adjoint,
so λ ∈ R. Let z ∈ Cn be an eigenvector of S corresponding to λ. We know that
z = x+ iy, for some x, y ∈ Rn. Then we have

Ax+ iAy = Az = λz = λx+ iλy.

Note that the entries of A are real, therefore Ax,Ay ∈ Rn. Now in the above
equality, each component of both sides must be equal. Hence the real part and the
imaginary part of each component of both sides are equal too. Thus we have

Ax = λx, Ay = λy.

But z 6= 0, since z is an eigenvector. So at least one of x, y is nonzero. Suppose
x 6= 0. Let v ∈ V be the vector that satisfies [v]B = x. Then we have

[Tv]B = [T ]B[v]B = Ax = λx = λ[v]B = [λv]B.

Hence Tv = λv, because the coordinate isomorphism is one-to-one. Note that in
the above, we have also used the linearity of the coordinate isomorphism. Finally
note that v 6= 0, since x 6= 0. Therefore v is an eigenvector of T , and λ is an
eigenvalue of T . Finally note that the result for real symmetric matrices is actually
proved here too. �

Theorem 6.18. Suppose V is finite dimensional, and T ∈ L(V ) is self-adjoint.
Then T is diagonalizable. Furthermore, V has an orthonormal basis consisting of
the eigenvectors of T .

Remark. In other words, V has an orthonormal basis B such that [T ]B is a diagonal
matrix. Note that the diagonal entries of [T ]B are all real numbers, since they are
the eigenvalues of T . The converse of this result is also true as we will show in the
next theorem.

Proof. The proof is by induction on dimV . When dimV = 1 the result holds
trivially, because every operator on a one-dimensional space is just multiplication
by some scalar. So any vector in the space with norm one is an orthonormal basis
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for the space, and an eigenvector of the operator T . Now suppose the theorem holds
for every self-adjoint operator on a nonzero inner product space whose dimension is
less than dimV . We know that T has at least one eigenvalue, since it is self-adjoint.
Let λ be an eigenvalue of T . Set W := Eλ(T ). Note that W 6= {0}, since it is an
eigenspace. If W = V then every vector in V is an eigenvector of T . Hence if B is
an arbitrary orthonormal basis for V , then its elements are eigenvectors of T . Thus
by Theorem 4.26, T is diagonalizable too.

So let us assume thatW 6= V . Remember that we have V = W⊕W⊥. Therefore
we get

0 < dimW⊥ = dimV − dimW < dimV,

since 0 < dimW < dimV . On the other hand note that W is T -invariant. So
by Theorem 6.10, W⊥ is invariant under T ∗ = T , i.e. W⊥ is also T -invariant.
Let S := T |W⊥ . Then by Proposition 6.16, S is a self-adjoint operator on the
nonzero space W⊥. Hence by the induction hypothesis, W⊥ has an orthonormal
basis consisting of the eigenvectors of S. Let us denote this basis by B. Let C be an
orthonormal basis for W . Note that every vector in W is an eigenvector of T . Now
B∪C is a basis for V whose elements are eigenvectors of T , because the eigenvectors
of S are also eigenvectors of T , as shown in Exercise 4.6. Hence by Theorem 4.26,
T is diagonalizable. In addition, B ∪ C is orthonormal by Theorem 5.22. Therefore
B ∪ C is an orthonormal basis for V whose elements are eigenvectors of T . �

Theorem 6.19. Suppose V is finite dimensional, and T ∈ L(V ). If V has an
orthonormal basis B such that [T ]B is a diagonal matrix whose diagonal entries are
real, then T is self-adjoint.

Proof. The matrix [T ]B is a real symmetric matrix, because it is diagonal, and
its diagonal entries are real numbers. Thus [T ]B is a self-adjoint matrix. Hence T
is also self-adjoint, since B is orthonormal. �

Definition 6.20. Suppose V is finite dimensional, and S, T ∈ L(V ). We say S, T
are simultaneously diagonalizable if there exists a basis B for V such that the
matrices [S]B, [T ]B are both diagonal.

Remark. In other words, S, T are simultaneously diagonalizable if V has a basis
whose elements are eigenvectors of both S, T . Although the corresponding eigen-
values of S, T are not necessarily the same.

Theorem 6.21. Suppose V is finite dimensional, and S, T ∈ L(V ) are self-adjoint.
Then S, T are simultaneously diagonalizable if and only if ST = TS.

Furthermore if S, T commute, then V has an orthonormal basis whose elements
are eigenvectors of both S, T , i.e. V has an orthonormal basis B such that the
matrices [S]B, [T ]B are both diagonal.



CHAPTER 6. OPERATORS ON INNER PRODUCT SPACES 131

Remark. The first part of this theorem is true without assuming that the operators
are self-adjoint, but the proof is harder in the general case. However this special
case has interesting applications. For example in quantum mechanics the observ-
ables correspond to self-adjoint operators, and the observed values of an observable
are the eigenvalues of its operator. In this setting, the simultaneous diagonalizabil-
ity of two self-adjoint operators means that we can measure their corresponding
observables with any precision at the same time. Equivalently, if two self-adjoint
operators do not commute then we cannot measure their corresponding observables
with any desired precision at the same time. This interesting phenomenon is related
to the Heisenberg’s uncertainty principle.

Proof. Suppose B is a basis for V such that the matrices [S]B, [T ]B are both
diagonal. Then we have

[ST ]B = [S]B[T ]B = [T ]B[S]B = [TS]B,

since diagonal matrices commute. Hence we have ST = TS, because the matrix of
an operator uniquely determines that operator. Conversely suppose that ST = TS.
Let λ1, . . . , λk be all the distinct eigenvalues of T . We know that T is diagonalizable,
so by Theorem 4.26 we have

V = Eλ1(T )⊕ · · · ⊕ Eλk(T ).

Note that each Eλj (T ) is nonzero, since it contains at least one nonzero eigenvector.
Now note that for v ∈ Eλj (T ) we have Tv = λjv. So

TSv = STv = S(λjv) = λjSv.

Thus Sv ∈ Eλj (T ). Hence each Eλj (T ) is S-invariant.
Let Sj := S|Eλj (T ). Then by Proposition 6.16, Sj is a self-adjoint operator

on the nonzero space Eλj (T ). Therefore Eλj (T ) has an orthonormal basis whose
elements are eigenvectors of S. Let us denote this basis by Bj . Note that the
elements of Bj are also eigenvectors of T , corresponding to the eigenvalue λj . Let
B :=

⋃
j≤k Bj . Then by Theorem 2.55, B is a basis for V . Furthermore, the elements

of B are eigenvectors of both S, T , because the eigenvectors of the restrictions of
an operator are also eigenvectors of the operator itself, as shown in Exercise 4.6.
Hence by Theorem 4.25, the matrices of both S, T in the basis B are diagonal, i.e.
S, T are simultaneously diagonalizable.

In addition, B is orthonormal. Because all its elements have norm one. And any
two vectors in B are orthogonal, since if they both belong to some Bj , then they
are orthogonal as Bj is orthonormal; otherwise one of the vectors is in some Bi and
the other one is in some Bj for j 6= i, but then the two vectors must be orthogonal,
because they are eigenvectors of the self-adjoint operator T corresponding to distinct
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eigenvalues λi, λj . Therefore B is an orthonormal basis for V whose elements are
eigenvectors of both S, T . �

Second Proof. Suppose ST = TS. We prove the desired result by induction on
dimV . When dimV = 1 the result holds trivially, because every operator on a
one-dimensional space is just multiplication by some scalar. So any vector in the
space with norm one is an orthonormal basis for the space, and an eigenvector of
both S, T . Now suppose the result holds for every pair of commuting self-adjoint
operators on a nonzero inner product space whose dimension is less than dimV .

We know that T has at least one eigenvalue, since it is self-adjoint. Let λ
be an eigenvalue of T . Set W := Eλ(T ). Note that W 6= {0}, since it is an
eigenspace. If W = V then every vector in V is an eigenvector of T . Let B be an
orthonormal basis for V consisting of the eigenvectors of S. We know that such a
basis exists, since S is self-adjoint. Then the elements of B are eigenvectors of both
S, T . Thus by Theorem 4.25, the matrices [S]B, [T ]B are both diagonal, i.e. S, T
are simultaneously diagonalizable.

So let us assume thatW 6= V . Remember that we have V = W⊕W⊥. Therefore
we get

0 < dimW⊥ = dimV − dimW < dimV,

since 0 < dimW < dimV . On the other hand note that W is T -invariant. So
by Theorem 6.10, W⊥ is invariant under T ∗ = T , i.e. W⊥ is also T -invariant. In
addition note that for v ∈W we have Tv = λv. So

TSv = STv = S(λv) = λSv.

Thus Sv ∈ Eλ(T ) = W . Hence W is S-invariant too. Furthermore, by Theorem
6.10, W⊥ is invariant under S∗ = S, i.e. W⊥ is also S-invariant.

Let T1 := T |W⊥ and S1 := S|W⊥ . Then by Proposition 6.16, S1, T1 are self-
adjoint operators on the nonzero space W⊥. Also note that for every v ∈ W⊥ we
have

S1T1v = S|W⊥T |W⊥v = STv = TSv = T |W⊥S|W⊥v = T1S1v.

Note that S|W⊥v = Sv ∈ W⊥, so we can apply the operator T |W⊥ to it. Thus we
have S1T1 = T1S1. Hence by the induction hypothesis, W⊥ has an orthonormal
basis whose elements are eigenvectors of both S1, T1. Let us denote this basis by B.
Similarly we can find an orthonormal basis C forW , whose elements are eigenvectors
of both S|W , T |W .

Then B ∪ C is a basis for V whose elements are eigenvectors of both S, T .
Because the eigenvectors of the restrictions of an operator are also eigenvectors of
the operator itself, as shown in Exercise 4.6. Hence by Theorem 4.25, the matrices of
both S, T in the basis B∪C are diagonal, i.e. S, T are simultaneously diagonalizable.
In addition, B∪C is orthonormal by Theorem 5.22. Therefore B∪C is an orthonormal
basis for V whose elements are eigenvectors of both S, T . �
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Proposition 6.22. Suppose T ∈ L(V ) is self-adjoint. Then for all v ∈ V , 〈Tv, v〉
is a real number.

Proof. We have 〈Tv, v〉 = 〈v, Tv〉 = 〈Tv, v〉, so 〈Tv, v〉 is real. Note that the first
equality holds due to the conjugate symmetry of the inner product, and the second
equality holds since T is self-adjoint. �

Theorem 6.23. Suppose V is finite dimensional, and T ∈ L(V ) is self-adjoint.
Let λmax, λmin be the largest and the smallest eigenvalues of T respectively. Then
we have

λmax = max
v∈V−{0}

〈Tv, v〉
‖v‖2

, λmin = min
v∈V−{0}

〈Tv, v〉
‖v‖2

.

Remark. The expression 〈Tv, v〉/‖v‖2 is called the Rayleigh quotient. Note that
the above theorem also states that the Rayleigh quotient attains its maximum and
minimum on V −{0}. The significance of this theorem is that it provides us a new
tool for computing eigenvalues, besides the usual method of finding the roots of
some polynomial associated to T . Finally we should mention that this result is not
true if T is not self-adjoint.

Proof. Suppose v1, . . . , vn is an orthonormal basis for V consisting of the eigen-
vectors of T . Hence we have Tvj = λjvj for some λj ∈ R. Suppose we have arranged
v1, . . . , vn so that λ1 ≤ λ2 ≤ · · · ≤ λn. Then λmin = λ1 and λmax = λn. Now sup-
pose for v ∈ V we have v = a1v1 + · · ·+ anvn. Then Tv = a1λ1v1 + · · ·+ anλnvn.
Hence by Theorem 5.14 we have

〈Tv, v〉 = a1λ1ā1 + · · ·+ anλnān = λ1|a1|2 + · · ·+ λn|an|2.

We also have ‖v‖2 = |a1|2 + · · ·+ |an|2. Therefore if v 6= 0 we have

λ1 =
λ1
∑

j≤n |aj |2∑
j≤n |aj |2

≤ 〈Tv, v〉
‖v‖2

=

∑
j≤n λj |aj |2∑
j≤n |aj |2

≤
λn
∑

j≤n |aj |2∑
j≤n |aj |2

= λn.

So the Rayleigh quotient is bounded by λ1, λn. On the other hand
〈Tv1, v1〉
‖v1‖2

= λ1,
〈Tvn, vn〉
‖vn‖2

= λn.

Thus λ1, λn are the minimum and the maximum of the Rayleigh quotient respec-
tively. �

Remark. With a little extra effort in the above proof, we can show that for every
j ≤ n we have

λj = min
U is a subspace

of V, dimU=j

max
v∈U−{0}

〈Tv, v〉
‖v‖2

.

This is a case of the so-called min-max principle.
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6.3 Normal Operators

Definition 6.24. Suppose the operator T ∈ L(V ) has adjoint. Then T is called
normal if

T ∗T = TT ∗.

Also, a square matrix A ∈ Fn×n is called normal if A∗A = AA∗.

Remark. Note that if T is normal then T ∗ is also normal, since (T ∗)∗ = T . The
same comment is true about normal matrices.

Example 6.25. Self-adjoint operators or matrices are also normal.

Theorem 6.26. Suppose V is finite dimensional, and B is an orthonormal basis
for V . Then T ∈ L(V ) is normal if and only if [T ]B is normal.

Remark. This theorem is not true if the basis B is not orthonormal.

Proof. Let A := [T ]B. Then A∗ = [T ∗]B, since B is orthonormal. Hence we have
AA∗ = [T ]B[T ∗]B = [TT ∗]B. Similarly we have A∗A = [T ∗T ]B. Therefore

TT ∗ = T ∗T ⇐⇒ [TT ∗]B = [T ∗T ]B ⇐⇒ AA∗ = A∗A.

Note that we have used the fact that an operator is uniquely determined by its
matrix. �

Theorem 6.27. Suppose T ∈ L(V ) is normal. Then for every v ∈ V we have

‖T ∗v‖ = ‖Tv‖.

Proof. We have

‖Tv‖2 = 〈Tv, Tv〉 = 〈v, T ∗Tv〉 = 〈v, TT ∗v〉 = 〈T ∗v, T ∗v〉 = ‖T ∗v‖2. �

Theorem 6.28. Suppose T ∈ L(V ) is normal, and v is an eigenvector of T corre-
sponding to the eigenvalue λ. Then v is also an eigenvector of T ∗ corresponding to
the eigenvalue λ̄.

Proof. Let S := T − λI, where I is the identity map of V . Then S∗ = T ∗ − λ̄I,
and we have

S∗S = (T ∗ − λ̄I)(T − λI) = T ∗T − λ̄T − λT ∗ + |λ|2I
= TT ∗ − λT ∗ − λ̄T + |λ|2I = (T − λI)(T ∗ − λ̄I) = SS∗.

Hence S is normal too. Now note that Sv = Tv−λv = 0. Therefore by the previous
theorem we have ‖S∗v‖ = ‖Sv‖ = 0. Thus T ∗v − λ̄v = S∗v = 0, as desired. �
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Theorem 6.29. The eigenvectors of a normal operator corresponding to distinct
eigenvalues are orthogonal.

Proof. Suppose T is a normal operator, and v, w are eigenvectors of T corre-
sponding to distinct eigenvalues λ, µ respectively. Then we have

λ〈v, w〉 = 〈λv,w〉 = 〈Tv,w〉 = 〈v, T ∗w〉 = 〈v, µ̄w〉 = ¯̄µ〈v, w〉 = µ〈v, w〉.

Note that we used the fact that T ∗w = µ̄w. Now since λ 6= µ, we must have
〈v, w〉 = 0 as desired. �

Theorem 6.30. Suppose T ∈ L(V ) is normal, and W ⊂ V is a finite dimensional
T -invariant subspace. Then
(i) W,W⊥ are both T -invariant and T ∗-invariant.
(ii) T |W ∈ L(W ) is normal, and we have

(
T |W

)∗
= T ∗|W .

(iii) T |W⊥ ∈ L(W⊥) is normal, and we have
(
T |W⊥

)∗
= T ∗|W⊥.

Remark. Note that V can be infinite dimensional. Thus W⊥ can be infinite
dimensional too.

Proof. (i) Let w1, . . . , wm be an orthonormal basis for W . Then for every j ≤ m
we have Twj ∈ W . So there are aij ∈ F such that Twj =

∑
i≤m aijwi. On the

other hand, we know that V = W ⊕W⊥. Thus there are uj ∈ W and vj ∈ W⊥
such that T ∗wj = uj + vj . Hence there are bij ∈ F such that uj =

∑
i≤m bijwi.

Therefore
T ∗wj =

∑
i≤m

bijwi + vj .

Now for every k, j we have

akj =
∑
i≤m

aij〈wi, wk〉 =
〈∑
i≤m

aijwi, wk

〉
= 〈Twj , wk〉

= 〈wj , T ∗wk〉 =
〈
wj ,

∑
i≤m

bikwi + vk

〉
=
∑
i≤m

b̄ik〈wj , wi〉+ 〈wj , vk〉 = b̄jk.

Hence we have |akj | = |b̄jk| = |bjk|. In addition note that by Theorem 5.14 we have

‖Twj‖2 =
∑
k≤m
|akj |2, ‖uj‖2 =

∑
k≤m
|bkj |2.

Also, by Pythagorean theorem we have ‖T ∗wj‖2 = ‖uj‖2 + ‖vj‖2. Therefore by
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Theorem 6.27 we get∑
j≤m

∑
k≤m
|bkj |2 +

∑
j≤m
‖vj‖2 =

∑
j≤m
‖T ∗wj‖2 =

∑
j≤m
‖Twj‖2

=
∑
j≤m

∑
k≤m
|akj |2 =

∑
j≤m

∑
k≤m
|bjk|2

=
∑
k≤m

∑
j≤m
|bjk|2 =

∑
j≤m

∑
k≤m
|bkj |2.

Note that in the last line we first changed the order of summation as in Theorem
A.68, then we changed the name of the index j to k, and the index k to j. Now
the above equality implies that

∑
j≤m ‖vj‖2 = 0. Hence ‖vj‖ = 0 for every j. Thus

we must have T ∗wj = uj + 0 = uj ∈ W . Therefore as shown in Exercise 4.2, W is
T ∗-invariant. So by Theorem 6.10, W⊥ is invariant under (T ∗)∗ = T , i.e. W⊥ is
also T -invariant. Similarly, W⊥ is T ∗-invariant too, since W is T -invariant.

(ii) Let S := T |W . First note that S∗ = T ∗|W , since for every v, w ∈ W we
have

〈Sv,w〉 = 〈T |W v, w〉 = 〈Tv,w〉 = 〈v, T ∗w〉 = 〈v, T ∗|Ww〉.

Note that this argument would not work ifW were not invariant under T ∗, because
the adjoint of S ∈ L(W ) must be an operator in L(W ), not in L(V ). Now note
that for every v ∈W we have

SS∗v = T |WT ∗|W v = TT ∗v = T ∗Tv = T ∗|WT |W v = S∗Sv.

Note that T |W v = Tv ∈ W , so we can apply the operator T ∗|W to it. Thus we
have SS∗ = S∗S, and therefore S is normal.

(iii) The proof is the same as in part (ii). Note that in the proof of part (ii) we
did not use the fact that W is finite dimensional, we only used the fact that W is
invariant under both T, T ∗. �

Theorem 6.31. Suppose F = C, and V is finite dimensional. Let T ∈ L(V ) be
a normal operator. Then T is diagonalizable. Furthermore, V has an orthonormal
basis consisting of the eigenvectors of T .

Remark. In other words, V has an orthonormal basis B such that [T ]B is a diagonal
matrix. The converse of this result is also true as we will show in the next theorem.

Remark. The above theorem is not true when F = R, i.e. normal operators on
real inner product spaces are not necessarily diagonalizable.

Proof. The proof is by induction on dimV . When dimV = 1 the result holds
trivially, because every operator on a one-dimensional space is just multiplication
by some scalar. So any vector in the space with norm one is an orthonormal basis
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for the space, and an eigenvector of the operator T . Now suppose the theorem
holds for every normal operator on a nonzero complex inner product space whose
dimension is less than dimV . We know that T has at least one eigenvalue, since
F = C. Let λ be an eigenvalue of T . Set W := Eλ(T ). Note that W 6= {0}, since
it is an eigenspace. If W = V then every vector in V is an eigenvector of T . Hence
if B is an arbitrary orthonormal basis for V , then its elements are eigenvectors of
T . Thus by Theorem 4.26, T is diagonalizable too.

So let us assume thatW 6= V . Remember that we have V = W⊕W⊥. Therefore
we get

0 < dimW⊥ = dimV − dimW < dimV,

since 0 < dimW < dimV . On the other hand note that for every v ∈ W we have
Tv = λv. Thus by Theorem 6.28 we have

T ∗v = λ̄v ∈W.

HenceW is T ∗-invariant. So by Theorem 6.10,W⊥ is invariant under (T ∗)∗ = T , i.e.
W⊥ is T -invariant too. Let S := T |W⊥ . By Theorem 6.30, S is a normal operator
on the nonzero space W⊥. Note that since W is T -invariant, Theorem 6.30 also
implies that W⊥ is T -invariant. But the above reasoning for the T -invariance of
W⊥ is much simpler than the one presented in the proof of Theorem 6.30, due to
the simple description of W .

Hence by the induction hypothesis, W⊥ has an orthonormal basis consisting of
the eigenvectors of S. Let us denote this basis by B. Let C be an orthonormal
basis for W . Note that every vector in W is an eigenvector of T . Now B ∪ C is a
basis for V whose elements are eigenvectors of T . Because the eigenvectors of S
are also eigenvectors of T , as shown in Exercise 4.6. Hence by Theorem 4.26, T is
diagonalizable. In addition, B∪C is orthonormal by Theorem 5.22. Therefore B∪C
is an orthonormal basis for V whose elements are eigenvectors of T . �

Theorem 6.32. Suppose F = C, and V is finite dimensional. Let T ∈ L(V ), and
suppose that V has an orthonormal basis B such that [T ]B is diagonal. Then T is
normal.

Proof. Note that [T ∗]B = [T ]∗B, since B is orthonormal. But [T ]B is diagonal,
so [T ]∗B is also diagonal. Therefore [T ]B, [T ]∗B commute, since diagonal matrices
commute. Hence [T ]B is normal. Thus T is normal too, because B is an orthonormal
basis. �

Theorem 6.33. Suppose V is a nonzero finite dimensional vector space over R,
and T ∈ L(V ). Then there exists a T -invariant subspace W ⊂ V such that dimW
is either 1 or 2.
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Remark. We know that every operator on a finite dimensional complex vector
space has at least one eigenvector, or equivalently it has a one dimensional invariant
subspace. But operators on finite dimensional real vector spaces do not have this
property. However, the above theorem says that a weaker version of this property
holds for operators on real vector spaces. This theorem holds because of the special
relationship between R and C. There is no similar result about operators on vector
spaces over an arbitrary field.

Proof. Suppose B is a basis for V , and A := [T ]B ∈ Rn×n, where n = dimV .
Consider the linear map S : Cn → Cn which maps z ∈ Cn to Sz := Az. Then we
have [S]C = A, where C is the standard basis of Cn. Now we know that S has at
least one eigenvalue λ ∈ C. Suppose λ = a+ ib, where a, b ∈ R. Let z ∈ Cn be an
eigenvector of S corresponding to λ. We know that z = x+ iy, for some x, y ∈ Rn.
Then we have

Ax+ iAy = Az = λz = λx+ iλy = ax+ ibx+ iay − by.

Note that the entries of A are real, therefore Ax,Ay ∈ Rn. Also, in the above
equality, each component of both sides must be equal. Hence the real part and the
imaginary part of each component of both sides are equal too. Thus we have

Ax = ax− by, Ay = bx+ ay.

Now let v, w ∈ V be the vectors that satisfy [v]B = x and [w]B = y. Then we
have

[Tv]B = [T ]B[v]B = Ax = ax− by = a[v]B − b[w]B = [av − bw]B,

[Tw]B = [T ]B[w]B = Ay = bx+ ay = b[v]B + a[w]B = [bv + aw]B.

Hence Tv = av − bw and Tw = bv + aw, because the coordinate isomorphism is
one-to-one. Note that in the above, we have also used the linearity of the coordinate
isomorphism. Now let W := span(v, w). Note that z 6= 0, since z is an eigenvector.
So at least one of x, y is nonzero. Therefore at least one of v, w is nonzero. Thus
dimW is either 1 or 2. Also, we have Tv, Tw ∈ span(v, w). Hence as shown in
Exercise 4.2, W is T -invariant, as desired. �

Remark. The above theorem can be used to characterize normal operators on a
finite dimensional real inner product space, similarly to the Theorem 6.41.

6.4 Unitary Operators

Definition 6.34. Suppose V is an inner product space. For two vectors u, v ∈ V
we define their distance to be

d(u, v) := ‖u− v‖.
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The function d : V × V → R is called the metric on V induced by its norm.

Remark. Let u, v, w ∈ V . It is easy to see that the metric d on V has the following
properties. Thus V equipped with d is a so-called metric space.
(i) d(u, v) ≥ 0, and d(u, v) = 0 ⇐⇒ u = v.
(ii) d(u, v) = d(v, u).
(iii) d(u, v) ≤ d(u,w) + d(w, v).
To prove the first property note that d(u, v) = ‖u−v‖ ≥ 0, and d(u, u) = ‖u−u‖ =
‖0‖ = 0. Now if d(u, v) = 0 then u − v = 0, hence u = v. To prove the second
property we have

d(u, v) = ‖u− v‖ = ‖(−1)(v − u)‖ = |−1|‖v − u‖ = d(v, u).

And for the third property we have

d(u, v) = ‖u− v‖ = ‖u− w + w − v‖
≤ ‖u− w‖+ ‖w − v‖ = d(u,w) + d(w, v).

Finally let us mention that the third property is also called the triangle inequality.

Remark. We say a sequence (vj)j∈N of vectors in V converge to the limit v ∈ V if

lim
j→∞

d(vj , v) = lim
j→∞

‖vj − v‖ = 0.

In this case we write limj→∞ vj = v, or vj → v. It can be shown that the limit of
a sequence in a metric space is unique, if it exists.

Definition 6.35. A function f : V → V is called an isometry if for every u, v ∈ V
we have

‖f(u)− f(v)‖ = ‖u− v‖.

Remark. In other words, an isometry is a function that preserves the distance
between any two points.

Theorem 6.36. Suppose F = R, and f : V → V is an isometry. Then there exists
a linear map T ∈ L(V ) which is also an isometry, such that for every v ∈ V we
have

f(v) = Tv + f(0).

Remark. In other words, every isometry is the composition of a linear isometry
and a translation. Also, note that V can be infinite dimensional too.

Proof. Let Tv := f(v) − f(0) for every v ∈ V . Note that T (0) = 0. It is also
easy to see that T is an isometry. Because for every u, v ∈ V we have

‖Tu− Tv‖ =
∥∥f(u)− f(0)−

(
f(v)− f(0)

)∥∥ = ‖f(u)− f(v)‖ = ‖u− v‖.
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So we only need to show that T is linear. Suppose u, v are distinct points of V . Let
w := 1

2u+ 1
2v be the midpoint between u, v. Let d := 1

2‖u− v‖. Then d 6= 0 since
u 6= v. We also have

‖u− w‖ = ‖u− (12u+ 1
2v)‖ = ‖12u−

1
2v‖ = 1

2‖u− v‖ = d.

Similarly we have ‖w − v‖ = d. Hence we get

‖Tu− Tv‖ = 2d, ‖Tu− Tw‖ = d, ‖Tw − Tv‖ = d,

since T is an isometry. Therefore we have

‖Tu− Tw + Tw − Tv‖ = ‖Tu− Tv‖ = 2d

= d+ d = ‖Tu− Tw‖+ ‖Tw − Tv‖.

Hence by Theorem 5.10 we must have

Tu− Tw = a(Tw − Tv), or Tw − Tv = a(Tu− Tw),

for some a ∈ [0,∞). Now note that ‖Tu− Tw‖ = ‖Tw− Tv‖ = d 6= 0, so in either
case we must have |a| = 1, and consequently a = ±1. Thus in either case we obtain
Tu − Tw = ±(Tw − Tv). But if we have Tu − Tw = −(Tw − Tv) then we get
Tu = Tv. This implies 2d = ‖Tu− Tv‖ = 0, which is a contradiction.

Hence we must have Tu− Tw = Tw − Tv. Therefore 2Tw = Tu+ Tv, i.e.

T (12u+ 1
2v) = Tw = 1

2Tu+ 1
2Tv.

Note that we obtained the above equation under the assumption that u 6= v, but
we can easily check that it also holds when u = v. If we set v = 0 in the above
equation we get T (12u) = 1

2Tu+ 1
2T (0) = 1

2Tu. So the above equation becomes

T (12u+ 1
2v) = 1

2Tu+ 1
2Tv = T (12u) + T (12v).

This equation holds for every u, v ∈ V . Thus instead of u, v, we can insert any
other vectors in this identity. Let us replace u with 2u, and v with 2v. Then we
get

T (u+ v) = Tu+ Tv. (∗)

Hence in order to show that T is linear, we only need to prove that T (av) = aTv
for every a ∈ R and v ∈ V .

Now if we set u = v in (∗) we get T (2v) = 2Tv. Suppose we have shown that
T (kv) = kTv for some k ∈ N. Then we have

T
(
(k + 1)v

)
= T (kv + v) = T (kv) + Tv = kTv + Tv = (k + 1)Tv.
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Therefore by induction we have shown that T (nv) = nTv for every n ∈ N. Note
that this relation holds trivially for n = 1, since T (1v) = Tv = 1Tv. We also have
T (0v) = T (0) = 0 = 0Tv. In addition, we have

0 = T (0v) = T
(
(−n+ n)v

)
= T (−nv + nv)

= T (−nv) + T (nv) = T (−nv) + nTv.

So we get

T (−nv) = −(nTv) = (−1)(nTv) =
(
(−1)n

)
Tv = (−n)Tv.

Thus for every m ∈ Z we have T (mv) = mTv. Next note that for n ∈ N we have
Tv = T

(
n( 1

nv)
)

= nT ( 1
nv). Hence we get T ( 1

nv) = 1
nTv. Thus for every m ∈ Z we

have
T (mn v) = T

(
m( 1

nv)
)

= mT ( 1
nv) = m( 1

nTv) = m
n Tv.

Thus we have T (rv) = rTv for every r ∈ Q.
Finally let a ∈ R. Then we know that there is a sequence of rational numbers

(rj)j∈N such that rj → a as j →∞. Hence we have

‖aTv − rjTv‖ = ‖(a− rj)Tv‖ = |a− rj |‖Tv‖ −→
j→∞

0‖Tv‖ = 0,

i.e. rjTv → aTv. Note that in the above reasoning, we have only used the properties
of the norm, and the continuity of the multiplication of real numbers. On the other
hand, T is an isometry. So we have

‖T (av)− T (rjv)‖ = ‖av − rjv‖ = ‖(a− rj)v‖ = |a− rj |‖v‖ −→
j→∞

0‖v‖ = 0,

i.e. T (rjv)→ T (av). But we have T (rjv) = rjTv for every j. Therefore

T (av) = lim
j→∞

T (rjv) = lim
j→∞

rjTv = aTv.

Note that we are using the fact that the limit of a sequence in a metric space is
unique. �

Remark. The above theorem is not true when F = C. Indeed if we define Tv :=
f(v) − f(0), then T preserves addition and scalar multiplication by real numbers,
but in general T (cv) 6= cTv when c ∈ C. In other words, T is R-linear but it is
not C-linear. For example the map z 7→ z̄ from C to C is an isometry, but it is not
C-linear.
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Definition 6.37. Suppose the operator T ∈ L(V ) has adjoint. Then T is called
unitary if

T ∗T = IV = TT ∗.

When F = R, a unitary operator is also called an orthogonal operator.
A square matrix A ∈ Fn×n is called unitary if A∗A = I = AA∗, and it is called

orthogonal if ATA = I = AAT.

Remark. It is obvious that for a square matrix A ∈ Rn×n, being unitary is the
same as being orthogonal. It is also trivial that a unitary operator or matrix is
normal too.

Remark. Note that unitary operators or matrices are invertible by definition. In
fact we can say that an operator T and a matrix A are unitary if

T−1 = T ∗, A−1 = A∗,

respectively. Similarly a matrix A is orthogonal if A−1 = AT.

Remark. Note that if T is unitary then T ∗ is also unitary, since (T ∗)∗ = T . The
same comment is true about unitary and orthogonal matrices.

Theorem 6.38. Suppose V is finite dimensional, and B is an orthonormal basis
for V . Then T ∈ L(V ) is unitary if and only if [T ]B is unitary.

Remark. This theorem is not true if the basis B is not orthonormal.

Proof. Let A := [T ]B. Then A∗ = [T ∗]B, since B is orthonormal. Hence we have
AA∗ = [T ]B[T ∗]B = [TT ∗]B. Similarly we have A∗A = [T ∗T ]B. Therefore

TT ∗ = IV = T ∗T ⇐⇒ [TT ∗]B = [IV ]B = [T ∗T ]B ⇐⇒ AA∗ = I = A∗A.

Note that we have used the fact that an operator is uniquely determined by its
matrix. �

Theorem 6.39. Suppose V is finite dimensional, and T ∈ L(V ). Then the follow-
ing statements are equivalent
(i) T is unitary.
(ii) T preserves the inner product, i.e. 〈Tu, Tv〉 = 〈u, v〉 for every u, v ∈ V .
(iii) T preserves the norm, i.e. ‖Tv‖ = ‖v‖ for all v ∈ V .
(iv) T is an isometry.
(v) For every orthonormal basis {v1, . . . , vn} for V , {Tv1, . . . , T vn} is also an

orthonormal basis for V .
(vi) There exists an orthonormal basis {v1, . . . , vn} for V , such that {Tv1, . . . , T vn}

is an orthonormal basis for V .
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Proof. (i) =⇒ (ii): We have

〈u, T ∗Tv〉 − 〈u, v〉 = 〈u, (T ∗T − I)v〉 = 〈u, 0〉 = 0.

Hence 〈Tu, Tv〉 = 〈u, T ∗Tv〉 = 〈u, v〉.
(ii) =⇒ (iii): We have ‖Tv‖2 = 〈Tv, Tv〉 = 〈v, v〉 = ‖v‖2.
(iii) =⇒ (iv): We have ‖Tu− Tv‖ = ‖T (u− v)‖ = ‖u− v‖.
(iv) =⇒ (iii): We have ‖Tv‖ = ‖Tv − 0‖ = ‖Tv − T (0)‖ = ‖v − 0‖ = ‖v‖.
(iii) =⇒ (ii): T must preserve the inner product, due to the polarization

identities. For example when F = R we have

〈Tu, Tv〉 =
1

4
‖Tu+ Tv‖2 − 1

4
‖Tu− Tv‖2

=
1

4
‖T (u+ v)‖2 − 1

4
‖T (u− v)‖2 =

1

4
‖u+ v‖2 − 1

4
‖u− v‖2 = 〈u, v〉.

The case of F = C can be proved similarly.
(ii) =⇒ (i): We have 〈u, T ∗Tv〉 = 〈Tu, Tv〉 = 〈u, v〉. Therefore

0 = 〈u, T ∗Tv〉 − 〈u, v〉 = 〈u, (T ∗T − I)v〉.

Hence (T ∗T − I)v is orthogonal to every u ∈ V , so (T ∗T − I)v = 0. Thus we have
T ∗T − I = 0, since v was an arbitrary vector in V . Therefore T ∗T = I, and as V
is finite dimensional we also have TT ∗ = I.

(iii) =⇒ (v): Note that since T preserves the norm, it also preserves the inner
product. Therefore for every i 6= j we have

‖Tvj‖ = ‖vj‖ = 1, 〈Tvi, T vj〉 = 〈vi, vj〉 = 0.

Thus {Tv1, . . . , T vn} is an orthonormal set, so in particular it is linearly indepen-
dent. But {Tv1, . . . , T vn} has the same number of elements as dimV . Hence it is
a basis for V .

(v) =⇒ (vi): This is trivial.
(vi) =⇒ (iii): Let v ∈ V . Then there are aj ∈ F such that v =

∑
j≤n ajvj .

Hence we have
Tv = T

(∑
j≤n

ajvj

)
=
∑
j≤n

ajTvj .

But {v1, . . . , vn} and {Tv1, . . . , T vn} are orthonormal bases for V , so by Theorem
5.14 we have

‖Tv‖2 =
∑
j≤n
|aj |2 = ‖v‖2. �

Theorem 6.40. Suppose T ∈ L(V ) is unitary, and λ is an eigenvalue of T . Then
we have |λ| = 1.



CHAPTER 6. OPERATORS ON INNER PRODUCT SPACES 144

Proof. Suppose v 6= 0, and Tv = λv. We know that T ∗v = λ̄v, since T is normal.
Now we have

v = IV v = T ∗Tv = T ∗(λv) = λT ∗v = λλ̄v = |λ|2v.

But v 6= 0 so we must have |λ|2 = 1. �

Remark. Suppose F = C, and V is finite dimensional. Let T ∈ L(V ) be a unitary
operator. Then we know that T is diagonalizable, since T is normal too. We
also know that the eigenvalues of T have absolute value one. Hence V has an
orthonormal basis B such that

[T ]B =


eiθ1 0 · · · 0

0 eiθ2
...

...
. . . 0

0 · · · 0 eiθn

,

where θj ∈ [0, 2π). Remember that multiplication of complex numbers by eiθ

corresponds to the counterclockwise rotation in the complex plane by the angle θ.
So, intuitively the above matrix form means that a unitary map on a complex inner
product space is the composition of several rotations. Note that unlike the case of
orthogonal operators on real inner product spaces discussed below, we do not need
reflections here. Because multiplication by −1 in the complex plane is the same as
the counterclockwise rotation by π radians.

In contrast when F = R, orthogonal operators are not necessarily diagonaliz-
able. However, using Theorem 6.33 we can obtain the following characterization of
them.

Theorem 6.41. Suppose F = R, and V is finite dimensional. Let T ∈ L(V ) be an
orthogonal operator. Then V has an orthonormal basis

B = {u1, . . . , uk, v1, w1, . . . , vm, wm}

such that for every j ≤ k we either have Tuj = uj, or Tuj = −uj. And for every
j ≤ m there is θj ∈ (0, π) so that

Tvj = (cos θj)vj + (sin θj)wj , Twj = −(sin θj)vj + (cos θj)wj .

Remark. Note that k,m are nonnegative integers, so they can be zero too.

Remark. If Tuj = −uj for some j, and every other vector in B is fixed under T ,
then T is a reflection through the subspace (span(uj))

⊥. And if every vector in B
other than vj , wj is fixed under T , then T is a rotation in the plane span(vj , wj) by
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the angle θj . Therefore the meaning of the above theorem is that an orthogonal op-
erator is the composition of several reflections and several rotations. Consequently,
this theorem and Theorem 6.36 imply that every isometry of a finite dimensional
real inner product space, in particular every isometry of Rn, is the composition of
a translation and several reflections and rotations.
Remark. It is obvious that the subspaces span(uj) and span(vj , wj) are T -invariant,
as shown in Exercise 4.2. In addition, note that uj is a basis for span(uj), and vj , wj
is a basis for span(vj , wj). Hence by Theorem 2.56 we have

V = span(u1)⊕ · · · ⊕ span(uk)⊕ span(v1, w1)⊕ · · · ⊕ span(vm, wm).

Therefore by using the notion of block diagonal matrices defined in Section 8.1, and
employing Theorem 8.4, we conclude that [T ]B is a block diagonal matrix of the
form

[T ]B =


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rm+k

,
where each Rj is either [1] or [−1] when j ≤ k, and Rj+k =

[
cos θj − sin θj
sin θj cos θj

]
when

j ≤ m.

Proof. The proof is by induction on dimV . When dimV = 1 the result holds
trivially, because every operator on a one-dimensional space is just multiplication
by some scalar. So any vector in the space with norm one is an orthonormal basis
for the space, and an eigenvector of the operator T . In addition, note that if λ is an
eigenvalue of the orthogonal operator T , then |λ| = 1. However λ ∈ R, so λ = ±1.

Now suppose the theorem holds for every orthogonal operator on a nonzero real
inner product space whose dimension is less than dimV . First suppose that T has
at least one eigenvalue. Let λ be an eigenvalue of T . We know that λ = ±1. Set
W := Eλ(T ). Note that W 6= {0}, since it is an eigenspace. If W = V then every
vector in V is an eigenvector of T . Hence if B is an arbitrary orthonormal basis
for V , then its elements are eigenvectors of T , corresponding to the eigenvalues ±1.
Thus B has the desired properties.

So let us assume thatW 6= V . Remember that we have V = W⊕W⊥. Therefore
we get

0 < dimW⊥ = dimV − dimW < dimV,

since 0 < dimW < dimV . On the other hand note that W is T -invariant. We
claim that W⊥ is also T -invariant. Let v ∈ W⊥. We know that for every w ∈ W
we have Tw = λw. Hence

±〈Tv,w〉 = 〈Tv,±w〉 = 〈Tv, λw〉 = 〈Tv, Tw〉 = 〈v, w〉 = 0.
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Thus 〈Tv,w〉 = 0. Therefore Tv is orthogonal to every w ∈ W . Hence Tv ∈ W⊥,
and consequently W⊥ is T -invariant as desired. Note that since W is T -invariant,
and T is normal, Theorem 6.30 implies that W⊥ is T -invariant. But the above
reasoning for the T -invariance ofW⊥ is much simpler than the one presented in the
proof of Theorem 6.30, due to the simple description of W , and the orthogonality
of T .

Now let S := T |W⊥ . Then S is an orthogonal operator on the nonzero spaceW⊥.
Because for every v ∈ W⊥ we have ‖Sv‖ = ‖Tv‖ = ‖v‖. Hence by the induction
hypothesis, W⊥ has an orthonormal basis B with the prescribed properties in the
theorem. Let C be an orthonormal basis for W . Note that every vector in W is an
eigenvector of T , corresponding to the eigenvalue λ = ±1. Now C ∪ B is a basis for
V , which is also orthonormal due to Theorem 5.22. Furthermore, note that C ∪ B
has the desired properties, since the action of T on an element of B is the same as
the action of S on that element.

Finally suppose that T has no eigenvalue. By Theorem 6.33, we know that there
exists a T -invariant subspaceW ⊂ V such that dimW is either 1 or 2. If dimW = 1
then W = span(v) for some nonzero v ∈ V . But then we have Tv ∈W = span(v).
So Tv = λv for some λ ∈ R, i.e. λ is an eigenvalue of T , which is in contrary to our
assumption. Hence we must have dimW = 2. Let v, w be an orthonormal basis for
W . Then we have ‖v‖ = ‖w‖ = 1, and 〈v, w〉 = 0. Thus as T is orthogonal we get

‖Tv‖ = ‖Tw‖ = 1, and 〈Tv, Tw〉 = 0.

On the other hand we have Tv, Tw ∈W = span(v, w). Hence there are a, b, c, d ∈ R
such that

Tv = av + bw, Tw = cv + dw.

Therefore the matrices of R := T |W and R∗ in the orthonormal basis C := {v, w}
are

[R]C =

[
a c
b d

]
=⇒ [R∗]C =

[
a c
b d

]∗
=

[
ā b̄
c̄ d̄

]
=

[
a b
c d

]
.

Hence we have
R∗v = av + cw, R∗w = bv + dw.

But v, w is an orthonormal basis, so by Theorem 5.14 we have

‖Tv‖2 = a2 + b2, ‖R∗v‖2 = a2 + c2, 〈Tv, Tw〉 = ac+ bd.

On the other hand, as we have seen above, the restrictions of an orthogonal operator
are orthogonal. Thus R is orthogonal, and therefore R∗ is also orthogonal. Hence
we also have ‖R∗v‖ = ‖R∗w‖ = 1. Therefore we get

a2 + b2 = 1 = a2 + c2, ac+ bd = 0. (∗)
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Thus b2 = c2, so c = ±b.
But if c = b then [R]C is symmetric, so R is self-adjoint. Hence it has an

eigenvalue, and therefore contrary to our assumption T has an eigenvalue too, as
shown in Exercise 4.6. Thus c 6= b. So we must have c = −b. Hence the second
equation in (∗) implies that 0 = ac + bd = −ab + bd = b(−a + d). Now note that
b 6= 0, since otherwise we would have c = −b = 0 = b, which leads to a contradiction
as we saw. Therefore we must have −a+ d = 0, i.e. a = d. So we have shown that

Tv = av + bw, Tw = −bv + aw.

Thus it only remains to show that

a = cos θ and b = sin θ for some θ ∈ (0, π).

We know that the above relations hold for a unique θ ∈ [0, 2π), since a2 + b2 = 1.
However we cannot have θ = 0 or θ = π, since b 6= 0. On the other hand, if
θ ∈ (π, 2π) then b = sin θ < 0. But in this case we can simply replace v by −v.
Then we have

T (−v) = −Tv = −av − bw = a(−v) + (−b)w,
Tw = −bv + aw = b(−v) + aw.

In addition, it is easy to see that −v, w is also an orthonormal basis for W . Hence
−v, w has our desired properties, since we have

a = cos θ = cos(2π − θ), −b = − sin θ = sin(2π − θ),

and 2π− θ ∈ (0, π). Therefore the orthonormal basis C := {±v, w} has our desired
properties.

The rest of the argument is similar to the case where T has an eigenvalue. If
W = V then the orthonormal basis C for V has the desired properties. If W 6= V
then we have V = W ⊕W⊥, and therefore we get

0 < dimW⊥ = dimV − dimW < dimV,

since 0 < dimW < dimV . We also know that by Theorem 6.30, W⊥ is also
T -invariant; because W is T -invariant, and T is normal. Now let S := T |W⊥ .
Then S is an orthogonal operator on the nonzero space W⊥, as we have seen
before. Hence by the induction hypothesis, W⊥ has an orthonormal basis B with
the prescribed properties in the theorem. Let C be the orthonormal basis for W
that we constructed above. Then B ∪ C is a basis for V , which is also orthonormal
due to Theorem 5.22. Furthermore, note that B ∪ C has the desired properties,
since the action of T on an element of B is the same as the action of S on that
element. �
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Remark. In the last paragraph of the above proof, we can show directly that W⊥

is T -invariant. The proof is similar to the case where T has an eigenvalue, and uses
the fact that T |W is onto.

Theorem 6.42. Suppose A ∈ Fn×n. Then the following statements are equivalent
(i) A is unitary.
(ii) The columns of A form an orthonormal basis for Fn.
(iii) The rows of A form an orthonormal basis for Fn.

Proof. (i) =⇒ (ii): We know that A∗A = I. On the other hand we know that
(A∗A)ij = A∗i,.A.,j for every i, j. We also know that A∗i,. = (A.,i)

∗ for every i. Hence
we get

〈A.,j , A.,i〉 = (A.,i)
∗A.,j = A∗i,.A.,j = (A∗A)ij = Iij =

{
1 if i = j,

0 if i 6= j.

Thus A.,1, . . . , A.,n is an orthonormal set in Fn, so they are linearly independent.
Therefore they form a basis for Fn, since their number is the same as the dimension
of Fn.

(ii) =⇒ (i): For every i, j ≤ n we have

(A∗A)ij = A∗i,.A.,j = (A.,i)
∗A.,j = 〈A.,j , A.,i〉 =

{
1 if i = j,

0 if i 6= j.

Therefore A∗A = I. So A−1 = A∗, i.e. A is unitary.
(i) ⇐⇒ (iii): The proofs are similar to the previous two parts. We only need

to work with AA∗ instead of A∗A. �

Theorem 6.43. Suppose A ∈ Cn×n and B ∈ Rn×n.
(i) If A is normal, then Cn has an orthonormal basis consisting of the eigenvectors

of A. Furthermore, the matrix C ∈ Cn×n whose columns are this basis of
eigenvectors, is unitary; and C∗AC, which is equal to C−1AC, is a diagonal
matrix whose diagonal entries are the eigenvalues of A.

(ii) If B is symmetric, then Rn has an orthonormal basis consisting of the eigen-
vectors of B. Furthermore, the matrix C ∈ Rn×n whose columns are this
basis of eigenvectors, is orthogonal; and CTBC, which is equal to C−1BC, is
a diagonal matrix whose diagonal entries are the eigenvalues of B.

Remark. Note that as explained in Theorem 4.31, the last sentence of the first
part of the theorem means that all the eigenvalues of A appear on the diagonal of
C−1AC, and every diagonal entry of C−1AC is an eigenvalue of A. Similar remark
applies to the second part of the theorem.
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Proof. (i) Let T ∈ L(Cn) be the operator that maps z ∈ Cn to Tz := Az. Then
we have [T ]B = A, where B is the standard basis of Cn. Therefore T is a normal
operator, since A is normal, and B is an orthonormal basis. Hence we know that
Cn has an orthonormal basis C consisting of the eigenvectors of T . But if z ∈ Cn is
an eigenvector of T corresponding to the eigenvalue λ, then we have Az = Tz = λz.
Thus z is also an eigenvector of A corresponding to the eigenvalue λ. Therefore C
is an orthonormal basis for Cn consisting of the eigenvectors of A.

Now suppose C = {v1, . . . , vn}, and let C be the matrix whose j-th column is
vj ∈ Cn. By Theorem 4.31 we know that C is invertible, and C−1AC is a diagonal
matrix whose diagonal entries are the eigenvalues of A. In addition we know that
C is unitary, since its columns form an orthonormal basis for Cn.

(ii) The proof is similar to the previous part. �

6.5 Polar Decomposition

Definition 6.44. An operator T ∈ L(V ) is called positive if it is self-adjoint, and
for all v ∈ V we have

〈Tv, v〉 ≥ 0.

Also, a square matrix A ∈ Fn×n is called positive if it is self-adjoint, and for all
x ∈ Fn we have

x∗Ax ≥ 0.

Remark. Remember that when T is self-adjoint, 〈Tv, v〉 is always a real number.
Also note that x∗Ax is a 1 × 1 matrix, i.e. it is a scalar. In addition we have
Ājk = Akj . Hence

x∗Ax =
∑
j,k

x̄jAjkxk =
∑
j,k

xjĀjkx̄k =
∑
k,j

x̄kAkjxj = x∗Ax.

Therefore x∗Ax is a real number for every x, when A is self-adjoint.

Remark. A positive operator, as we defined it, is sometimes called positive semi-
definite. In contrast, a positive definite operator is a self-adjoint operator T that sat-
isfies 〈Tv, v〉 > 0 for all nonzero v ∈ V . Similarly we say that the self-adjoint oper-
ator T is negative semi-definite, or it is negative definite, if respectively 〈Tv, v〉 ≤ 0,
or 〈Tv, v〉 < 0, for all nonzero v ∈ V . These concepts can be also defined for
self-adjoint matrices in the obvious way.

Theorem 6.45. Suppose V is finite dimensional, and B is an orthonormal basis
for V . Then T ∈ L(V ) is positive if and only if [T ]B is positive.
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Proof. Let A := [T ]B. We know that T is self-adjoint if and only if A is self-
adjoint. If A is positive, then by Theorem 5.14 for every v ∈ V we have

〈Tv, v〉 = [v]∗B[Tv]B = [v]∗BA[v]B ≥ 0.

So T is positive. Now suppose dimV = n. Then for every x ∈ Fn there is v ∈ V
such that x = [v]B. Hence if T is positive we have

x∗Ax = [v]∗BA[v]B = [v]∗B[Tv]B = 〈Tv, v〉 ≥ 0.

Thus A is positive. �

Example 6.46. Let T ∈ L(V ). Then TT ∗ is a positive operator. Because we have
(TT ∗)∗ = T ∗∗T ∗ = TT ∗, so TT ∗ is self-adjoint. In addition, for every v ∈ V we
have 〈TT ∗v, v〉 = 〈T ∗v, T ∗v〉 ≥ 0. Similarly we can show that T ∗T is positive; and
that for every matrix A ∈ Fn×n, the matrices AA∗ and A∗A are positive.

Theorem 6.47. Suppose V is finite dimensional, and T ∈ L(V ) is self-adjoint.
Then T is positive if and only if its eigenvalues are all nonnegative.

Similarly, suppose A ∈ Fn×n is self-adjoint. Then A is positive if and only if
its eigenvalues are all nonnegative.

Proof. We know that V has an orthonormal basis {v1, . . . , vn} consisting of the
eigenvectors of T . Suppose Tvj = λjvj . We also know that each λj ∈ R. If T is
positive, then we have

0 ≤ 〈Tvj , vj〉 = 〈λjvj , vj〉 = λj‖vj‖2 = λj ,

as desired.
Now suppose λj ≥ 0 for each j. Let v ∈ V . Then v =

∑
ajvj for some aj ∈ F .

Hence we have
Tv =

∑
ajTvj =

∑
ajλjvj .

Therefore by Theorem 5.14 we have 〈Tv, v〉 =
∑
ajλj āj =

∑
λj |aj |2 ≥ 0. So T is

positive. The case of matrices is similar. �

Remark. We have similar characterizations for positive definite, negative definite,
or negative semi-definite operators and matrices. For example a self-adjoint opera-
tor or matrix is negative definite if and only if its eigenvalues are all negative. The
proofs of these results are all similar to the above proof.

Theorem 6.48. Suppose V is finite dimensional, and T ∈ L(V ) is positive. Then T
has a unique positive square root, i.e. there is a unique positive operator S ∈ L(V )
such that S2 = T .
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Remark. In the following proof we will also show that the eigenvalues of S are the
square roots of the eigenvalues of T .

Proof. We know that V has an orthonormal basis B = {v1, . . . , vn} consisting
of the eigenvectors of T . Suppose Tvj = λjvj . We also know that each λj is
a nonnegative real number. Let S ∈ L(V ) be the unique operator that satisfies
Svj =

√
λjvj . Then we have

[S]B =


√
λ1 0

. . .
0

√
λn

.
Hence S is self-adjoint, since its matrix with respect to an orthonormal basis is
self-adjoint. In addition note that

√
λ1, . . . ,

√
λn are all the eigenvalues of S, be-

cause [S]B is diagonal, and these are all the diagonal entries of [S]B. Thus all the
eigenvalues of S are nonnegative, so S is positive. Finally note that we have

[S2]B =
(
[S]B

)2
=


√
λ1 0

. . .
0

√
λn


2

=

λ1 0
. . .

0 λn

 = [T ]B.

Therefore we must have S2 = T , since the matrix of an operator uniquely deter-
mines that operator. Hence we have shown that T has a positive square root S.
Note that we have also shown that the eigenvalues of S are the square roots of the
eigenvalues of T .

Now we need to prove that the positive square root of T is unique. Suppose
R ∈ L(V ) is a positive square root of T too. Then we know that R is diagonalizable,
since it is self-adjoint. Let µ1, . . . , µk be all the distinct eigenvalues of R. We know
that µ1, . . . , µk are nonnegative real numbers. We also have

V = Eµ1(R)⊕ · · · ⊕ Eµk(R).

Let v ∈ Eµj (R) for some j. Then we have

Tv = R2v = R(Rv) = R(µjv) = µjRv = µj(µjv) = µ2jv.

Since v can be nonzero, µ2j is an eigenvalue of T . Thus we have shown that

Eµj (R) ⊂ Eµ2j (T ).

Furthermore for i 6= j we have µ2i 6= µ2j , because µi 6= µj and µi, µj ≥ 0.
Hence µ21, . . . , µ2k are distinct eigenvalues of T . Now the subspace generated by
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⋃
j≤k Eµj (R), i.e. the sum of Eµj (R)’s, is certainly contained in the subspace gen-

erated by
⋃
j≤k Eµ2j

(T ). Thus we have

V = Eµ1(R)⊕ · · · ⊕ Eµk(R) ⊂ Eµ21(T )⊕ · · · ⊕ Eµ2k(T ) ⊂ V.

ThereforeEµ21(T )⊕· · ·⊕Eµ2k(T ) = V . So µ21, . . . , µ2k are all the distinct eigenvalues of
T . Because if T had any other eigenvalue λ with corresponding eigenvector v, then
v would have been a linear combination of some eigenvectors of T corresponding to
µ21, . . . , µ

2
k, which contradicts the fact that eigenvectors corresponding to distinct

eigenvalues are linearly independent.
In addition we must have Eµj (R) = Eµ2j

(T ) for every j. Because if this relation
fails for some i, then we would have dimEµi(R) < dimEµ2i

(T ). Furthermore for
j 6= i we have dimEµj (R) ≤ dimEµ2j

(T ). Hence we get

dimV =
∑
j≤k

dimEµj (R) <
∑
j≤k

dimEµ2j
(T ) = dimV,

which is a contradiction. Now note that the eigenvalues of S are the square roots
of the eigenvalues of T . So µ1, . . . , µk are all the distinct eigenvalues of S. Note
that we have

√
µ2j = µj , since µj ≥ 0. Therefore if we repeat the above argument

with S in place of R, we get

Eµj (S) = Eµ2j
(T ) = Eµj (R).

Now for any v ∈ V there are vj ∈ Eµj (R) = Eµj (S) such that v = v1 + · · · + vk.
Thus we have

Sv = Sv1 + · · ·+ Svk = µ1v1 + · · ·+ µkvk = Rv1 + · · ·+Rvk = Rv.

Hence R = S as desired. �

Theorem 6.49. Suppose F is either R or C, and A ∈ Fn×n is a positive matrix.
Then A has a unique positive square root, i.e. there is a unique positive matrix
C ∈ Fn×n such that C2 = A.

Proof. Let T ∈ L(Fn) be defined by T (x) = Ax for x ∈ Fn. Then [T ]B = A,
where B is the standard basis of Fn. Now we know that T is positive, since A
is positive and the standard basis is orthonormal. Thus by the previous theorem
there is a unique positive operator S ∈ L(Fn) such that S2 = T . Let C := [S]B.
Then C is a positive matrix, and we have

C2 =
(
[S]B

)2
= [S2]B = [T ]B = A.
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Hence A has a positive square root.
Now suppose B ∈ Fn×n is also a positive square root of A. Let R ∈ L(Fn)

be defined by R(x) = Bx for x ∈ Fn. Then we have [R]B = B, so R is a positive
operator too. We also have

[R2]B =
(
[R]B

)2
= B2 = A = [T ]B.

Therefore R2 = T . Thus R = S, since the positive square root of T is unique.
Hence we have B = [S]B = [R]B = C as desired. �

Remark. Note that if an operator T has a self-adjoint square root S, then T must
be positive. Because T ∗ = (SS)∗ = S∗S∗ = SS = T , so T is self-adjoint. Also, for
every vector v we have

〈Tv, v〉 = 〈SSv, v〉 = 〈Sv, Sv〉 = ‖Sv‖2 ≥ 0.

Similarly if a matrix A ∈ Fn×n has a self-adjoint square root, then it must be
positive.

Exercise 6.50. Suppose A,B ∈ Fn×n are positive matrices, and A is invertible.
Let C ∈ Fn×n be the positive square root of A. Show that CBC is a positive
matrix, and AB is similar to CBC.

Remark. As a result, the eigenvalues of AB are nonnegative real numbers, since
they are the same as the eigenvalues of the positive matrix CBC.
Solution. First note that (CBC)∗ = C∗B∗C∗ = CBC. Now for every x ∈ Fn
let y = Cx. Then we have

x∗(CBC)x = (x∗C)B(Cx) = (x∗C∗)B(Cx) = (Cx)∗B(Cx) = y∗By ≥ 0.

Thus CBC is positive.
On the other hand, note that C is also invertible. Because otherwise the linear

system Cx = 0 has at least two solutions in Fn, due to Theorem 3.49. But then
for any solution of Cx = 0 we would have Ax = C2x = C(Cx) = C0 = 0, i.e. the
linear system Ax = 0 has more than one solution too. However, by Theorem 3.49,
this is in contradiction with the invertibility of A.

Finally note that we have

AB = C2B = C2BI = C2BCC−1 = C(CBC)C−1,

i.e. AB and CBC are similar matrices. �

Polar Decomposition. Suppose V is finite dimensional, and T ∈ L(V ). Then
there is a positive operator P ∈ L(V ), and a unitary operator U ∈ L(V ), such that

T = PU.
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Remark. The significance of this theorem is that it gives us a complete description
of the action of an arbitrary linear map T . Because as we discussed in the remarks
before and after Theorem 6.41, we have a clear geometric understanding of the
action of a unitary operator. On the other hand, a positive operator can be diag-
onalized, since it is self-adjoint. In addition, its eigenvalues are nonnegative real
numbers, and there is an orthonormal basis of its eigenvectors. Hence the action
of a positive operator on a vector is that it scales each coordinate of that vector
by a nonnegative scale, when we represent the vector in the orthonormal basis of
the eigenvectors of the positive operator. Therefore the meaning of the above theo-
rem is that every linear operator on a finite dimensional inner product space is the
composition of several reflections, several rotations, and several scalings.

It should be noted that we can not necessarily diagonalize both P,U simulta-
neously. Therefore the directions of scalings are not necessarily the same as the
directions of rotations.

Proof. First note that if such operators P,U exist, then we must have

TT ∗ = PU(PU)∗ = PUU∗P ∗ = PUU−1P = P 2.

Now note that TT ∗ is a positive operator. Therefore TT ∗ has a unique positive
square root, which we call P .

To find U , let us first suppose that T is invertible. Then T ∗ is also invertible.
Thus P is invertible too, since otherwise there is a nonzero vector v such that
Pv = 0. But then we have TT ∗v = P 2v = 0, which contradicts the fact that TT ∗

is invertible. Hence P is invertible, and therefore the only candidate for U is P−1T .
Now for U := P−1T we have

U∗U = T ∗(P−1)∗P−1T = T ∗(P ∗)−1P−1T = T ∗P−1P−1T

= T ∗(P 2)−1T = T ∗(TT ∗)−1T = T ∗(T ∗)−1T−1T = IV .

So U−1 = U∗ as desired, since V is finite dimensional.
Next let us prove the theorem for an arbitrary linear map T . In this case P is

not necessarily invertible. So in order to define U , we have to find a replacement
for P−1. First note that for every v ∈ V we have

‖T ∗v‖2 = 〈T ∗v, T ∗v〉 = 〈v, TT ∗v〉 = 〈v, P 2v〉 = 〈Pv, Pv〉 = ‖Pv‖2. (∗)

Hence in particular we have T ∗v = 0 if and only if Pv = 0. In other words
nullT ∗ = nullP . Thus we have

W := T (V ) = (nullT ∗)⊥ = (nullP )⊥ = P ∗(V ) = P (V ).

As a result, T, P have the same rank. Furthermore, W is P -invariant, and P |W is
invertible, since W ∩ nullP = {0}.
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Now note that if a unitary operator U exists such that T = PU , then for
v ∈ nullT we have PUv = Tv = 0, i.e. Uv ∈ nullP . So U maps nullT into
nullP . Since U preserves the inner product, it must map (nullT )⊥ = T ∗(V ) into
(nullP )⊥ = W . But for v ∈ T ∗(V ) we have Tv ∈W , so we have a natural candidate
for Uv, namely (P |W )−1Tv. On the other hand when v ∈ nullT , the value of Uv
is not important, as long as we have Uv ∈ nullP . With these criteria in mind, we
are going to construct the operator U .

Let {v1, . . . , vk}, {u1, . . . , uk} be orthonormal bases for nullT , nullP respec-
tively. Note that these two subspaces have the same dimension, since T, P have the
same rank. Let R ∈ L(nullT, nullP ) be the linear map that sends vj to uj . Then
R preserves the norm. Because for v =

∑
ajvj we have Rv =

∑
ajuj . Hence we

have ‖Rv‖2 =
∑
|aj |2 = ‖v‖2, since the two bases are orthonormal.

Now any v ∈ V can be written uniquely as w + u, where w ∈ T ∗(V ) and
u ∈ nullT , because V = T ∗(V ) ⊕ nullT . Let S := (P |W )−1 ∈ L(W ). Then we
define

Uv := STw +Ru.

Note that U is well defined, since the decomposition of v into w+u is unique. Also
note that U is a linear map, as can be easily checked from the definition. Now we
have

PUv = P (STw +Ru) = PSTw + PRu = IWTw = Tw = Tw + Tu = Tv.

Note that we have used the facts that Ru ∈ nullP , and u ∈ nullT .
To finish the proof, we only need to show that U is unitary. It suffices to show

that U preserves the norm. For w ∈ T ∗(V ) we have w = T ∗w̃ for some w̃ ∈ V .
Hence by (∗) we have

‖STw‖ = ‖STT ∗w̃‖ = ‖SP 2w̃‖ = ‖Pw̃‖ = ‖T ∗w̃‖ = ‖w‖.

We also know that ‖Ru‖ = ‖u‖ for u ∈ nullT . Therefore as Ru ∈ nullP and
STw ∈ W are orthogonal, and also u ∈ nullT and w ∈ T ∗(V ) are orthogonal, we
have

‖Uv‖2 = ‖STw‖2 + ‖Ru‖2 = ‖w‖2 + ‖u‖2 = ‖v‖2,

as desired. �

Remark. As we have seen in the above proof, P is uniquely determined by T , since
it is the unique positive square root of TT ∗. Also when T is invertible, U = P−1T is
uniquely determined by T too. But when T is not invertible, then U is not uniquely
determined. The reason is the freedom that we have for the construction of the
operator R in the proof.
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Remark. We can also show that for every operator T on a finite dimensional inner
product space, there is a positive operator P1 and a unitary operator U1 such that

T = U1P1.

But P1, U1 are not necessarily the same as P,U . To prove this version we can apply
the above theorem to T ∗ to obtain T ∗ = P2U2. Then we have

T = T ∗∗ = U∗2P
∗
2 = U−12 P2.

Hence we can take P1 = P2 and U1 = U−12 . Note that the inverse of a unitary map
is also unitary. This construction also shows that P1 is the positive square root of
T ∗T ∗∗ = T ∗T .

Definition 6.51. Suppose T ∈ L(V ). The singular values of T are the square
roots of the eigenvalues of the positive operator TT ∗.

Similarly, the singular values of a square matrix A ∈ Fn×n are the square
roots of the eigenvalues of the positive matrix AA∗.

Remark. Note that the singular values of an operator or a matrix are nonnegative
real numbers.

Remark. It can be shown that the eigenvalues of TT ∗ are the same as the eigenval-
ues of T ∗T , although T, T ∗ do not commute necessarily. So we could have defined
the singular values of T using the eigenvalues of T ∗T . A similar remark is true
about the square matrices.

Remark. Note that if T = PU is the polar decomposition of T , then the singular
values of T are the eigenvalues of P . Because we know that P is the unique positive
square root of TT ∗. So the eigenvalues of P are the square roots of the eigenvalues
of TT ∗, due to the remark after Theorem 6.48.

Theorem 6.52. Suppose V is finite dimensional, and B is an orthonormal basis
for V . Then the singular values of T ∈ L(V ) are the same as the singular values
of [T ]B.

Proof. Let A := [T ]B. Then A∗ = [T ∗]B, since B is orthonormal. Hence we have

AA∗ = [T ]B[T ∗]B = [TT ∗]B.

Therefore the eigenvalues of TT ∗ are the same as the eigenvalues of AA∗. Hence
their square roots are also the same, i.e. the singular values of T are the same as
the singular values of A. �
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Singular Value Decomposition. Suppose F is either R or C, and A ∈ Fn×n.
Then there is a diagonal matrix Σ ∈ Rn×n whose diagonal entries are the singular
values of A, and there are unitary matrices U1, U2 ∈ Fn×n, such that

A = U1ΣU
∗
2 .

Remark. In general U1, U2 are not equal.

Proof. Let T ∈ L(Fn) be defined by T (x) = Ax where x ∈ Fn. Then [T ]B = A,
where B is the standard basis of Fn. Now we know that T = PU , where P is a
positive operator, and U is a unitary operator. Let B := [P ]B and M := [U ]B.
Then B is a positive matrix, and M is a unitary matrix, since the standard basis is
orthonormal. By Theorem 6.43 we know that there is a unitary matrix C ∈ Fn×n
such that Σ := CBC∗ is diagonal. But the diagonal entries of Σ are the eigenvalues
of B, which are the eigenvalues of P . On the other hand, the eigenvalues of P are
the singular values of T , which are the same as the singular values of A. Finally
we have

A = [T ]B = [PU ]B = [P ]B[U ]B = BM = C∗ΣCM = U1ΣU
∗
2 ,

where U1 := C∗, and U2 := (CM)∗. Note that U1, U2 are unitary matrices because
U∗1 = C = (C∗)−1 = U−11 , and

U2 = (CM)∗ = M∗C∗ = M−1C−1 = (CM)−1 = (U∗2 )−1. �

Definition 6.53. Let A ∈ Fn×n. The operator norm of A is

‖A‖ := sup
x∈Fn−{0}

‖Ax‖
‖x‖

.

Remark. A nice property of the operator norm is that for every x ∈ Fn we have

‖Ax‖ ≤ ‖A‖‖x‖.

This property makes the operator norm a very useful tool in analysis, when we
want to estimate the norm of the image of a vector.

Remark. It is not hard to show that the operator norm is a norm on the space of
matrices. Although it is not induced by any inner product. In the next theorem
we compute the operator norm of a matrix using its singular value decomposition.

Theorem 6.54. Let A ∈ Fn×n, and suppose s1, . . . , sn ∈ [0,∞) are the singular
values of A. Then we have

‖A‖ = max{s1, . . . , sn}.
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Proof. Suppose A = U1ΣU
∗
2 is the singular value decomposition of A. Let x ∈

Fn. Then for y := U∗2x we have x = U2y, and so ‖y‖ = ‖x‖, since U2 is unitary.
Suppose s1, . . . , sn are arranged so that

Σ =

s1 0
. . .

0 sn

.
Then Σy = [s1y1, . . . , snyn]T. Therefore ‖Σy‖ ≤ s‖y‖, where s := max{s1, . . . , sn}.
Hence as U1 is unitary we have

‖Ax‖ = ‖U1Σy‖ = ‖Σy‖ ≤ s‖y‖ = s‖x‖.

Thus ‖A‖ ≤ s. On the other hand suppose s = sj . Then for x = U2ej we have

‖Ax‖ = ‖U1ΣU
∗
2U2ej‖ = ‖U1Σej‖ = ‖Σej‖

= ‖sjej‖ = s‖ej‖ = s‖U2ej‖ = s‖x‖.

So s ≤ ‖A‖ too. �



Chapter 7

Determinants

7.1 Multilinear Maps

Definition 7.1. Let V1, . . . , Vk,W be vector spaces over a field F . A map L :
V1 × · · · × Vk →W is called multilinear or k-linear if L is linear with respect to
each variable when the other variables are fixed, i.e. for any j ≤ k we have

L(v1, . . . , vj−1, au+ bv, vj+1, . . . , vk)

= aL(v1, . . . , vj−1, u, vj+1, . . . , vk) + bL(v1, . . . , vj−1, v, vj+1, . . . , vk),

for every vectors vi ∈ Vi, u, v ∈ Vj , and scalars a, b ∈ F .

Remark. We are mostly interested in the case where V1 = · · · = Vk = Fn, and
W = F . So in this section, the theorems are only stated for this case. Although,
the general case can be treated similarly.

Theorem 7.2. Suppose L : (Fn)k → F is multilinear, and e1, . . . , en is the standard
basis of Fn. Also suppose vi = [ai1, . . . , ain]T =

∑
j≤n aijej for i ≤ k. Then we

have
L(v1, . . . , vk) =

∑
j1≤n
· · ·
∑
jk≤n

a1j1 · · · akjkL(ej1 , . . . , ejk).

159
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Proof. We have

L(v1, . . . , vk) = L
( ∑
j1≤n

a1j1ej1 , v2, . . . , vk

)
=
∑
j1≤n

a1j1L(ej1 , v2, . . . , vk)

=
∑
j1≤n

a1j1L
(
ej1 ,

∑
j2≤n

a2j2ej2 , v3, . . . , vk

)
=
∑
j1≤n

a1j1

( ∑
j2≤n

a2j2L(ej1 , ej2 , v3, . . . , vk)
)

=
∑
j1≤n

∑
j2≤n

a1j1a2j2L(ej1 , ej2 , v3, . . . , vk)

...

=
∑
j1≤n
· · ·
∑
jk≤n

a1j1 · · · akjkL(ej1 , . . . , ejk).

�

Theorem 7.3. Suppose cj1...jk ∈ F are given. Then there exists a unique multilin-
ear map L : (Fn)k → F such that

L(ej1 , . . . , ejk) = cj1...jk ,

for every j1, . . . , jk ∈ {1, . . . , n}. Moreover, for vi = [ai1, . . . , ain]T we have

L(v1, . . . , vk) =
∑
j1≤n
· · ·
∑
jk≤n

a1j1 · · · akjkcj1...jk .

7.2 Determinants

7.3 The Characteristic Polynomial



Chapter 8

The Jordan Form

8.1 Generalized Eigenvectors

Notation. In this chapter we assume that F is a field, V is a nonzero vector space
over F , and T ∈ L(V ) is a linear operator.

Remember that a diagonalizable linear operator can be represented by a diago-
nal matrix. So we can easily understand the behavior of a diagonalizable operator.
In addition, calculations with diagonal matrices are much simpler than calculations
with arbitrary matrices. But we know that in general a linear operator is not neces-
sarily diagonalizable (see for instance Example 4.28). Hence in order to understand
the behavior of an arbitrary operator T , and to simplify calculations involving T ,
we will try to find a basis B so that [T ]B has a simple “canonical” form. We will see
that these matrices in canonical form are not in general diagonal, but they have a
simple structure that is very close to a diagonal matrix.

To obtain a canonical form, first we will show that if we decompose the space
as the direct sum of several T -invariant subspaces, then the matrix of T becomes a
block diagonal matrix, as we define below. The next step is to find an appropriate
decomposition for the space. Finally we will study the restriction of T to those
invariant subspaces, and we will find a suitable description for it.

Definition 8.1. Suppose n1, . . . , nk,m1, . . . ,ml ∈ N. Let n = n1 + · · · + nk and
m = m1 + · · · + ml. A matrix A ∈ Fn×m is called a block matrix if for α ≤ k
and β ≤ l there exist matrices Bαβ ∈ Fnα×mβ , called the blocks of A, such that
for r ≤ nα, s ≤ mβ we have

Aij = (Bαβ)rs, where i = r +
∑
α̃<α

nα̃, j = s+
∑
β̃<β

mβ̃.

Suppose in addition that m = n, l = k, and mα = nα for each α. Then we say A

161
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is a block diagonal matrix if Bαβ = 0 when β 6= α. In this case, the blocks Bαα
are called the diagonal blocks of A.

Notation. When A is a block diagonal matrix with diagonal blocks A1, . . . , Ak,
we write

A = A1 ⊕ · · · ⊕Ak.

Note that in this notation the order of A1, . . . , Ak is important. Also, note that
each diagonal block is itself a square matrix.

Remark. It is easy to check that in a block matrix, for every i ≤ n, j ≤ m there
are unique α ≤ k, β ≤ l and r ≤ nα, s ≤ mβ such that i = r +

∑
α̃<α nα̃ and

j = s+
∑

β̃<βmβ̃ . Note that
∑

α̃<α nα̃ is the number of rows of A above the block
Bαβ , and

∑
β̃<βmβ̃ is the number of columns of A to the left of the block Bαβ .

Remark. Note that a block matrix is itself a matrix. So when we talk about a
block matrix, we are considering a matrix, but we want to think that its entries
are partitioned into several smaller matrices, which we call them the blocks of our
block matrix. Also note that every matrix can be considered as a block matrix;
and if the matrix is not 1 × 1, then there are several different ways to consider it
as a block matrix.

Remark. A block matrix and a block diagonal matrix look respectively as follows
B11 B12 · · · B1l

B21 B22 . . . B2l
...

...
. . .

...
Bk1 Bk2 · · · Bkl

,

B11 0 · · · 0
0 B22 . . . 0
...

...
. . .

...
0 0 · · · Bkk

,
where Bαβ ∈ Fnα×mβ .

Example 8.2. The following matrices are block diagonal
1 2 0 0
3 −1 0 0
0 0 5 7
0 0 0 −6

,


3 0 0 0
0 9 0 8
0 5 6 7
0 0 1 2

.
The first one has two 2× 2 nonzero blocks, and the second one has a 1× 1 nonzero
block and a 3 × 3 nonzero block. To emphasize their block diagonal structure, we
can also write the above matrices as follows

[
1 2
3 −1

]
0 0
0 0

0 0
0 0

[
5 7
0 −6

]
,

[
3
]

0 0 0
0
0
0

9 0 8
5 6 7
0 1 2


.
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Exercise 8.3. Suppose n1, . . . , nk,m1, . . . ,ml ∈ N. Let n = n1 + · · · + nk and
m = m1 + · · · + ml. Let A ∈ Fn×n, B ∈ Fm×m, Aα ∈ Fnα×nα for α ≤ k, and
Bβ ∈ Fmβ×mβ for β ≤ l. Suppose that A = A1 ⊕ · · · ⊕Ak and B = B1 ⊕ · · · ⊕Bl.
Then we have

A⊕B = A1 ⊕ · · · ⊕Ak ⊕B1 ⊕ · · · ⊕Bl.

Solution. Let C := A ⊕ B. Then C has 4 blocks, where two of them are A,B,
and the other two are zero. Hence for i, j ≤ m+ n we have

Cij =


Aij if i, j ≤ n,
Bi−n,j−n if i, j > n,

0 otherwise.

Now let D := A1 ⊕ · · · ⊕ Ak ⊕ B1 ⊕ · · · ⊕ Bl. Then D has (k + l)2 blocks. Let
Aαα̂ ∈ Fnα×nα̂ and Bββ̂ ∈ F

mβ×mβ̂ be the blocks of A and B respectively. Note
that α, α̂ ≤ k and β, β̂ ≤ l. Also note that

Aαα̂ =

{
Aα if α̂ = α,

0 if α̂ 6= α,
Bββ̂ =

{
Bβ if β̂ = β,

0 if β̂ 6= β.

Let Dγγ̂ be the blocks of D, where γ, γ̂ ≤ k + l. Then we have

Dγγ̂ =



Aγ = Aγγ̂ if γ = γ̂ ≤ k,
Bγ−k = Bγ−k,γ̂−k if γ = γ̂ > k,

0 = Aγγ̂ if γ, γ̂ ≤ k, γ 6= γ̂,

0 = Bγ−k,γ̂−k if γ, γ̂ > k, γ 6= γ̂,

0 ∈ Fnγ×mγ̂−k if γ ≤ k, γ̂ > k,

0 ∈ Fmγ−k×nγ̂ if γ > k, γ̂ ≤ k.

Also, note that C,D have the same size.
To simplify the notation, for every α ≤ k let Nα :=

∑
α̃<α nα̃, and for every

β ≤ l let Mβ :=
∑

β̃<βmβ̃ . Suppose i, j ≤ n. Then for some α, α̂ ≤ k we have
Nα < i ≤ Nα+1 and Nα̂ < j ≤ Nα̂+1. Hence we have

Cij = Aij = (Aαα̂)rs = (Dαα̂)rs,

where r := i−Nα and s := j−Nα̂. Next suppose n < i, j ≤ n+m. Then for some
β, β̂ ≤ l we have Mβ < i− n ≤Mβ+1 and Mβ̂ < j − n ≤Mβ̂+1. Hence we have

Cij = Bi−n,j−n = (Bββ̂)rs = (Dβ+k,β̂+k)rs,
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where r := i − n −Mβ and s := j − n −Mβ̂ . Note that n + Mβ is the number of
rows of D above the block Dβ+k,β̂+k, and n + Mβ̂ is the number of columns of D
to the left of the block Dβ+k,β̂+k.

Now suppose that i ≤ n and n < j ≤ n + m. Then for some α ≤ k and β ≤ l
we have Nα < i ≤ Nα+1 and Mβ < j − n ≤Mβ+1. Hence we have

Cij = 0 = (Dα,β+k)rs,

where r := i − Nα and s := j − n −Mβ . Finally suppose that n < i ≤ n + m
and j ≤ n. Then for some α ≤ k and β ≤ l we have Mβ < i − n ≤ Mβ+1 and
Nα < j ≤ Nα+1. Hence we have

Cij = 0 = (Dβ+k,α)rs,

where r := i − n −Mβ and s := j − Nα. Therefore by the definition of a block
matrix we have C = D, as desired. �

Theorem 8.4. Suppose V is finite dimensional, and W1, . . . ,Wk are T -invariant
nonzero subspaces of V such that

V = W1 ⊕ · · · ⊕Wk.

Let Bα be a basis for Wα for each α ≤ k. Then the matrix of T with respect to the
basis B =

⋃k
α=1 Bα for V , is a block diagonal matrix of the form

[T ]B =


[T |W1 ]B1 0 · · · 0

0 [T |W2 ]B2 · · · 0
...

...
. . .

...
0 0 · · · [T |Wk

]Bk

.
In other words we have [T ]B = [T |W1 ]B1 ⊕ · · · ⊕ [T |Wk

]Bk .

Remark. Note that in the list of vectors of the basis B, we first put the elements
of B1, then the elements of B2, then the elements of B3, and so forth.

Proof. Let n = dimV and nα = dimWα for each α ≤ k. Note that by Theorem
2.55 we have n = n1 + · · · + nk, and B =

⋃k
α=1 Bα is a basis for V . Now suppose

B = {v1, . . . , vn}. Let us denote the block diagonal matrix described in the theorem
by A. We will show that the j-th column of [T ]B is equal to the j-th column of
A, for every j ≤ n. We know that the j-th column of [T ]B is [Tvj ]B. Suppose
Tvj =

∑
l≤n alvl, where al ∈ F . Also suppose that vj ∈ Bβ for some β, and we

have Bβ = {vj1 , . . . , vj , . . . , vj2}. Then we know that(
[T ]B

)
.,j

= [Tvj ]B = [a1, . . . , aj1 , . . . , aj2 , . . . , an]T ∈ Fn.
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On the other hand we have vj ∈ Wβ , so we must have Tvj ∈ Wβ , since Wβ

is T -invariant. Therefore Tvj is a linear combination of vj1 , . . . , vj2 , i.e. Tvj =∑
j1≤l≤j2 blvl for some bl ∈ F . Now the equality∑

l≤n
alvl = Tvj =

∑
j1≤l≤j2

blvl

implies that al = 0 for l < j1 and l > j2, and bl = al for j1 ≤ l ≤ j2. Because when
we write a vector as a linear combination of elements of a basis, the coefficients are
uniquely determined. Hence we have(

[T ]B
)
.,j

= [Tvj ]B = [0, . . . , 0, aj1 , . . . , aj2 , 0, . . . , 0]T.

Now consider A. Note that A has k2 blocks. Let Bαβ ∈ Fnα×nβ be the blocks
of A, where α, β ≤ k. Then we have Bαβ = 0 for α 6= β, since A is block diagonal.
We also have Bββ = [T |Wβ

]Bβ . Furthermore, by definition, for r ≤ nα, s ≤ nβ we
have

Aij = (Bαβ)rs, where i = r +
∑
α̃<α

nα̃, j = s+
∑
β̃<β

nβ̃.

To simplify the notation let us set Nβ :=
∑

β̃<β nβ̃ . Consider a fixed j, and suppose
Nβ < j ≤ Nβ + nβ for some β. If i ≤ Nβ then Aij is an entry of Bαβ for some
α < β, hence we have Aij = 0. Similarly if i > Nβ + nβ then Aij = 0, since it is an
entry of Bαβ for some α > β. Finally suppose that Nβ < i ≤ Nβ + nβ . Let

r := i−
∑
β̃<β

nβ̃, s := j −
∑
β̃<β

nβ̃.

Then we have Aij = (Bββ)rs =
(
[T |Wβ

]Bβ
)
rs
.

On the other hand note that if Nβ < j ≤ Nβ + nβ then vj ∈ Bβ , because Nβ is
the number of vectors in

⋃β−1
α=1 Bα. In addition remember that Tvj =

∑
j1≤l≤j2 alvl.

Also note that j1 = Nβ + 1, so s = j − j1 + 1. Thus the s-th column of [T |Wβ
]Bβ is(

[T |Wβ
]Bβ
)
.,s

= [T |Wβ
(vj1+s−1)]Bβ = [T |Wβ

vj ]Bβ

= [Tvj ]Bβ = [aj1 , . . . , aj2 ]T ∈ Fnβ .

Therefore A.,j = [0, . . . , 0, aj1 , . . . , aj2 , 0, . . . , 0]T =
(
[T ]B

)
.,j

as desired. �

Our next step is to find appropriate T -invariant subspaces such that their direct
sum is V . Remember that the eigenspaces of T are T -invariant subspaces, and their
sum is a direct sum. But the direct sum of the eigenspaces of T is not equal to V ,
if T is not diagonalizable. So in a sense, we can say that if T is not diagonalizable,
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then it does not have enough eigenvectors to generate the vector space V . Therefore
we need to add new vectors to the set of eigenvectors of T , so that we can generate
V . These new vectors are called the generalized eigenvectors of T , and they are
defined below.

Definition 8.5. A vector v ∈ V is called a generalized eigenvector of T corre-
sponding to the scalar λ ∈ F , if v 6= 0, and there exists m ∈ N such that

(T − λI)mv = 0.

Theorem 8.6. If T has a generalized eigenvector corresponding to a scalar λ, then
λ is an eigenvalue of T .

Proof. Suppose v is a generalized eigenvector corresponding to λ, and m is the
smallest positive integer such that (T−λI)mv = 0. Ifm = 1 then v is an eigenvector
of T , and λ is an eigenvalue of T . Otherwise we have w := (T −λI)m−1v 6= 0, since
m− 1 is smaller than m. But then we have

(T − λI)w = (T − λI)(T − λI)m−1v = (T − λI)mv = 0.

Therefore w is an eigenvector of T , and λ is an eigenvalue of T , as desired. �

Remark. The above theorem means that there is no notion of generalized eigen-
value, and there is no need for it.

Definition 8.7. Suppose that λ is an eigenvalue of T . The set that consists of
0 ∈ V and all the generalized eigenvectors of T corresponding to λ, is called the
generalized eigenspace of T corresponding to λ. We denote this set by Gλ(T ),
or simply by Gλ when T is clear from the context.

Remark. Note that every eigenvector is also a generalized eigenvector. Thus every
eigenspace of T is a subset of the corresponding generalized eigenspace, i.e.

Eλ(T ) ⊂ Gλ(T ).

Theorem 8.8. The generalized eigenspaces of T are subspaces, and they are T -
invariant.

Proof. Suppose λ is an eigenvalue of T , and u, v ∈ Gλ(T ). Then there are
m, k ∈ N such that

(T − λI)mu = 0, (T − λI)kv = 0.

Let us suppose that m ≥ k; the other case is similar. Then we have

(T − λI)mv = (T − λI)m−k(T − λI)kv = (T − λI)m−k 0 = 0.



CHAPTER 8. THE JORDAN FORM 167

Hence for every a ∈ F we have

(T − λI)m(u+ av) = (T − λI)mu+ a(T − λI)mv = 0.

Thus u + av ∈ Gλ(T ). Now note that Gλ(T ) is nonempty, since 0 ∈ Gλ(T ) by
definition. Therefore Gλ(T ) is a subspace.

In addition we have

(T − λI)mTu = T (T − λI)mu = T (0) = 0.

Note that T, (T −λI)m commute, since (T −λI)m is a polynomial in T . So we have
shown that Tu ∈ Gλ(T ). Hence Gλ(T ) is T -invariant. �

Remark. Note that if λ is an eigenvalue of T , then Gλ(T ) is a nonzero subspace,
since it contains at least one nonzero eigenvector of T corresponding to λ. Thus in
particular when Gλ(T ) is finite dimensional we have dimGλ(T ) ≥ 1.

Theorem 8.9. Suppose V is finite dimensional. Let λ be an eigenvalue of T . Then
we have

Gλ(T ) = null(T − λI)n,

where n = dimV .

Remark. In other words, for every generalized eigenvector v corresponding to λ
we have

(T − λI)nv = 0.

Proof. It is trivial that null(T − λI)n ⊂ Gλ(T ). To show the reverse inclusion,
suppose v ∈ Gλ(T ) is nonzero. Let m be the smallest positive integer such that
(T − λI)mv = 0. It is enough to show that m ≤ n. Consider the following m
nonzero vectors

v, (T − λI)v, . . . , (T − λI)m−1v.

We claim that these vectors are linearly independent. To prove this, let

wj := (T − λI)j−1v,

for j = 1, . . . ,m. Suppose a1w1 + · · ·+ amwm = 0, where a1, . . . , am ∈ F . We have
to show that every aj is zero. Suppose we have shown that a1 = · · · = ak−1 = 0.
Then we have akwk + · · ·+ amwm = 0. Therefore

0 = (T − λI)m−k 0 = (T − λI)m−k(akwk + · · ·+ amwm)

= ak(T − λI)m−kwk + · · ·+ am(T − λI)m−kwm

= ak(T − λI)m−1v + ak+1(T − λI)mv + · · ·+ am(T − λI)2m−k−1v

= akwm + 0 + · · ·+ 0 = akwm.
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But wm is nonzero, hence we must have ak = 0. So if we continue this argument
inductively, we will show that a1 = · · · = am = 0. Note that this argument also
works when k = 1, thus we do not need to check the base of induction separately.
Hence w1, . . . , wm are linearly independent. Therefore we must have m ≤ n, as
desired. �

Remark. Suppose V is finite dimensional, and we know that λ is an eigenvalue of
T . Then the above description of Gλ(T ) as a null space, enables us to easily find a
basis for it by using Theorem 3.48.

Proposition 8.10. Suppose v is an eigenvector of T corresponding to the eigen-
value λ. Then for every polynomial p ∈ F [x] we have

p(T )v = p(λ)v,

i.e. v is an eigenvector of p(T ) corresponding to the eigenvalue p(λ).

Proof. We know that Tv = λv. Let us show by induction that Tnv = λnv for
every n ∈ N. The case of n = 1 is trivial. And if the claim holds for some n, then
for n+ 1 we have

Tn+1v = TTnv = T (Tnv) = T (λnv) = λnTv = λn(λv) = λn+1v.

Now suppose p(x) = a0 + · · ·+ amx
m. Then we have

p(T )v =
(∑
j≤m

ajT
j
)
v =

∑
j≤m

ajT
jv =

∑
j≤m

ajλ
jv =

(∑
j≤m

ajλ
j
)
v = p(λ)v,

as desired. �

Theorem 8.11. Suppose λ1, . . . , λk are distinct eigenvalues of T . Then the gener-
alized eigenspaces Gλ1(T ), . . . , Gλk(T ) are independent subspaces.

Proof. Suppose vj ∈ Gλj , and v1 + · · · + vk = 0. We have to show that vj = 0
for every j. For each j, suppose mj is the smallest nonnegative integer such that

(T − λjI)mjvj = 0.

If vj 6= 0 then we must have mj > 0, since otherwise we would have

vj = Ivj = (T − λjI)0vj = (T − λjI)mjvj = 0.

Now suppose to the contrary that vl 6= 0 for some l ≤ k. Then w := (T −
λlI)ml−1vl is nonzero, and we have (T − λlI)w = 0. Hence w is an eigenvector of
T corresponding to the eigenvalue λl. Let

q(x) :=
∏
j 6=l

(x− λj)mj , p(x) := q(x)(x− λl)ml−1.
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Note that q(λl) 6= 0. Now we have

0 = p(T )(0) = p(T )(v1 + · · ·+ vk) = p(T )v1 + · · ·+ p(T )vk.

For j 6= l we have p(x) = g(x)(x− λj)mj , where g is some polynomial. Thus

p(T )vj = g(T )(T − λjI)mjvj = g(T )(0) = 0.

On the other hand

p(T )vl = q(T )(T − λl)ml−1vl = q(T )w = q(λl)w.

Hence we have q(λl)w = 0. But q(λl) 6= 0, so we must have w = 0, which is a
contradiction. Thus vl = 0, and therefore every vj must be zero, as desired. �

Theorem 8.12. Suppose V is finite dimensional, and F is algebraically closed.
Then T has distinct eigenvalues λ1, . . . , λk, and we have

V = Gλ1(T )⊕ · · · ⊕Gλk(T ).

Remark. Note that the theorem expresses that λ1, . . . , λk are all the eigenvalues
of T , and that they are also distinct.

Remark. Also note that the sum of generalized eigenspaces is a direct sum, since
they are independent subspaces. Hence the nontrivial statement in this theorem is
that the sum of generalized eigenspaces of any operator is the whole space V , when
the field of scalars is algebraically closed.

Remark. A trivial consequence of this theorem is that

dimV =
k∑
j=1

dimGλj (T ).

Proof. Let n = dimV . We prove the theorem by induction on n. The case
of n = 1 is trivial, because every operator on a one-dimensional space is just
multiplication by some scalar. So any nonzero vector in the space is a basis for
the space, and an eigenvector of the operator. Now suppose the theorem is true
for operators on vector spaces with dimension less than n. We know that T has at
least one eigenvalue λ1, since F is algebraically closed. Let W := (T − λ1I)n(V ).
We claim that

V = Gλ1(T )⊕W.

To see this, first note that if

w ∈ Gλ1(T ) ∩W,
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then we have w = (T − λ1I)nv for some v ∈ V . We also have (T − λ1I)nw = 0,
since Gλ1(T ) = null(T − λ1I)n. Therefore we get

(T − λ1I)2nv = 0 =⇒ v ∈ Gλ1(T ) =⇒ w = (T − λ1I)nv = 0.

Hence Gλ1(T ),W are independent subspaces. But we have

dim
(
Gλ1(T )⊕W

)
= dimGλ1(T ) + dimW

= dim null(T − λ1I)n + dim (T − λ1I)n(V ) = dimV,

where we used the rank-nullity theorem in the last line. Thus Gλ1(T ) ⊕W is a
subspace of V that has the same dimension as V . Hence Gλ1(T ) ⊕ W = V as
desired.

Now note that dimW < n, since T has at least one eigenvector corresponding
to λ1, and therefore Gλ1(T ) is a nonzero subspace. Also note thatW is T -invariant,
because it is the image of a polynomial in T . Let

S := T |W .

Then by the induction hypothesis, S has distinct eigenvalues, which we call them
λ2, . . . , λk, and we have

W = Gλ2(S)⊕ · · · ⊕Gλk(S).

Next note that none of λ2, . . . , λk equals λ1. The reason is that if for w ∈ W we
have Sw = λ1w, then Tw = T |Ww = Sw = λ1w too. Hence w ∈ Eλ1(T ) ⊂ Gλ1(T ).
Thus w = 0, since W and Gλ1(T ) are independent subspaces.

In addition, note that λ2, . . . , λk are also eigenvalues of T . Because if for a
nonzero w ∈ W we have Sw = λjw, then we also have Tw = T |Ww = Sw = λjw.
Furthermore, by Exercise 2.57 we have

V = Gλ1(T )⊕W = Gλ1(T )⊕Gλ2(S)⊕ · · · ⊕Gλk(S). (∗)

Therefore we only need to show that

Gλj (S) = Gλj (T ),

for every j ≥ 2. It is obvious that Gλj (S) ⊂ Gλj (T ), since if for some w ∈ W
and m ∈ N we have (S − λjIW )mw = 0, then we also have (T − λjIV )mw = 0.
To show the reverse inclusion suppose v ∈ Gλj (T ). By equality (∗) we have v =
v1 + v2 + · · · + vk, where v1 ∈ Gλ1(T ), and vi ∈ Gλi(S) for i ≥ 2. We can rewrite
this equality as

v1 + · · ·+ vj−1 + (vj − v) + vj+1 + · · ·+ vk = 0.
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But vi ∈ Gλi(T ) for i 6= j, and vj − v ∈ Gλj (T ). Furthermore, we know that the
generalized eigenspaces of T are independent subspaces. Therefore we must have
vi = 0 for i 6= j, and vj − v = 0. Hence

v = vj ∈ Gλj (S).

Thus Gλj (T ) ⊂ Gλj (S) too, as desired.
Finally let us show that λ1, . . . , λk are all the eigenvalues of T . Suppose to

the contrary that T has a different eigenvalue λ. Let v be an eigenvector of T
corresponding to λ. Then we have shown that

v = v1 + · · ·+ vk,

where vi ∈ Gλi(T ). Now we have v1 + · · ·+ vk + (−v) = 0, where vi ∈ Gλi(T ) and
−v ∈ Eλ(T ) ⊂ Gλ(T ). But the generalized eigenspaces corresponding to distinct
eigenvalues are independent, so we must have vi = 0 for every i, and −v = 0.
However this contradicts the fact that v is an eigenvector, and thus it must be
nonzero. Hence T cannot have any other eigenvalue besides λ1, . . . , λk. �

8.2 The Jordan Form

Suppose V is finite dimensional, and F is algebraically closed. In the last section we
have found appropriate T -invariant subspaces such that their direct sum is V . These
subspaces are the generalized eigenspaces of T . Our final step is to understand the
behavior of the restriction of T to its generalized eigenspaces. Suppose λ is an
eigenvalue of T . Let W := Gλ(T ), and N := T |W − λI. Then for every w ∈ W
we have Nnw = 0, where n = dimV . In other words Nn = 0 on W . So if we
understand the behavior of operators with this property, then we can understand
T |W .

Definition 8.13. An operator N ∈ L(V ) is called nilpotent if there exists m ∈ N
such that

Nm = 0.

Theorem 8.14. Suppose V is finite dimensional, and N ∈ L(V ) is nilpotent. Then
we have

Nn = 0,

where n = dimV .

Proof. Let m be the smallest positive integer such that Nm = 0. It is enough
to show that m ≤ n, because then we would have Nn = Nn−mNm = Nn−m0 = 0.
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Now since Nm−1 6= 0, there is a vector v ∈ V such that Nm−1v 6= 0. Hence we
have the following m nonzero vectors

v,Nv, . . . , Nm−1v.

We claim that these vectors are linearly independent. To prove this, suppose

a1v + · · ·+ amN
m−1v = 0,

for some a1, . . . , am ∈ F . We have to show that every aj is zero. Suppose we have
shown that a1 = · · · = ak−1 = 0. Then we have akNk−1v + · · · + amN

m−1v = 0.
Hence we get

0 = Nm−k(0) = Nm−k(akN
k−1v + · · ·+ amN

m−1v)

= akN
m−1v + ak+1N

mv + · · ·+ amN
2m−k−1v

= akN
m−1v + 0 + · · ·+ 0 = akN

m−1v.

But Nm−1v is nonzero, thus we must have ak = 0. So if we continue this argument
inductively, we will show that a1 = · · · = am = 0. Note that the above argument
also works when k = 1, thus we do not need to check the base of induction sepa-
rately. Therefore v,Nv, . . . , Nm−1v are linearly independent. Hence we must have
m ≤ n, as desired. �

Theorem 8.15. Suppose V is finite dimensional, and N ∈ L(V ) is nilpotent. Then
there are v1, . . . , vk ∈ V and m1, . . . ,mk ∈ N such that

Nm1−1v1, . . . , Nv1, v1, Nm2−1v2, . . . , v2, . . . Nmk−1vk, . . . , vk

is a basis for V . Furthermore we have Nmjvj = 0 for every j.

Proof. The proof is by induction on dimV . When dimV = 1 the result holds
trivially, because the previous theorem implies that N = N1 = NdimV = 0. So any
nonzero vector in the space is a basis for the space, and has our desired property.
Now suppose the theorem holds for every nilpotent operator on a nonzero vector
space whose dimension is less than dimV . If N = 0 then every basis for V has our
desired property, since if v1, . . . , vn is a basis for V , then we have Nvj = 0 for all j.

So suppose that N 6= 0. Let m be the smallest positive integer such that
Nm = 0. Note that m > 1, since N 6= 0. Thus Nm−1 6= 0. Hence there is v ∈ V
so that Nm−1v 6= 0. But we know that N(Nm−1v) = Nmv = 0(v) = 0. Therefore
Nm−1v ∈ nullN . Thus nullN 6= {0}. Hence we have

dimN(V ) = dimV − dim nullN < dimV.
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On the other hand we know that N(V ) is N -invariant, as shown in Proposition
4.17. Let W := N(V ), and let M := N |W . Then by Exercise 4.16 we have
Mm = Nm|W = 0|W = 0. Hence M is also nilpotent. Thus we can apply the
induction hypothesis to M , and find the following basis for W

Mm1−1w1, . . . ,Mw1, w1, . . . Mmk−1wk, . . . , wk,

where Mmjwj = 0 for each j. But we know that M l = N l|W for every l. So for
every w ∈ W we have M lw = N l|Ww = N lw. Therefore the above basis is the
same as

Nm1−1w1, . . . , Nw1, w1, . . . Nmk−1wk, . . . , wk, (∗)

where Nmjwj = 0 for each j. Next note that each wj is in W = N(V ), so there
are vj ∈ V such that wj = Nvj for each j. Consider the list of vectors

Nm1v1, . . . , N
2v1, Nv1, v1, . . . Nmkvk, . . . , Nvk, vk.

Note that if we remove the vectors v1, . . . , vk from this list, we get the list (∗).
Now note that Nmj+1vj = NmjNvj = Nmjwj = 0. Thus N(Nmjvj) =

Nmj+1vj = 0. Hence Nmjvj ∈ nullN for every j. Obviously, Nm1v1, . . . , N
mkvk

are linearly independent, since they are the same as Nm1−1w1, . . . , N
mk−1wk, and

these vectors belong to a basis for W . Now we extend the linearly independent list
Nm1v1, . . . , N

mkvk to a basis for nullN , by adding the vectors u1, . . . , up.
Finally we claim that

Nm1v1, . . . , v1, . . . Nmkvk, . . . , vk, u1, . . . , up

is a basis for V , which has our desired property. Note that for every j, l we have
Nmj+1vj = 0, and Nul = 0. So the above list has our desired property. Now let
v ∈ V be an arbitrary vector. Then Nv ∈ N(V ) = W . Hence there are bij ∈ F
such that

Nv =
∑
i≤k

∑
j<mi

bijN
jwi =

∑
i≤k

∑
j<mi

bijN
jNvi

=
∑
i≤k

∑
j<mi

bijNN
jvi = N

(∑
i≤k

∑
j<mi

bijN
jvi

)
.

Note that we have used the fact that N,N j commute for every j. Therefore we can
conclude that

N
(
v −

∑
i≤k

∑
j<mi

bijN
jvi

)
= 0.
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Thus we have v −
∑
i≤k

∑
j<mi

bijN
jvi ∈ nullN . Hence there are bimi , bl ∈ F so that

v −
∑
i≤k

∑
j<mi

bijN
jvi =

∑
i≤k

bimiN
mivi +

∑
l≤p

blul

=⇒ v =
∑
i≤k

∑
j≤mi

bijN
jvi +

∑
l≤p

blul.

Thus v is in the span of the proposed basis.
It only remains to show that the proposed basis is linearly independent. Suppose∑

i≤k

∑
j≤mi

aijN
jvi +

∑
l≤p

alul = 0, (∗∗)

for some aij , al ∈ F . Then we get∑
i≤k

∑
j<mi

aijN
jwi =

∑
i≤k

∑
j<mi

aijN
jNvi

=
∑
i≤k

∑
j<mi

aijNN
jvi = N

(∑
i≤k

∑
j<mi

aijN
jvi

)
= N

(∑
i≤k

∑
j<mi

aijN
jvi

)
+N

(∑
i≤k

aimiN
mivi +

∑
l≤p

alul

)
= N

(∑
i≤k

∑
j≤mi

aijN
jvi +

∑
l≤p

alul

)
= N(0) = 0.

Note that we are using the fact that N
(∑

i≤k aimiN
mivi +

∑
l≤p alul

)
= 0, since

Nmivi, ul ∈ nullN . Hence aij = 0 for i ≤ k and j < mi, because N jwi’s form a
basis for W . Thus equation (∗∗) implies that∑

i≤k
aimiN

mivi +
∑
l≤p

alul = 0.

Therefore we must have aimi = 0 for i ≤ k and al = 0 for l ≤ p, since Nmivi’s and
ul’s form a basis for nullN . �

Remark. Let B be the basis

Nm1−1v1, . . . , v1, Nm2−1v2, . . . , v2, . . . Nmk−1vk, . . . , vk.

Then the entires of the matrix [N ]B are all 0, except for some 1’s on the diagonal
immediately above its main diagonal. Because the image of any vector in the basis
is either the previous vector in the basis, or zero. In addition, the matrix [N ]B is
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block diagonal with k diagonal blocks, and its j-th diagonal block has size mj×mj .
To see this let

Wj := span(Nmj−1vj , N
mj−2vj , . . . , vj).

Then for i < mj − 1 we have N(N ivj) = N i+1vj ∈ Wj , and for i = mj − 1 we
have N(N ivj) = Nmjvj = 0 ∈ Wj . Hence as shown in Exercise 4.2, each Wj is
N -invariant. In addition by Theorem 2.56 we have

V = W1 ⊕ · · · ⊕Wk,

since Bj := {Nmj−1vj , . . . , vj} is a basis for Wj , and
⋃
j≤k Bj is a basis for V .

Thus by Theorem 8.4 the matrix [N ]B is block diagonal, and its diagonal blocks
are [N |W1 ]B1 , . . . , [N |Wk

]Bk . Finally note that Bj has mj elements.
Now consider a fixed j. Then for every 0 ≤ i < mj − 1 we have N(N ivj) =

N i+1vj , i.e. the image of the (mj− i)-th vector in the basis Bj is the (mj− i−1)-th
vector in the basis. We also have N(Nmj−1vj) = 0, i.e. the image of the first vector
in the basis is zero. Remember that the coordinate vector with respect to a basis,
of the i-th element of that basis, is ei, as shown in Example 3.30. Hence we have

[N |Wj ]Bj =
[

[N(Nmj−1vj)]Bj
∣∣ [N(Nmj−2vj)]Bj

∣∣ . . . ∣∣ [N(Nvj)]Bj
∣∣ [Nvj ]Bj

]
=
[

[Nmjvj ]Bj
∣∣ [Nmj−1vj ]Bj

∣∣ . . . ∣∣ [N2vj ]Bj
∣∣ [Nvj ]Bj

]
=
[

0
∣∣ e1 ∣∣ . . . ∣∣ emj−2 ∣∣ emj−1 ]

=


0 1 0 · · · 0
0 0 1 0

. . . . . .
...

. . . 1
0 0 · · · 0

 ∈ F
mj×mj .

Therefore we have a complete characterization of [N ]B. �

Example 8.16. Let us consider a more concrete example related to the above
observations. Suppose k = 4, m1 = 3, m2 = 2, and m3 = m4 = 1. Then our basis
B becomes

N2v1, Nv1, v1, Nv2, v2, v3, v4.

In addition we know that N3v1 = N2v2 = Nv3 = Nv4 = 0. Therefore the matrix
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of N is 

0 1 0
0 0 1
0 0 0

0 1
0 0

0
0


.

Note that every entry of the above matrix that is not displayed is zero. Also notice
the block diagonal structure of the matrix. It has 4 diagonal blocks, of which two
blocks are 1× 1 zero matrix.

Jordan Form. Suppose V is a finite dimensional vector space over an algebraically
closed field, and T is an operator on V . Then V has a basis in which the entires of
the matrix of T are all 0 except on the main diagonal and the diagonal immediately
above the main diagonal. The entries on the main diagonal are the eigenvalues of
T , and the entries on the diagonal immediately above the main diagonal are either
0 or 1.

Proof. We can decompose V as

V = Gλ1(T )⊕ · · · ⊕Gλk(T ).

Each Gλj (T ) is T -invariant, and the restriction of T to it is of the form

λjI +Nj ,

where Nj is nilpotent. We can choose a basis for each generalized eigenspace in
which the matrix of Nj has the required form. The union of these bases is the
desired basis for V . �

Remark. In particular, this theorem shows that every operator on a vector space
over an algebraically closed field can be represented by an upper triangular matrix.

8.3 The Minimal Polynomial

Definition 8.17. Let T be an operator on a space V . A nonzero monic polynomial
p is called theminimal polynomial of T if p(T ) = 0, and p has the smallest degree
among the polynomials with this property.

Remark. If T has a minimal polynomial, it is easy to see that its minimal poly-
nomial is unique.
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Theorem 8.18. If an operator T has the minimal polynomial p, and f is a poly-
nomial such that f(T ) = 0, then f is a multiple of p.

Proof. We can divide f by p to obtain f = pq+ r, where deg r < deg p. Suppose
to the contrary that r 6= 0. Then as r(T ) = f(T )−p(T )q(T ) = 0 and deg r < deg p,
we get a contradiction. �

Theorem 8.19. Every operator on a finite dimensional space has a minimal poly-
nomial.

Proof. Suppose T is an operator on an n-dimensional space V . Then T ∈ L(V ),
and dimL(V ) = n2. Hence I, T, T 2, . . . , Tn

2 are linearly dependent. Let m be the
smallest integer for which

I, T, T 2, . . . , Tm

are linearly dependent. Then there are scalars ai, not all of them zero, such that

a0I + a1T + · · ·+ amT
m = 0.

First note that am 6= 0, since otherwise I, T, T 2, . . . , Tm−1 would be linearly depen-
dent, contradicting our choice of m.

We claim that p(x) := xm + am−1

am
xm−1 + · · ·+ a0

am
is the minimal polynomial of

T . It is obvious that p(T ) = 0. If there exist a polynomial q with deg q < m, then
we would have a linear dependence relation between I, T, T 2, . . . , Tm−1, which is
again a contradiction. �

Theorem 8.20. Suppose an operator T has the minimal polynomial p. Then a
scalar λ is an eigenvalue of T if and only if p(λ) = 0.

Proof. Suppose Tv = λv for a nonzero vector v. Then 0 = p(T )v = p(λ)v and
as v 6= 0 we have p(λ) = 0.

Now suppose p(λ) = 0. Then p(x) = (x − λ)q(x), where deg q < deg p. Hence
q(T ) 6= 0, so there is a vector w such that q(T )w 6= 0. Let v := q(T )w. Then

(T − λI)v = (T − λI)q(T )w = p(T )w = 0. �



Appendix A

Rings

A.1 Rings

Definition A.1. A ring is a nonempty set R equipped with two binary operations

R×R −→ R
(a, b) 7→ a+ b

,
R×R −→ R
(a, b) 7→ ab

,

called respectively addition and multiplication, such that
(i) The operations are associative, i.e. for all a, b, c ∈ R

a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c.

(ii) Addition is commutative, i.e. for all a, b ∈ R

a+ b = b+ a.

(iii) There exist elements 0, 1 ∈ R, called respectively additive identity and mul-
tiplicative identity, such that for all a ∈ R

a+ 0 = a, a1 = a = 1a.

(iv) For every a ∈ R there exists b ∈ R, called its additive inverse, such that

a+ b = 0.

(v) Multiplication is distributive over addition, i.e. for all a, b, c ∈ R

a(b+ c) = ab+ ac, (b+ c)a = ba+ ca.

Example A.2. Z,Q,R,C are all rings with the usual addition and multiplication.
N is not a ring as it does not have an additive identity, and its elements do not
have additive inverse.

178
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Definition A.3. A multiplicative inverse of an element a ∈ R is an element b ∈ R
such that

ab = 1 = ba.

In this case a is called invertible.

Proposition A.4. Let R be a ring. Then for all a, b, c ∈ R we have
(i) (Cancellation Laws)

a+ c = b+ c =⇒ a = b,

ac = bc, c is invertible =⇒ a = b,

ca = cb, c is invertible =⇒ a = b.

(ii) Additive and multiplicative identities of R are unique.
(iii) Additive inverse of any element of R is unique, and multiplicative inverse of

any invertible element of R is unique
(iv) 0a = 0 = a0.

Proof. (i) Suppose d is an additive inverse of c. Then we can add d to both sides
of a+ c = b+ c to obtain (a+ c) + d = (b+ c) + d. Now by associativity of addition
we have a + (c + d) = b + (c + d). Since c + d = 0, we get a + 0 = b + 0; and
hence a = b. The multiplicative cases can be proved similarly using a multiplicative
inverse of c.

(ii) Suppose 0, 0̃ are both additive identities, then

0̃ = 0̃ + 0 = 0 + 0̃ = 0.

Similarly for two multiplicative identities 1, 1̃ we have 1̃ = 1̃1 = 1.
(iii) Suppose b, b̃ are both additive inverses of a. Then a+ b = 0 = a+ b̃, and

by (i) we get b = b̃. The multiplicative case is similar.
(iv) We have

0 + 0a = 0a = (0 + 0)a = 0a+ 0a.

Hence by cancellation law we get 0 = 0a. The other equality can be proved similarly.
�

Definition A.5. Additive and multiplicative identities of a ring are respectively
called zero and identity of the ring.

The unique additive inverse of an element a is denoted by −a, and is called its
opposite. Also for two elements a, b we set a− b := a+ (−b).

If an element a has multiplicative inverse, we denote it by a−1, and we call it
the inverse of a.

Proposition A.6. Let R be a ring. Then for all a, b ∈ R we have
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(i) −(−a) = a for all a ∈ R.
(ii) −(a+ b) = (−a) + (−b) = −a− b for all a, b ∈ R.
(iii) If a is invertible, then a−1 is also invertible and

(a−1)−1 = a.

(iv) If a and b are invertible, then ab is also invertible and we have

(ab)−1 = b−1a−1.

(v) (−a)b = −ab = a(−b) for all a, b ∈ R. As a result

(−a)(−b) = ab,

−a = (−1)a.

Proof. (i) This is similar to (iii).
(ii) This is similar to (iv). Note that the last equality in (ii) holds by definition.
(iii) Since a−1a = 1 = aa−1, a−1 is invertible, and we must have (a−1)−1 = a

due to the uniqueness of inverse.
(iv) First note that

(b−1a−1)(ab) = b−1(a−1(ab)) = b−1((a−1a)b)

= b−1(1b) = b−1b = 1.

Similarly (ab)(b−1a−1) = 1. Therefore ab is invertible. Now the result follows from
the uniqueness of inverse.

(v) We have
ab+ (−a)b = (a+ (−a))b = 0b = 0.

Thus uniqueness of additive inverse implies (−a)b = −ab. The equality a(−b) =
−ab can be proved similarly. Now we have

(−a)(−b) = −(−a)b = −(−ab) = ab,

(−1)a = −(1a) = −a. �

Exercise A.7. Show that if a is invertible, then −a is also invertible and we have

(−a)−1 = −a−1.

Solution. By the previous theorem we have

(−a−1)(−a) = a−1a = 1 = aa−1 = (−a)(−a−1).

Thus we get the desired result due to the uniqueness of inverse. �
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Definition A.8. A commutative ring is a ring in which multiplication is com-
mutative, i.e. for all elements a, b we have

ab = ba.

Also, we say two elements a and b in a ring commute if ab = ba.

Definition A.9. In a ring R, for a positive integer n we inductively define

[0] := 0, [1] := 1, . . . [n] := [n− 1] + 1.

We also define [−n] := −[n].

Remark. Note that in the above definition, each one of the 0, 1, and ±, has two
different meanings.

Notation. We abuse the notation and write n instead of [n]. We also set

na := [n]a.

Remark. The next proposition shows that the operations of Z on n’s and the
operations of R on n’s are compatible. Therefore this abbreviation does not lead
to any confusion.

Remark. na is actually the n-th additive power of a, i.e. the n-th power of a with
respect to the binary operation + as defined in Section A.6. To see this note that
0a = [0]a = 0, since [0] = 0 (note that 0 has two meanings here). Also for n > 0
we have

na = [n]a = ([n− 1] + 1)a = [n− 1]a+ 1a = (n− 1)a+ a.

In addition we have

(−n)a = [−n]a = (−[n])a = [n](−a) = n(−a).

Remark. A consequence of the above remark is that for n > 0 we have

na =

n times︷ ︸︸ ︷
a+ a+ · · ·+ a,

since the right hand side is just the n-th power of a with respect to +.

Proposition A.10. In any ring R we have
(i) For all n ∈ Z, [n] commutes with all elements of R.
(ii) For all n,m ∈ Z

[n+m] = [n] + [m], [nm] = [n][m].
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Proof. (i) Let a be an arbitrary element of R. Then [0]a = 0a = 0 = a0 = a[0],
so [0] commutes with every a. Now suppose for some n > 0, [n] commutes with
every a. Then we have

[n+ 1]a = ([n] + 1)a = [n]a+ 1a = a[n] + a1 = a([n] + 1) = a[n+ 1].

Hence by induction, [n] commutes with every a for all n > 0. Next suppose n =
−m < 0. Then

[n]a = (−[m])a = −[m]a = −a[m] = a(−[m]) = a[n].

(ii) Since [n] = n1 is the n-th additive power of 1 ∈ R, these relations are
special cases of the properties of powers as proved in Section A.6. For example, for
the second equality we can say that [nm] is the nm-th power of 1, so it is equal to
the m-th power of the n-th power of 1. But the n-th power of 1 is [n]. Hence the
nm-th power of 1 equals the m-th power of [n], which is [m][n]. But by (i) we have
[m][n] = [n][m]. Therefore [nm] = [n][m] as desired. �

Proposition A.11. Let R be a ring. Then for all m,n ∈ Z and all a, b ∈ R we
have
(i) (−n)a = n(−a) = −(na).
(ii) (n+m)a = na+ma.
(iii) m(na) = (mn)a.
(iv) n(a+ b) = na+ nb.
(v) (ma)(nb) = mn(ab) = (na)(mb).
(vi) If a commutes with b, then na commutes with mb.

Proof. Parts (i) to (iv) are true for any notion of power as proved in Section A.6.
They can also be proved directly, as we do below. We have

(−n)a = [−n]a = (−[n])a = [n](−a) = n(−a),

(−n)a = [−n]a = (−[n])a = −[n]a = −na,
(n+m)a = [n+m]a = ([n] + [m])a = [n]a+ [m]a = na+ma,

m(na) = [m]([n]a) = ([m][n])a = [mn]a = (mn)a,

n(a+ b) = [n](a+ b) = [n]a+ [n]b = na+ nb.

For part (v) we have

(ma)(nb) = ([m]a)([n]b) = [m]a[n]b = [m][n]ab = [mn]ab = mn(ab).

Note that we used the generalized associativity of the product of R, and the fact
that [n] commutes with all elements of R. Now for the second equality we use the
first one to obtain

(ma)(nb) = mn(ab) = nm(ab) = (na)(mb).
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Finally, for part (vi) we have

(na)(mb) = nm(ab) = mn(ab) = mn(ba) = (mb)(na). �

Definition A.12. We define the powers of a ∈ R as follows. For a positive integer
n we inductively define

a0 := 1, a1 := a, . . . an := an−1a.

If a is invertible, we define
a−n := (a−1)n.

Theorem A.13. Let R be a ring. Then for all a, b ∈ R we have
(i) If a commutes with b, then an commutes with bm, for all m,n ≥ 0. If one or

both of a, b are invertible, we can allow n and/or m to be negative too.
(ii) If a is invertible, then an is also invertible for all n ∈ Z, and

(an)−1 = a−n = (a−1)n.

(iii) anam = an+m for all m,n ≥ 0. If a is invertible, we can allow m,n to be
negative too.

(iv) (an)m = anm for all m,n ≥ 0. If a is invertible, we can allow m,n to be
negative too.

(v) If a, b commute, we have anbn = (ab)n for all n ≥ 0. If a, b are invertible, we
can allow n to be negative too.

Proof. All the proofs are by induction. We will only write the induction steps
below, since the base of inductions can be checked easily.

(i) For m ≥ 0 we have

abm+1 = abmb = bmab = bmba = bm+1a.

If b is invertible we have

ab−1 = 1ab−1 = b−1bab−1 = b−1abb−1 = b−1a.

Thus by the first part b−m = (b−1)m commutes with a. By repeating this argument
with fixed m, we see that an commutes with bm too.

(ii) When n ≥ 0 we have

(an+1)a−n−1 = ana(a−1)n+1 = aan(a−1)na−1 = aana−na−1 = aa−1 = 1.

When n = −m < 0 we have a−m = (a−1)m. Hence by the previous part we get

(a−m)−1 = ((a−1)m)−1 = (a−1)−m = ((a−1)−1)m = am.
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The second equality holds by definition when n > 0. When n = 0 we have

(a−1)0 = 1 = a0 = a−0.

And when n = −m < 0 we have

(a−1)−m = ((a−1)−1)m = am = a−n.

(iii) When n,m ≥ 0 we have

anam+1 = anama = an+ma = an+m+1.

Now suppose a is invertible. Then we have

a−nam+1 = a−nama

= a−n+ma =


(a−1)n−ma = (a−1)n−m−1a−1a if − n+m < 0,

= (a−1)n−m−1 = a−n+m+1

a−n+m+1 if − n+m ≥ 0.

We also have

ana−m = (a−1)−n(a−1)m = (a−1)−n+m = an−m,

a−na−m = (a−1)n(a−1)m = (a−1)n+m = a−n−m.

(iv) For n,m ≥ 0 we have

(an)m+1 = (an)man = anman = anm+n = an(m+1).

If a is invertible we have

(a−n)m = ((a−1)n)m = (a−1)nm = a−nm,

(a±n)−m = ((a±n)m)−1 = (a±nm)−1 = a∓nm.

(v) For n ≥ 0 we have

an+1bn+1 = anabnb = anbnab = (ab)nab = (ab)n+1,

and if a, b are invertible we have

a−nb−n = (a−1)n(b−1)n = (a−1b−1)n = ((ba)−1)n = (ba)−n = (ab)−n. �
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Definition A.14. Let n ∈ N. The n factorial is

n! := n× (n− 1)× · · · × 2× 1.

We also set 0! := 1. Suppose n, k ∈ Z, and 0 ≤ k ≤ n. The number(
n

k

)
:=

n!

k!(n− k)!

is called a binomial coefficient.

Remark. Note that for all n ≥ 1 we have n! = n(n − 1)!. It is also trivial to see
that

(
n
0

)
= 1 =

(
n
n

)
for all n ≥ 0.

Proposition A.15. For all integers 1 ≤ k ≤ n we have(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
.

As a result
(
n
k

)
is always a positive integer for all 0 ≤ k ≤ n.

Proof. We have(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n!

(k − 1)!(n− k)!
(
1

k
+

1

n− k + 1
)

=
n!

(k − 1)!(n− k)!

n+ 1

k(n− k + 1)

=
(n+ 1)!

k!(n+ 1− k)!
=

(
n+ 1

k

)
.

Next, we show by induction on n that
(
n
k

)
is a positive integer for all 0 ≤ k ≤ n.

For n = 1 we have
(
1
0

)
=
(
1
1

)
= 1 ∈ N. Suppose the claim holds for n. Then for

0 < k < n+ 1 we have (
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
∈ N.

Also note that
(
n+1
0

)
=
(
n+1
n+1

)
= 1 ∈ N. �

Theorem A.16. For two commuting elements a, b in a ring, and a positive integer
n, we have
(i) (Binomial Theorem) (a+ b)n =

∑n
k=0

(
n
k

)
an−kbk.
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(ii) an − bn = (a− b)
(∑n−1

k=0 a
n−1−kbk

)
.

Proof. (i) The proof is by induction on n. The case of n = 1 is obvious. For the
induction step we have

(a+ b)n+1 = (a+ b)n(a+ b) =
( n∑
k=0

(
n

k

)
an−kbk

)
(a+ b)

=
n∑
k=0

(
n

k

)
an−kbk(a+ b) =

n∑
k=0

(
n

k

)
(an−kbka+ an−kbkb)

=
n∑
k=0

(
n

k

)
(an−kabk + an−kbk+1)

=

n∑
k=0

[(
n

k

)
an−k+1bk +

(
n

k

)
an−kbk+1

]

=

n∑
k=0

(
n

k

)
an−k+1bk +

n∑
k=0

(
n

k

)
an−kbk+1

=

n∑
k=0

(
n

k

)
an+1−kbk +

n+1∑
j=1

(
n

j − 1

)
an+1−jbj

(We replaced k with j − 1 in the 2nd sum.)

= an+1 +

(
n∑
k=1

(
n

k

)
an+1−kbk +

n∑
k=1

(
n

k − 1

)
an+1−kbk

)
+ bn+1

(We replaced j with k in the 2nd sum.)

= an+1 +

(
n∑
k=1

[(
n

k

)
+

(
n

k − 1

)]
an+1−kbk

)
+ bn+1

=

n+1∑
k=0

(
n+ 1

k

)
an+1−kbk.

Note that since the binomial coefficients are positive integers, we can multiply the
ring elements with them.

(ii) We have

(a− b)
( n−1∑
k=0

an−1−kbk
)

=
n−1∑
k=0

(a+ (−b))an−1−kbk

=

n−1∑
k=0

(aan−1−kbk + (−1)ban−1−kbk)
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=

n−1∑
k=0

(an−kbk + (−1)an−1−kbbk)

=
n−1∑
k=0

an−kbk +
n−1∑
k=0

(−1)an−1−kbk+1

=
n−1∑
k=0

an−kbk +
n∑
j=1

(−1)an−jbj

(We replaced k with j − 1 in the 2nd sum.)

= an +

(
n−1∑
k=1

an−kbk +

n−1∑
k=1

(−1)an−kbk

)
+ (−1)bn

(We replaced j with k in the 2nd sum.)

= an +

(
n−1∑
k=1

an−kbk + (−1)

n−1∑
k=1

an−kbk

)
− bn

= an − bn. �

Definition A.17. A field is a commutative ring in which 1 6= 0, and all nonzero
elements are invertible.

Notation. For two elements a, b in a field when b 6= 0 we set a/b = a
b := ab−1.

Definition A.18. An integral domain is a commutative ring in which for all a, b

ab = 0 =⇒ a = 0 or b = 0.

Theorem A.19. Suppose R is an integral domain, and a, b, c ∈ R. Then the
cancellation law holds for the multiplication of R, i.e.

ac = bc, c 6= 0 =⇒ a = b.

Proof. We have (a− b)c = 0. Hence a− b = 0, since c 6= 0. �

Theorem A.20. Any field is an integral domain.

Proof. If ab = 0 and a 6= 0 then

b = 1b = (a−1a)b = a−1(ab) = a−10 = 0. �

Definition A.21. Suppose R is a ring, and S ⊂ R. We say S is a subring of R
if S contains the identity of R, and for all a, b ∈ S we have −a, a+ b, ab ∈ S.

Proposition A.22. Suppose R is a ring, and S is a subring of R. Then 0 ∈ S,
and S is itself a ring with the addition and multiplication inherited from R.
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Proof. We have −1 ∈ S, since 1 ∈ S. Then 0 = 1 + (−1) ∈ S. The associativity,
commutativity, and distributivity laws are trivially satisfied in S, since they are
satisfied in R. Also by definition S contains the opposite of each of its elements.
Hence S is a ring. �

Definition A.23. Suppose in a ring R we have n =

n times︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = 0 for some

positive integer n. Then the smallest such n is called the characteristic of R. If
this never happens we say that R has characteristic zero.

Theorem A.24. The characteristic of an integral domain is either zero or a prime
positive integer.

Proof. If the conclusion does not hold, the characteristic is n = pq for some
positive integers p, q < n. But pq = n = 0 hence p = 0 or q = 0, which is in
contradiction with the fact that n is the smallest positive integer with this property.

�

Remark. Suppose F is a field in which n 6= 0. Then we have

n times︷ ︸︸ ︷
1

n
+

1

n
+ · · ·+ 1

n
= n

( 1

n

)
= n(1n−1) = nn−1 = 1.

In other words, the n-th additive power of 1
n is 1.

Exercise A.25. Suppose R is a ring, and S is a nonempty set. On the space of
all functions from S into R we define the binary operations of pointwise addition
and multiplication of functions, i.e. for two functions f, g : S → R and all s ∈ S
we define

(f + g)(s) := f(s) + g(s),

(fg)(s) := f(s)g(s).

Show that this space is a ring with these operations.

A.2 Matrices

Definition A.26. Let R be a ring, and m,n ∈ N. An m× n matrix with entries
in R is a function

A : {(i, j) : i, j ∈ N, i ≤ m, j ≤ n} → R.
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We denote by Aij (or Ai,j) the value of A at (i, j), and call it the ij-th entry of
A. The matrix A is usually denoted as a rectangular array of elements of R with
m rows and n columns

A = [Aij ] =

A11 · · · A1n
...

. . .
...

Am1 · · · Amn

.
The 1× n matrix [Ai1, . . . , Ain] is called the i-th row of A, and is denoted by Ai,..
Also, the m× 1 matrix A1j

...
Amj


is called the j-th column of A, and is denoted by A.,j . A 1 × n matrix is also
called a row vector, and an m × 1 matrix is also called a column vector. The
set of m× n matrices with entries in R is denoted by Rm×n. The size of a matrix
A ∈ Rm×n is m× n.

Remark. We know that Rn is the set of ordered n-tuples of elements of R. In
order to make this precise, we can define Rn to be the set of functions

r : {1, 2, . . . , n} → R.

Then we denote by ri the value of r at i, and we call it the i-th component of r.
We will also denote r by the following familiar notation

r = (r1, . . . , rn).

We can identify Rn with both R1×n and Rn×1 via the maps

(r1, . . . , rn) 7→ [r1, . . . , rn],

(r1, . . . , rn) 7→

r1...
rn

.
In particular, we always identify R with R1×1. We also refer to the i,1-th entry
of a column vector, or the 1,i-th entry of a row vector, as the i-th component of
them. Furthermore, the operations that we are going to define on matrices can also
be applied to the elements of Rn via the above identifications, and they have the
same properties.
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Remark. Note that as matrices are functions into R, it suffices to define them by
specifying their ij-th entry for every i, j. Also, when we want to show that two
matrices are equal, it is enough to check the equality of their ij-th entry for each
i, j. The same things apply to the elements of Rn.

Definition A.27. Let R be a ring, and m,n ∈ N. The m × n zero matrix is a
matrix whose entries are all zero. We often denote the zero matrix simply by 0.
A square matrix is a matrix for which m = n, i.e. a matrix that has the same
number of rows and columns. The (main) diagonal of a square matrix A is the
n-tuple (A11, A22, . . . , Ann) ∈ Rn. The entries Aii are referred to as the diagonal
entries of A. The square matrix A is called upper triangular if Aij = 0 for j < i.
In other words, the entries of A below its main diagonal are zero, so A has the form

A11 A12 · · · A1n

0 A22 . . . A2n
...

...
. . .

...
0 0 · · · Ann

.
Similarly, a square matrix A is called lower triangular if Aij = 0 for j > i. A
diagonal matrix is a square matrix A for which Aij = 0 when i 6= j, so it has the
form 

A11 0 · · · 0
0 A22 . . . 0
...

...
. . .

...
0 0 · · · Ann

.
A special diagonal matrix is the n× n identity matrix, which is defined by

Iij = (In)ij :=

{
0 i 6= j,

1 i = j.

Definition A.28. Let R be a ring, and m,n ∈ N. The addition of two m × n
matrices A,B with entries in R, is defined by

(A+B)ij := Aij +Bij .

The multiplication of an m × n matrix A with an n × l matrix B is an m × l
matrix AB, which is defined by

(AB)ij :=

n∑
k=1

AikBkj .

The scalar multiplication of r ∈ R and A ∈ Rm×n is defined by

(rA)ij := rAij .
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The transpose of an m× n matrix A is the n×m matrix AT that satisfies

(AT)ij := Aji.

Notation. For a matrix A we set −A := (−1)A, so (−A)ij = −Aij . Also, for two
m× n matrices A,B we set A−B := A+ (−B).

Remark. Let A,B ∈ Rm×n and r ∈ R. It is easy to show that for every i, j we
have

(A+B)i,. = Ai,. +Bi,., (rA)i,. = rAi,., (Ai,.)
T = AT

.,i,

(A+B).,j = A.,j +B.,j , (rA).,j = rA.,j , (A.,j)
T = AT

j,..

Remark. When the ring R is not commutative we can also define a scalar mul-
tiplication from the right by (Ar)ij := Aijr. This scalar multiplication has the
properties described in the next theorem too. But we are mainly interested in
commutative rings and do not pursue this direction here.

Theorem A.29. Let R be a ring. Then for all L ∈ Rp×m, A,B,E ∈ Rm×n,
C ∈ Rn×l, and r, s ∈ R we have
(i) The addition of matrices is associative and commutative, i.e.

A+ (B + E) = (A+B) + E, A+B = B +A.

(ii) Let 0 ∈ Rm×n be the zero matrix, then

A+ 0 = A, A+ (−A) = 0.

(iii) 1A = A, and ImA = A = AIn.
(iv) We have

L(A+B) = LA+ LB, (A+B)C = AC +BC.

(v) We have

r(A+B) = rA+ rB, (r + s)A = rA+ sA,

(rA)C = r(AC), r(sA) = (rs)A.

(vi) If A or C is the zero matrix, then AC is the zero matrix. Also, if r is zero,
or A is the zero matrix, then rA is the zero matrix.

(vii) We have

(A+B)T = AT +BT, (rA)T = rAT, (AT)T = A.
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(viii) When R is a commutative ring, we also have

(AC)T = CTAT,

and
A(rC) = r(AC), (rA)(sC) = (rs)(AC).

Proof. (i) For each i, j we have(
A+ (B + E)

)
ij

= Aij + (B + E)ij = Aij + (Bij + Eij)

= (Aij +Bij) + Eij = (A+B)ij + Eij =
(
(A+B) + E

)
ij
.

The other one is similar.
(ii) This is similar to (i).
(iii) It is obvious that 1A = A. For the second part we have

(ImA)ij =
∑
k≤m

(Im)ikAkj = 0A1j + · · ·+ 1Aij + · · ·+ 0Amj = Aij .

The other half is similar.
(iv) We have(

(A+B)C
)
ij

=
∑
k≤n

(A+B)ikCkj =
∑
k≤n

(Aik +Bik)Ckj

=
∑
k≤n

AikCkj +
∑
k≤n

BikCkj = (AC)ij + (BC)ij .

The other one is similar.
(v) We only prove (rA)C = r(AC), the others can be proved similarly. We

have (
(rA)C

)
ij

=
∑
k≤n

(rA)ikCkj =
∑
k≤n

rAikCkj

= r
∑
k≤n

AikCkj = r(AC)ij =
(
r(AC)

)
ij
.

(vi) These are all easy to show.
(vii) We have

(
(AT)T

)
ij

= (AT)ji = Aij . Also(
(rA)T

)
ij

= (rA)ji = rAji = r(AT)ij = (rAT)ij .

The other one is similar.
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(viii) We have(
(AC)T

)
ij

= (AC)ji =
∑
k≤n

AjkCki

=
∑
k≤n

CkiAjk =
∑
k≤n

(CT)ik(A
T)kj = (CTAT)ij .

Also (
A(rC)

)
ij

=
∑
k≤n

Aik(rC)kj =
∑
k≤n

AikrCkj

=
∑
k≤n

rAikCkj = r
∑
k≤n

AikCkj = r(AC)ij =
(
r(AC)

)
ij
.

Hence
(rA)(sC) = s

(
(rA)C

)
= s
(
r(AC)

)
= (sr)(AC) = (rs)(AC). �

Theorem A.30. The multiplication of matrices is associative, i.e. for any ring R
and all matrices A ∈ Rp×m, B ∈ Rm×n, and C ∈ Rn×l, we have

(AB)C = A(BC).

Proof. We have

(
(AB)C

)
ij

=
n∑
k=1

(AB)ikCkj =
n∑
k=1

( m∑
l=1

AilBlk

)
Ckj

=
n∑
k=1

m∑
l=1

AilBlkCkj =
m∑
l=1

n∑
k=1

AilBlkCkj

=

m∑
l=1

Ail

( n∑
k=1

BlkCkj

)
=

m∑
l=1

Ail(BC)lj =
(
A(BC)

)
ij
. �

Example A.31. Let A =

[
1 0
0 0

]
and B =

[
0 1
0 0

]
be matrices in R2×2, for some

ring R. Then we have

AB =

[
0 1
0 0

]
6=
[
0 0
0 0

]
= BA.

Hence the multiplication of matrices is not in general commutative. This example
also shows that the product of two nonzero matrices can be zero.

Theorem A.32. Suppose R is a ring, and A ∈ Rm×n, C ∈ Rn×l. Then we have

(AC)ij = Ai,.C.,j , (AC).,j = AC.,j , (AC)i,. = Ai,.C.



APPENDIX A. RINGS 194

Remark. In other words, the j-th column of AC is the product of A and the j-th
column of C. And the i-th row of AC is the product of the i-th row of A, and C.

Proof. Since Ai,. and C.,j are respectively 1×n and n×1 matrices, their product
is a 1× 1 matrix, i.e. an element of R, and we have

(Ai,.C.,j)1,1 =
∑
k≤n

(Ai,.)1,k(C.,j)k,1 =
∑
k≤n

Ai,kCk,j = (AC)ij .

Similarly, (AC).,j and (AC)i,. are respectively m× 1 and 1× l matrices. Hence we
have (

(AC).,j
)
i,1

= (AC)i,j =
∑
k≤n

AikCkj =
∑
k≤n

Aik(C.,j)k,1 = (AC.,j)i,1,

(
(AC)i,.

)
1,j

= (AC)i,j =
∑
k≤n

AikCkj =
∑
k≤n

(Ai,.)1,kCkj = (Ai,.C)1,j . �

Theorem A.33. Suppose R is a ring, and A ∈ Rm×n. Let x = [x1, . . . , xn]T ∈
Rn×1 be a column vector, and let y = [y1, . . . , ym] ∈ R1×m be a row vector. Then
we have

Ax =
∑
j≤n

A.,jxj , yA =
∑
i≤m

yiAi,..

In particular, for k ∈ N and j ≤ k let ej ∈ Rk×1 be the column vector whose
components are all zero except for its j-th component which is one. Then

Aej = A.,j , eTiA = Ai,..

Remark. We say that Ax is a linear combination of the columns of A, and yA is
a linear combination of the rows of A.

Proof. We know that Ax and yA are respectively m×1 and 1×n matrices. Then
we have

(Ax)i,1 =
∑
j≤n

Aijxj =
∑
j≤n

(A.,j)i,1xj =
(∑
j≤n

A.,jxj

)
i,1
,

(yA)1,j =
∑
i≤m

yiAij =
∑
i≤m

yi(Ai,.)1,j =
(∑
i≤m

yiAi,.

)
1,j
. �

Theorem A.34. Let R be a ring, then Rn×n is a ring with the addition and mul-
tiplication of matrices.

Proof. This is a trivial consequence of the previous theorems. Just note that the
zero and identity of this ring are respectively the n × n zero matrix and In. Also,
the opposite of each matrix A is −A. �
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Remark. Let R be a ring. We know that Rn×n is a ring. Therefore a square
matrix A ∈ Rn×n is called invertible if there is B ∈ Rn×n such that

AB = In = BA.

We also know that the inverse of an invertible matrix A is unique, and as usual we
denote it by A−1.

Proposition A.35. Suppose R is a commutative ring, and A ∈ Rn×n is invertible.
Then AT is also invertible, and we have

(AT)−1 = (A−1)T.

Proof. We have
(A−1)TAT = (AA−1)T = IT = I.

Similarly we have AT(A−1)T = I. Hence we get the desired due to the uniqueness
of the inverse of a matrix. �

A.3 Polynomials

Definition A.36. Let R be a commutative ring. The ring of polynomials with
coefficients in R is the set of all sequences in R that terminate eventually, i.e.

R[x] := {f : N ∪ {0} → R : there is N ≥ 0 such that fn = 0 for n ≥ N}.

The elements fn are called the coefficients of f . The zero polynomial is the
polynomial whose coefficients are all zero. For a nonzero polynomial f , the largest
nonnegative integer n for which fn 6= 0 is called the degree of f and is denoted by

deg f.

We also define the degree of the zero polynomial to be −∞, with the understanding
that for all n ∈ Z we have

−∞ < n, −∞+ n = −∞.

The addition and multiplication of two polynomials f, g are defined as follows

(f + g)n := fn + gn, (fg)n :=
∑
k≤n

fkgn−k.

Remark. Note that as polynomials are sequences of elements of R, it suffices to
define them by specifying their n-th terms for every n. Also, when we want to show
that two polynomials are equal, it is enough to check the equality of their n-th
terms for each n.
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Remark. It is easy to see that R[x] is closed under the addition and multiplication
defined above. Because (f + g)n and (fg)n are zero for all large values of n. In fact
for nonnegative n > max{deg f, deg g} we have

(f + g)n = fn + gn = 0 + 0 = 0,

and for nonnegative n > deg f + deg g we have

(fg)n =

n∑
k=0

fkgn−k =
∑

k≤deg f
fkgn−k +

∑
k>deg f

fkgn−k

=
∑

k≤deg f
fk0 +

∑
k>deg f

0gn−k = 0.

Note that for k ≤ deg f we have n− k > deg g, hence gn−k = 0. Also, note that as
a result we have

deg(f + g) ≤ max{deg f,deg g},
deg(fg) ≤ deg f + deg g.

Theorem A.37. Let R be a commutative ring. Then the ring of polynomials R[x]
is also a commutative ring.

Proof. Let f, g, h ∈ R[x]. It is easy to check that addition of polynomials is
commutative and associative, and the zero polynomial

0 := (0, 0, 0, . . . , 0, . . .)

is an additive identity. We have

(f + g)n = fn + gn = gn + fn = (g + f)n,

(f + (g + h))n = fn + (g + h)n = fn + (gn + hn)

= (fn + gn) + hn = (f + g)n + hn = ((f + g) + h)n,

(f + 0)n = fn + 0n = fn + 0 = fn.

Also, for any f , the polynomial defined by (−f)n := −fn is its opposite, since

(f + (−f))n = fn + (−f)n = fn + (−fn) = 0 = 0n.

Note that −f is a polynomial as (−f)n = 0 for n > deg f .
The sequence

1 := (1, 0, 0, . . . , 0, . . .)

is the multiplicative identity of R[x], since

(1f)n = 1fn + 0fn−1 + · · ·+ 0f1 + 0f0 = fn.
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The commutativity of the multiplication is also easy to show

(fg)n =

n∑
k=0

fkgn−k =

n∑
k=0

gn−kfk

=
0∑
l=n

glfn−l =
n∑
l=0

glfn−l = (gf)n. (l := n− k)

(Note that we have used both the commutativity of the multiplication of R, and
the generalized commutativity of the addition of R.) To see that multiplication is
distributive over addition, we have

(f(g + h))n =

n∑
k=0

fk(g + h)n−k =

n∑
k=0

fk(gn−k + hn−k)

=

n∑
k=0

(fkgn−k + fkhn−k) =

n∑
k=0

fkgn−k +

n∑
k=0

fkhn−k = (fg)n + (fh)n.

It remains to show that multiplication is associative. Let

∆l,k :=

{
1 l ≤ k,
0 l > k,

where l, k are nonnegative integers and 0, 1 ∈ R. Then we have(
(fg)h

)
n

=
∑
k≤n

(fg)khn−k =
∑
k≤n

[∑
l≤k

flgk−l

]
hn−k

=
∑
k≤n

∑
l≤n

∆l,kflgk−lhn−k =
∑
l≤n

∑
k≤n

∆l,kflgk−lhn−k

=
∑
l≤n

fl
∑
l≤k≤n

gk−lhn−k =
∑
l≤n

fl
∑

0≤j≤n−l
gjhn−l−j (j := k − l)

=
∑
l≤n

fl(gh)n−l =
(
f(gh)

)
n
,

as desired. �

Notation. We use the abbreviations

r := (r, 0, 0, . . . , 0, . . .),

x := (0, 1, 0, . . . , 0, . . .),

where r ∈ R. Then we have

rxn = xnr = (0, 0, . . . ,
n-th
�
r , . . . , 0, . . .).
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Thus any polynomial can be written as

f = f0 + f1x+ · · ·+ fmx
m,

where m = deg f for nonzero f . Note that the coefficients of f in this represen-
tation are exactly the coefficients of f , so they are uniquely determined by f . We
sometimes write f(x) instead of f .

The zero polynomial, and polynomials of degree zero, are called constant poly-
nomials. So constant polynomials are polynomials of degree less than one. Also,
polynomials of degree one, two, and three are respectively called linear, quadratic,
and cubic polynomials.

Remark. By identifying r ∈ R with the constant polynomial r ∈ R[x], we can
consider R as a subring of R[x].

Remark. Every polynomial defines a function on R by evaluation. That is for

f(x) = f0 + f1x+ · · ·+ fmx
m,

we have f(r) := f0 + f1r + · · · + fmr
m, where r ∈ R. Note that f(r) is uniquely

determined by f and r, since the coefficients of f are uniquely determined by f .
Also note that in the above, m need not be the deg f . Because for i > deg f we
have fi = 0, hence the terms with i > deg f do not change the value of f(r).

Theorem A.38. For any two polynomials f, g ∈ R[x] and all r ∈ R we have

(f + g)(r) = f(r) + g(r), (fg)(r) = f(r)g(r).

Proof. The proof is the same as of a more general version in Section A.5. �

Remark. Note that the multiplication of polynomials is defined in a way that
makes the above theorem valid, and this is one of the reasons behind its definition.

Definition A.39. Let f be a polynomial with coefficients in a ring R, and suppose
r ∈ R. Then when f(r) = 0 we say r is a root of f .

Theorem A.40. Suppose R is an integral domain. Then R[x] is an integral domain
too. In addition, for any two polynomials f, g we have

deg(fg) = deg f + deg g.

Proof. We have already shown that R[x] is a commutative ring. If f or g, for
example f , is zero, then fg = 0. Hence

deg fg = −∞ = −∞+ deg g = deg f + deg g.
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Now suppose f, g are nonzero polynomials. Let deg f = n and deg g = m. Then
fm, gn are nonzero elements of R. Hence (fg)m+n = fmgn 6= 0. Thus in partic-
ular fg is nonzero. Therefore R[x] is an integral domain. Furthermore we have
deg(fg) ≥ m + n. On the other hand we know that in general deg(fg) ≤ m + n,
so deg(fg) is exactly m+ n. �

Theorem A.41. Suppose F is a field, and f, g ∈ F [x] with g 6= 0. Then there are
unique q, r ∈ F [x] such that

f = gq + r, where deg r < deg g.

Proof. If there is h such that f = gh, then we put q = h and r = 0. Now suppose
no such h exists. Then all the polynomials in

{f − gp : p ∈ F [x]}

are nonzero. Let q be an element of this set for which f − gq has the least degree.
This is possible due to the well ordering of nonnegative integers. Then set

r := f − gq.

We must show that deg r < deg g. Suppose to the contrary that deg r ≥ deg g. Let

r(x) = rnx
n + · · ·+ r0, g(x) = gmx

m + · · ·+ g0.

Note that rn, gm 6= 0. Set s(x) := r(x)− rn
gm
xn−mg(x). If s = 0 then we have

f(x) = g(x)
(
q(x) +

rn
gm

xn−m
)
,

which is in contradiction with our assumption. Thus s 6= 0 and we have deg s <
deg r, since we have eliminated the xn term. But this implies

f(x) = g(x)
(
q(x) +

rn
gm

xn−m
)

+ s(x),

which is in contradiction with the choice of q. Hence we have deg r < deg g as
desired.

For the uniqueness, suppose we have

gq1 + r1 = f = gq2 + r2.

Then g(q1−q2) = r2−r1. Since g 6= 0, we have r2−r1 = 0 if and only if q1−q2 = 0.
Now if r1 6= r2 and q1 6= q2 then we get

deg g + deg(q1 − q2) = deg(r2 − r1),

which is in contradiction with the fact that

deg(r2 − r1) ≤ max{deg r2,deg r1} < deg g. �
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Theorem A.42. Suppose F is a field, a ∈ F , and f ∈ F [x]. Then

f(x) = (x− a)g(x) + f(a).

Thus f(a) = 0 if and only if there is g ∈ F [x] such that

f(x) = (x− a)g(x).

As a result, the number of distinct roots of a nonzero polynomial f is at most deg f .

Proof. We divide f by x − a to get f(x) = (x − a)g(x) + r(x). But deg r <
deg(x − a) = 1, so r is a constant. By evaluating the above equality at a we get
r = f(a). Thus

f(x) = (x− a)g(x) + f(a).

Now the second statement follows easily.
The last statement can be proved by induction on deg f . Nonzero polynomials

of degree zero are constant polynomials which have no root. Suppose the claim
holds for all polynomials with degree less than deg f . If f has no root, then there is
nothing to prove. So let a be a root of f . Then f = (x− a)g. If g = 0 then f = 0,
which is contrary to our assumption. So g 6= 0, and we have deg g = deg f−1. Now
if b is another root of f we must have g(b) = 0. But g has at most deg g distinct
roots, hence f has at most deg g + 1 = deg f distinct roots. �

Remark. When the field F has infinitely many elements, the function defined by
a polynomial uniquely determines the polynomial. Since if there are two distinct
polynomials f, g ∈ F [x] such that f(a) = g(a) for all a ∈ F , then the nonzero
polynomial f − g has infinitely many roots, which is in contradiction with the
above theorem.

Definition A.43. A field F is called algebraically closed, if every nonconstant
polynomial with coefficients in F has at least one root in F .

Theorem A.44. Let f be a polynomial with coefficients in an algebraically closed
field F . Suppose deg f = n ≥ 1. Then there are (not necessarily distinct) elements
a1, . . . , an ∈ F , and c ∈ F − {0}, such that

f(x) = c(x− a1) · · · (x− an).

Proof. The proof is by induction on n. For n = 1 the claim holds trivially. Now
suppose it also holds for polynomials of degree n− 1. Then we know that f has at
least one root a1. Hence there is a polynomial g of degree n− 1 such that

f(x) = (x− a1)g(x).
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Now by the induction hypothesis g has a factorization

g(x) = c(x− a2) · · · (x− an).

Thus we get the desired factorization for f . Finally note that if c = 0 then f = 0,
which contradicts the fact that deg f ≥ 1. �

Definition A.45. Suppose R is a commutative ring. We inductively define the
ring of polynomials in n variables with coefficients in R to be the commutative
ring

R[x1, . . . , xn] := R[x1, . . . , xn−1][xn].

Remark. Intuitively we consider a polynomial p in n variables to be a formal
sum of finitely many expressions of the form rxm1

1 · · ·xmnn , where r ∈ R. Then
we can collect all terms in which xn has power mn, and factor xmnn out, to get
q(x1, . . . , xn−1)x

mn
n , where q is (what we intuitively consider) a polynomial in n−1

variables. Thus we can write p as a sum of terms of this form, with different powers
of xn. In other words, p is a polynomial in xn whose coefficients are polynomials
in n − 1 variables. Continuing inductively we can see that our intuitive notion of
polynomials in n variables is the same notion described rigorously in the above
definition.
Remark. When R is an integral domain, R[x1] is also an integral domain. Hence
R[x1, x2] = R[x1][x2] is an integral domain too. By an easy induction it follows
that for any n, R[x1, . . . , xn] is also an integral domain.
Remark. Every polynomial in n variables defines a function on Rn by evaluation.
Let f(x1, . . . , xn) be a polynomial in n variables. Then by definition we have

f(x1, . . . , xn) =

f0(x1, . . . , xn−1) + f1(x1, . . . , xn−1)xn + · · ·+ fm(x1, . . . , xn−1)x
m
n ,

where fj ’s are polynomials in n− 1 variables which are uniquely determined by f .
Then we can inductively define the value of f at (a1, . . . , an) ∈ Rn to be

f(a1, . . . , an) :=

f0(a1, . . . , an−1) + f1(a1, . . . , an−1)an + · · ·+ fm(a1, . . . , an−1)a
m
n .

It can also be proved inductively that the value of f at a point is uniquely deter-
mined by f and that point, since the same is true for each fj , and fj ’s are uniquely
determined by f .

Theorem A.46. Suppose R is a commutative ring. Then every polynomial f ∈
R[x1, . . . , xn] can be written as a sum of finitely many monomials, i.e.

f(x1, . . . , xn) =
∑
m1≤k1

· · ·
∑

mn≤kn

rm1...mnx
m1
1 · · ·x

mn
n ,



APPENDIX A. RINGS 202

where rm1...mn ∈ R and k1, . . . , kn are nonnegative integers. Furthermore, this
representation of f is unique, and for every (a1, . . . , an) ∈ Rn we have

f(a1, . . . , an) =
∑
m1≤k1

· · ·
∑

mn≤kn

rm1...mna
m1
1 · · · a

mn
n .

Proof. The proof is by induction on n. The case of n = 1 is obvious. So suppose
the theorem is true for n−1. First note that the monomials are actually polynomials
in n variables, since if rxm1

1 · · ·x
mn−1

n−1 ∈ R[x1, . . . , xn−1] then by definition we have
rxm1

1 · · ·x
mn−1

n−1 xmnn ∈ R[x1, . . . , xn]. Now we know that

f(x1, . . . , xn) =

f0(x1, . . . , xn−1) + f1(x1, . . . , xn−1)xn + · · ·+ fm(x1, . . . , xn−1)x
m
n ,

where fj ’s are polynomials in n − 1 variables. By the induction hypothesis each
fj can be written as a sum of finitely many monomials in n − 1 variables. If we
substitute those expansions into the above formula for f , and multiply them by xjn,
then we get an expansion of f into a sum of finitely many monomials in n variables.

Now let us prove the second statement. We have

f(x1, . . . , xn) =
∑
m1≤k1

· · ·
∑

mn≤kn

rm1...mnx
m1
1 · · ·x

mn
n

=

kn∑
j=0

( ∑
m1≤k1

· · ·
∑

mn−1≤kn−1

rm1...mn−1jx
m1
1 · · ·x

mn−1

n−1

)
xjn

(We replaced mn with j.)

=
∑
j≤kn

fj(x1, . . . , xn−1)x
j
n,

where fj :=
∑

m1≤k1 · · ·
∑

mn−1≤kn−1
rm1...mn−1jx

m1
1 · · ·x

mn−1

n−1 is a polynomial in
n − 1 variables. Hence by the induction hypothesis, rm1...mn−1j ’s are uniquely
determined by fj , and we have

fj(a1, . . . , an−1) =
∑
m1≤k1

· · ·
∑

mn−1≤kn−1

rm1...mn−1ja
m1
1 · · · a

mn−1

n−1 .

On the other hand, fj ’s must be the coefficients of f ∈ R[x1, . . . , xn−1][xn], since
the coefficients of f are uniquely determined by f . Thus rm1...mn ’s are uniquely
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determined by f , and we have

f(a1, . . . , an) =
∑
j≤kn

fj(a1, . . . , an−1)a
j
n

=
∑
j≤kn

( ∑
m1≤k1

· · ·
∑

mn−1≤kn−1

rm1...mn−1ja
m1
1 · · · a

mn−1

n−1

)
ajn

=
∑
m1≤k1

· · ·
∑

mn≤kn

rm1...mna
m1
1 · · · a

mn
n . (We replaced j with mn.)

Note that we have used Theorem A.68 several times, to change the order of sum-
mations. �

Remark. When we expand the polynomial f ∈ R[x1, . . . , xn] into a sum of mono-
mials as described in the above theorem, the elements rm1...mn ∈ R are referred to
as the coefficients of f . Note that we sometimes consider the coefficients of f to
be polynomials of n − 1 variables, but usually we consider the coefficients of f to
be rm1...mn ’s.

Definition A.47. The elementary symmetric polynomials in n variables
x1, . . . , xn are

s1 := x1 + x2 + · · ·+ xn,

s2 := x1x2 + x1x3 + · · ·+ x2x3 + · · ·+ xn−1xn,

...

sk :=
n−k+1∑
i1=1

n−k+2∑
i2=i1+1

· · ·
n∑

ik=ik−1+1

xi1xi2 · · ·xik ,

...
sn := x1x2 · · ·xn.

Theorem A.48. Suppose R is a commutative ring and a1, . . . , an are (not neces-
sarily distinct) elements of R. Then

(x− a1) · · · (x− an) = xn − b1xn−1 + b2x
n−2 − · · ·+ (−1)nbn,

where bk = sk(a1, . . . , an).

Proof. The proof is by induction on n. The case of n = 1 is trivial. Suppose the
claim holds for n − 1. Let s̃1, . . . , s̃n be the elementary symmetric polynomials in
n− 1 variables. Then we have

(x− a1) · · · (x− an−1) = xn−1 − c1xn−2 + · · ·+ (−1)n−1cn−1,
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where ck = s̃k(a1, . . . , an−1). Now we have

(x− a1) · · · (x− an) = (xn−1 − c1xn−2 + · · ·+ (−1)n−1cn−1)(x− an)

= xn − (c1 + an)xn−1 + (c2 + c1an)xn−2

− (c3 + c2an)xn−3 + · · ·+ (−1)ncn−1an.

But for 1 < k < n we have

bk =

n−k+1∑
i1=1

n−k+2∑
i2=i1+1

· · ·
n∑

ik=ik−1+1

ai1ai2 · · · aik

=
n−k∑
i1=1

n−k+1∑
i2=i1+1

· · ·
n−2∑

ik−1=ik−2+1

n−1∑
ik=ik−1+1

ai1ai2 · · · aik

+
( n−k+1∑

i1=1

n−k+2∑
i2=i1+1

· · ·
n−1∑

ik−1=ik−2+1

ai1ai2 · · · aik−1

)
an.

Hence bk = ck + ck−1an. It is also obvious that b1 = c1 + an, and bn = cn−1an.
Therefore we get the desired formula. �

A.4 Field of Fractions

Let R be an integral domain. Let X = {(a, b) : a, b ∈ R, b 6= 0}. We define the
relation ∼ on X as follows

(a, b) ∼ (c, d) if ad = bc.

Proposition A.49. ∼ is an equivalence relation.

Proof. We only check the transitivity of ∼ and leave the rest as an exercise.
Suppose (a, b) ∼ (c, d) and (c, d) ∼ (e, f). Then we have ad = bc and cf = de. If
we multiply the first equation by f we get adf = bcf = bde. Hence d(af − be) = 0.
But d 6= 0 and R is an integral domain, thus af = be. Therefore (a, b) ∼ (e, f). �

Let F be the set of equivalence classes of ∼. We denote the equivalence class of
(a, b) by [a, b]. We want to formally consider [a, b] to be the fraction a

b . Note that
[a, b] = [c, d] if and only if ad = bc, which is formally equivalent to the equality of
the fractions a

b ,
c
d . Now we define the addition and multiplication on F as follows

[a, b] + [c, d] := [ad+ bc, bd],

[a, b][c, d] := [ac, bd].
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Notice that bd 6= 0, since b, d 6= 0 and R is an integral domain. It must be checked
that these operations are well-defined, i.e. they do not depend on the particular
representatives of the equivalence classes [a, b] and [c, d]. Note that these operations
are the same as formally adding and multiplying the fractions a

b ,
c
d .

Theorem A.50. F equipped with the above operations is a field.

Proof. We leave the details of the proof as an exercise. Only note that the zero
and identity of F are respectively

[0, 1], [1, 1].

Also the opposite and the inverse (if a 6= 0) of an element [a, b] are respectively

−[a, b] = [−a, b], [a, b]−1 = [b, a]. �

Note that the map a 7→ [a, 1] from R into F preserves addition and multiplica-
tion, i.e.

[a+ b, 1] = [a, 1] + [b, 1], [ab, 1] = [a, 1][b, 1].

We abuse the notation and denote [a, 1] simply by a, and we consider R to be a
subring of F . Now for every element [a, b] ∈ F we have

[a, b] = [a, 1][1, b] = [a, 1][b, 1]−1 = ab−1,

i.e. [a, b] is the fraction a
b .

Definition A.51. F is called the field of fractions of R.

Example A.52. Q is the field of fractions of Z.

Example A.53. Let F be a field. The field of fractions of the ring of polynomi-
als F [x1, . . . , xn] is denoted by F (x1, . . . , xn), and is called the field of rational
functions in n-variables over F . The elements of F (x1, . . . , xn) are of the form

f(x1, . . . , xn)

g(x1, . . . , xn)
,

where f, g ∈ F [x1, . . . , xn] are polynomials in n-variables. These elements are called
rational functions. For (a1, . . . , an) ∈ F if g(a1, . . . , an) 6= 0, we can compute the
value of the rational function f

g at (a1, . . . , an) to be

f(a1, . . . , an)

g(a1, . . . , an)
∈ F.
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A.5 Algebras

Definition A.54. Let R be a commutative ring. Let A be a ring. We say A is an
algebra over R if there is an operation

R×A −→ A
(r, α) 7→ rα

,

called scalar multiplication, that satisfies
(i) For all r ∈ R and α, β ∈ A we have

r(α+ β) = rα+ rβ,

and
(rα)β = r(αβ) = α(rβ).

(ii) For all r, s ∈ R and α ∈ A we have

(r + s)α = rα+ sα,

and
r(sα) = (rs)α.

(iii) For all α ∈ A we have
1α = α,

where 1 is the identity of R.

Remark. Note that the second equation of (i) informally means that the elements
of R commute with the elements of A. If the ring A is itself a commutative ring,
we say A is a commutative algebra over R.

Example A.55. Suppose R is a commutative ring. Then Rn×n equipped with the
standard addition, multiplication, and scalar multiplication of matrices, is an alge-
bra over R. Also, R[x] with its usual addition and multiplication is a commutative
algebra over R. The scalar multiplication of r ∈ R and f(x) = f0 + · · ·+ fmx

m ∈
R[x] is

rf(x) := rf0 + · · ·+ rfmx
m.

Since this is the same as the product of the constant polynomial r, and f , the scalar
multiplication satisfies all the required properties trivially.

Example A.56. Any commutative ring R is an algebra over itself. The scalar
multiplication of r ∈ R and a ∈ R is just their product ra.
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Exercise A.57. Suppose R is a commutative ring, and S is a nonempty set. Show
that the space of all functions from S into R with pointwise addition, multiplication,
and scalar multiplication of functions, is a commutative algebra over R. Remember
that for two functions f, g : S → R, and all s ∈ S and r ∈ R, these operations are
defined as

(f + g)(s) := f(s) + g(s),

(fg)(s) := f(s)g(s),

(rf)(s) := rf(s).

Proposition A.58. Let A be an algebra over the commutative ring R. Then for
all r, s ∈ R and α, β ∈ A we have
(i) 0α = 0.
(ii) r0 = 0.
(iii) (−1)α = −α, where −1 ∈ R.
(iv) (rα)(sβ) = (rs)(αβ).

Proof. (i) We have

0α+ 0 = 0α = (0 + 0)α = 0α+ 0α.

Hence by cancellation law we get 0 = 0α.
(ii) We have

r0 + 0 = r0 = r(0 + 0) = r0 + r0.

Thus again by cancellation law we get 0 = r0.
(iii) We have

α+ (−1)α = 1α+ (−1)α = (1 + (−1))α = 0α = 0.

Therefore the result follows from the uniqueness of the inverse of α.
(iv) We have

(rα)(sβ) = r(α(sβ)) = r(s(αβ)) = (rs)(αβ). �

Remark. We can also easily show by induction that

r(α1 + · · ·+ αk) = rα1 + · · ·+ rαk,

(r1 + · · ·+ rk)α = r1α+ · · ·+ rkα,

for r, ri ∈ R, and α, αi ∈ A.
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Definition A.59. Suppose A is an algebra over the commutative ring R. Then
every polynomial f ∈ R[x] defines a function from A into A by evaluation. That is
for

f(x) = f0 + f1x+ · · ·+ fmx
m

with fi ∈ R, and for α ∈ A, we define

f(α) := f0I + f1α+ · · ·+ fmα
m,

where I ∈ A is the identity of A. We say that the element f(α) is a polynomial in
α.

Remark. Note that f(α) is uniquely determined by f and α, since the coefficients
of f are uniquely determined by f . Also note that in the above definition, m need
not be the deg f . Because for i > deg f we have fi = 0, hence the terms with
i > deg f do not change the value of f(α).

Theorem A.60. Suppose A is an algebra over the commutative ring R. Then for
any two polynomials f, g ∈ R[x] and all α ∈ A we have

(f + g)(α) = f(α) + g(α), (fg)(α) = f(α)g(α).

As a result, f(α) and g(α) always commute.

Remark. The significance of this theorem is that the addition and multiplication of
polynomials convert to the addition and multiplication of A via the map f 7→ f(α).

Proof. Let m = deg f , and n = deg g. Then fi = 0 for i > m, and gj = 0 for
j > n. Let l = max{m,n}, then deg(f + g) ≤ l. Now we have

f(α) + g(α) =
∑
i≤m

fiα
i +
∑
i≤n

giα
i =

∑
i≤l

fiα
i +
∑
i≤l

giα
i

=
∑
i≤l

(fiα
i + giα

i) =
∑
i≤l

(fi + gi)α
i = (f + g)(α).

Next, remember that deg(fg) ≤ m+n. For 0 ≤ k ≤ m+n let a = max{0, k−m},
and b = min{n, k}. Then by the generalized distributivity and Theorem A.68 we
have

f(α)g(α) =
(∑
i≤m

fiα
i
)(∑

j≤n
gjα

j
)

=
∑
i≤m

∑
j≤n

(fiα
i)(gjα

j)

=
∑
i≤m

∑
j≤n

(figj)(α
iαj) =

∑
i≤m

∑
j≤n

(figj)α
i+j

=
∑

k≤m+n

∑
i+j=k

(figj)α
k =

∑
k≤m+n

( ∑
a≤i≤b

figk−i

)
αk

=
∑

k≤m+n

(∑
i≤k

figk−i

)
αk =

∑
k≤m+n

(fg)kα
k = (fg)(α).
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In the last line of the above formula we used the fact that
∑

a≤i≤b figk−i =∑
i≤k figk−i. The reason is that for i > b ≥ n we have fi = 0, and for i < a ≤ k−m

we have gk−i = 0 since k − i > m.
Finally, to prove the last statement of the theorem, note that we have

f(α)g(α) = (fg)(α) = (gf)(α) = g(α)f(α),

since R[x] is a commutative ring. �

Remark. The above theorem is in particular true for polynomials of square ma-
trices with entries in a commutative ring.

Remark. As a consequence of the above theorem, we can easily show by induction
that if p1, . . . , pk ∈ R[x] then we have

(p1 + · · ·+ pk)(α) = p1(α) + · · ·+ pk(α),

(p1p2 · · · pk)(α) = p1(α)p2(α) · · · pk(α).

A.6 Binary Operations

Definition A.61. A binary operation on a set S is a function

? : S × S → S.

For two elements a, b ∈ S, we usually write a ? b instead of ?(a, b).

Notation. In the rest of this section we assume that S is a set, and ? is a binary
operation on S.

Definition A.62. A binary operation ? on S is called associative if for all a, b, c ∈
S we have

a ? (b ? c) = (a ? b) ? c,

and it is called commutative if for all a, b ∈ S we have

a ? b = b ? a.

We also say two elements a, b commute if a ? b = b ? a. An element e ∈ S is an
identity if for all a ∈ S we have

a ? e = a = e ? a.

Finally, a subset A ⊂ S is said to be closed under ? if for all a, b ∈ A we have
a ? b ∈ A.
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Theorem A.63. A binary operation has at most one identity.

Proof. If there exist two identities e, e′ we have e′ = e′ ? e = e. �

Definition A.64. Suppose ? is a binary operation on S with identity e, and a, b ∈
S. We say a is invertible, and b is an inverse of a, if

a ? b = e = b ? a.

Theorem A.65. Suppose ? is an associative operation with identity e, and a, b ∈ S.
(i) If a has an inverse, its inverse is unique, and we denote it by a−1.
(ii) If a is invertible, then a−1 is also invertible and

(a−1)−1 = a.

(iii) If a and b are invertible, then a ? b is also invertible and we have

(a ? b)−1 = b−1 ? a−1.

Proof. (i) Suppose that a has two inverses denoted by b and c, then

b = b ? e = b ? (a ? c) = (b ? a) ? c = e ? c = c.

(ii) This follows from the definition of a−1 and the uniqueness of inverse.
(iii) First note that

(b−1 ? a−1) ? (a ? b) = b−1 ? (a−1 ? (a ? b))

= b−1 ? ((a−1 ? a) ? b) = b−1 ? (e ? b) = b−1 ? b = e.

Similarly (a ? b) ? (b−1 ? a−1) = e. Therefore (a ? b) is invertible. Now the result
follows from uniqueness of inverse and the above computations. �

Cancellation Law. Suppose ? is an associative operation with identity e. Let
a, b, c ∈ S, and suppose a is invertible. Then we have

a ? b = a ? c =⇒ b = c,

b ? a = c ? a =⇒ b = c.

Proof. We have

a ? b = a ? c =⇒ a−1 ? (a ? b) = a−1 ? (a ? c)

=⇒ (a−1 ? a) ? b = (a−1 ? a) ? c

=⇒ e ? b = e ? c =⇒ b = c.

The other one is similar. �
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Notation. Suppose ? is a binary operation on S, and a1, . . . , an ∈ S. We induc-
tively define the standard product of n elements of S to be

1∏
i=1

ai := a1, . . .
n∏
i=1

ai :=
(n−1∏
i=1

ai

)
? an.

We also inductively define the set of all possible products of n elements of S as
follows

P (a1) := {a1},
...
P (a1, . . . , an) :=

{b ? c : b ∈ P (a1, . . . , ak) , c ∈ P (ak+1, . . . , an) for some 1 ≤ k < n}.

Note that the n elements a1, . . . , an have an order, and can have repetitions; so the
above notions are actually assigned to the ordered n-tuple (a1, . . . , an).

Remark. When the binary operation is denoted by a · b, or simply by ab, then we
keep using the notation

∏
for the standard product of several elements. But when

the binary operation is denoted by a+ b, we use the notation
∑

instead of
∏
, and

we use the term “sum” instead of “product”.

Generalized Associativity. Suppose ? is an associative binary operation, and
a1, . . . , an ∈ S. Then P (a1, . . . , an) has exactly one element

∏n
i=1 ai.

Proof. It is easy to show by induction that
∏n
i=1 ai ∈ P (a1, . . . , an). For unique-

ness we can argue inductively as follows. When n = 1, P (a1) has one element.
Suppose the theorem is true for 1 ≤ k < n, i.e. P (b1, . . . , bk) has exactly one el-
ement for any b1, . . . , bk. Then the elements of P (a1, . . . , an) are of the form b ? c
where b ∈ P (a1, . . . , ak) and c ∈ P (ak+1, . . . , an). Thus by induction hypothesis we
have

b =
k∏
i=1

ai, c =
n∏

i=k+1

ai.

When k = n−1 we have c = an, hence b?c =
(∏n−1

i=1 ai
)
?an =

∏n
i=1 ai. Otherwise

we have ( k∏
i=1

ai

)
?
( n∏
i=k+1

ai

)
=
( k∏
i=1

ai

)
?
[( n−1∏

i=k+1

ai

)
? an

]

=
[( k∏

i=1

ai

)
?
( n−1∏
i=k+1

ai

)]
? an
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=
(n−1∏
i=1

ai

)
? an =

n∏
i=1

ai. �

Remark. The above theorem means that when ? is associative, the value of the
product of a1, . . . , an is independent of the arrangement of the parentheses. In this
case we sometimes denote

∏n
i=1 ai by a1 ? · · · ? an.

Exercise A.66. Suppose ? is an associative binary operation on S, and a1, . . . , an ∈
S are invertible. Show that

∏n
i=1 ai is also invertible and we have

(a1 ? · · · ? an)−1 = a−1n ? · · · ? a−11 .

Definition A.67. A permutation is a one-to-one and onto map from {1, . . . , n}
to itself, for some positive integer n. We denote the set of all permutations on
{1, . . . , n} by Sn.

Generalized Commutativity. Suppose ? is an associative and commutative bi-
nary operation, and a1, . . . , an ∈ S. Then for every permutation σ ∈ Sn we have

aσ(1) ? · · · ? aσ(n) = a1 ? · · · ? an.

Proof. We use induction on n. The case n = 1 is obvious, so suppose the
conclusion holds for all permutations on {1, . . . , n− 1}. Now for the induction step
we have

n∏
i=1

aσ(i) =
n−1∏
i=1

aσ(i) ? aσ(n).

Suppose σ(j) = n. Then

n−1∏
i=1

aσ(i) =

j−1∏
i=1

aσ(i) ? an ?
n−1∏
i=j+1

aσ(i)

=

j−1∏
i=1

aσ(i) ?
n−1∏
i=j+1

aσ(i) ? an =
n−1∏

i=1,i 6=j
aσ(i) ? an.

Let σ̂ be the permutation on {1, . . . , n− 1} defined by

σ̂(i) =

{
σ(i) i < j

σ(i+ 1) i ≥ j.
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Then we have

n∏
i=1

aσ(i) =
n−1∏

i=1,i 6=j
aσ(i) ? an ? aσ(n)

=

n−1∏
i=1,i 6=j

aσ(i) ? aσ(n) ? an

=

j−1∏
i=1

aσ(i) ?

n∏
i=j+1

aσ(i) ? an

=
n−1∏
i=1

aσ̂(i) ? an =
n−1∏
i=1

ai ? an =
n∏
i=1

ai. �

Remark. The above theorem means that the order of a1, . . . , an does not affect
the value of a1 ? · · ·?an, when the operation ? is both commutative and associative.

Remark. Suppose ? is an associative and commutative binary operation. Some-
times we want to compute the product of several elements of S that do not have
an order, or are not ordered linearly. Suppose I is a finite set, and a : I → S is
a function. We want to compute the product of all the elements a(α) for α ∈ I.
Note that a need not be one-to-one, so some of the a(α)’s might be the same. In
other words, we may have repetition of factors in our product. Suppose I has n
elements, and f : {1, . . . , n} → I is a one-to-one and onto function. Let us denote
a(f(k)) by ak. Now we define ∏

α∈I
a(α) :=

∏
k≤n

ak.

We have to check that this definition is independent of f . Let g : {1, . . . , n} → I
be another one-to-one and onto function. Then

σ := f−1 ◦ g : {1, . . . , n} → {1, . . . , n}

is also one-to-one and onto, i.e. it is a permutation. Let us denote a(g(k)) by ãk.
Hence by the above theorem we have∏

k≤n
ãk =

∏
k≤n

a(g(k)) =
∏
k≤n

a(f(σ(k))) =
∏
k≤n

aσ(k) =
∏
k≤n

ak =
∏
α∈I

a(α),

as desired. The element
∏
α∈I a(α) is sometimes called the unordered product of

the elements a(α) for α ∈ I. A particular case is when A ⊂ S is a finite set, and
a : A→ S is the inclusion map. Then the unordered product of the elements of A
is
∏
a∈A a :=

∏
a∈A a(a).
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Theorem A.68. Suppose ? is an associative and commutative binary operation,
and ai, bi, aij ∈ S for i ≤ n, j ≤ m. Then

n∏
i=1

ai ?
n∏
i=1

bi =
n∏
i=1

(ai ? bi),

and
m∏
j=1

n∏
i=1

aij =

n∏
i=1

m∏
j=1

aij =

m+n∏
k=2

∏
i+j=k

aij .

Here
∏
i+j=k aij is a shorthand notation for

∏l
i=r ai,k−i, where r = max{1, k−m},

and l = min{n, k − 1}.

Proof. The proofs are by induction on n. We only write the induction step. For
the first equality we have

n+1∏
i=1

ai ?
n+1∏
i=1

bi =
( n∏
i=1

ai

)
? an+1 ?

( n∏
i=1

bi

)
? bn+1

=
( n∏
i=1

ai

)
?
( n∏
i=1

bi

)
? an+1 ? bn+1

=
( n∏
i=1

(ai ? bi)
)
? (an+1 ? bn+1) =

n+1∏
i=1

(ai ? bi).

For the second equality we have

n+1∏
i=1

m∏
j=1

aij =
( n∏
i=1

m∏
j=1

aij

)
?

m∏
j=1

an+1,j

=
( m∏
j=1

n∏
i=1

aij

)
?

m∏
j=1

an+1,j

=

m∏
j=1

[( n∏
i=1

aij

)
? an+1,j

]
=

m∏
j=1

n+1∏
i=1

aij .

For the third equality let r := max{1, k − m}, l := min{n, k − 1}, and L :=
min{n + 1, k − 1}. Note that for k ≤ n + 1 we have l = L, and for k ≥ n + 2 we
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have l = n and L = n+ 1. Now we have

n+1∏
i=1

m∏
j=1

aij =
( n∏
i=1

m∏
j=1

aij

)
?

m∏
j=1

an+1,j =
(m+n∏
k=2

l∏
i=r

ai,k−i

)
?

m∏
j=1

an+1,j

=
(m+n∏
k=2

l∏
i=r

ai,k−i

)
?
( m+n∏
k=n+2

an+1,k−n−1

)
? an+1,m

=
(n+1∏
k=2

l∏
i=r

ai,k−i

)
?
( m+n∏
k=n+2

n∏
i=r

ai,k−i

)
?
( m+n∏
k=n+2

an+1,k−n−1

)
? an+1,m

=
(n+1∏
k=2

l∏
i=r

ai,k−i

)
?
( m+n∏
k=n+2

[( n∏
i=r

ai,k−i

)
? an+1,k−n−1

])
? an+1,m

=
(n+1∏
k=2

L∏
i=r

ai,k−i

)
?
( m+n∏
k=n+2

n+1∏
i=r

ai,k−i

)
? an+1,m

=
(m+n∏
k=2

L∏
i=r

ai,k−i

)
? an+1,m =

m+n+1∏
k=2

L∏
i=r

ai,k−i =

m+n+1∏
k=2

∏
i+j=k

aij .

�

Notation. We often denote by ∏
i,j

aij

the common element of the second and third equalities in the above theorem.

Remark. An interesting consequence of the above theorem is that it enables us to
compute the following telescoping product. Let ? be an associative and commutative
binary operation on S. Then for invertible elements a1, . . . , an ∈ S we have

n∏
i=2

(ai ? a
−1
i−1) =

n∏
i=2

ai ?
n∏
i=2

a−1i−1 =

n−1∏
i=2

ai ? an ?
( 2∏
i=n

ai−1

)−1
= an ?

n−1∏
i=2

ai ?
( n∏
i=2

ai−1

)−1
= an ?

n−1∏
i=2

ai ?
(n−1∏
i=1

ai

)−1
(We changed i− 1 to i in the last term.)

= an ?
n−1∏
i=2

ai ?
(
a1 ?

n−1∏
i=2

ai

)−1
= an ?

n−1∏
i=2

ai ?
(n−1∏
i=2

ai

)−1
? a−11

= an ? a
−1
1 .
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Note that here we have used both the generalized associativity and the generalized
commutativity.

Definition A.69. Suppose ? is an associative binary operation on S and a ∈ S.
We define the powers an for positive integer n to be

∏n
i=1 a, i.e.

a1 := a, . . . an := an−1 ? a.

If there exists an identity e we define a0 := e, and if a has an inverse a−1 we define

a−n := (a−1)n.

Theorem A.70. Suppose ? is an associative binary operation on S. Then for all
a, b ∈ S we have
(i) If a commutes with b, then an commutes with bm, for all m,n ≥ 0. If one or

both of a, b are invertible, we can allow n and/or m to be negative too.
(ii) If a is invertible, then an is also invertible for all n ∈ Z, and

(an)−1 = a−n = (a−1)n.

(iii) an ? am = an+m for all m,n ≥ 0. If a is invertible, we can allow m,n to be
negative too.

(iv) (an)m = anm for all m,n ≥ 0. If a is invertible, we can allow m,n to be
negative too.

(v) If a, b commute, we have an ? bn = (a ? b)n for all n ≥ 0. If a, b are invertible,
we can allow n to be negative too.

Proof. The proof is the same as of Theorem A.13. �

Definition A.71. Suppose ? and + are binary operations on S. We say ? is
distributive over + if for all a, b, c ∈ S we have

a ? (b+ c) = (a ? b) + (a ? c),

(b+ c) ? a = (b ? a) + (c ? a).

Generalized Distributivity. Suppose ?,+ are associative binary operations on
S, and ? is distributive over +. Then for all aij ∈ S and nj ∈ N we have( n1∑

i1=1

ai11

)
? · · · ?

( nk∑
ik=1

aikk

)
=

n1∑
i1=1

· · ·
nk∑
ik=1

(ai11 ? · · · ? aikk).

Proof. First suppose k = 2 and n1 or n2 is 1. We have to show that

a11 ?
( n∑
i=1

ai2

)
=

n∑
i=1

a11 ? ai2,
( n∑
i=1

ai1

)
? a12 =

n∑
i=1

ai1 ? a12.
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This can be easily done by induction on n. Now for the general case, we proceed
by induction on k. Suppose the conclusion holds for k − 1. Then we have

( n1∑
i1=1

ai11

)
?
( n2∑
i2=1

ai22

)
? · · · ?

( nk∑
ik=1

aikk

)

=

n1∑
i1=1

ai11 ? ( n2∑
i2=1

ai22

)
? · · · ?

( nk∑
ik=1

aikk

)
=

n1∑
i1=1

( n2∑
i2=1

ai11 ? ai22

)
? · · · ?

( nk∑
ik=1

aikk

)
=

n1∑
i1=1

 n2∑
i2=1

· · ·
nk∑
ik=1

(
(ai11 ? ai22) · · · ? aikk

)
=

n1∑
i1=1

n2∑
i2=1

· · ·
nk∑
ik=1

(ai11 ? ai22 · · · ? aikk). �

Remark. Note that we do not need the commutativity of + in the above theorem.
To make this clear let us look at the special case

(a11 + a21)(a12 + a22) = a11(a12 + a22) + a21(a12 + a22)

= a11a12 + a11a22 + a21a12 + a21a22

=
2∑

i2=1

a11ai22 +
2∑

i2=1

a21ai22

=
2∑

i1=1

2∑
i2=1

ai11ai22.

Definition A.72. A Group is a nonempty set G with an associative binary oper-
ation with identity, in which all elements are invertible.

Remark. As we showed in the last section, the identity is unique, and the inverse
of any element is unique. Furthermore, the cancellation law and the generalized
associativity hold in a group.

Example A.73. Remember that a permutation is a one-to-one and onto map from
{1, . . . , n} to itself, for some positive integer n. Permutations form a group under
the operation of composition of maps. We denote this group by Sn, and call it the
symmetric group on n letters.
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Definition A.74. A group whose operation is commutative, is called an abelian
group.

Remark. We will use the multiplicative notation for a general group, and the
additive notation for an abelian group. In particular, the powers of an element a
will be shown by an in a general group, and by na in an abelian one.

Definition A.75. The order of an element a in a group G with identity e, is the
smallest positive integer n such that an = e. If no such number exists, we say a
has infinite order.

Theorem A.76. In a finite group G every element has finite order, and its order
is a divisor of the number of elements of G.

Proof. Let a ∈ G, and let n be the cardinality of G. Consider the sequence of
n+ 1 elements e, a, a2, . . . , an. Then two of them must be the same, so ai = aj for
some j > i. Hence aj−i = e.

Now let m be the order of a. Then e, a, . . . , am−1 are distinct. If m = n then
we have m|n. Suppose m < n. Let

b1 ∈ G− {e, a, . . . , am−1}.

Then b1, b1a, . . . , b1am−1 are also distinct, and they are different than e, a, . . . , am−1.
The reason is that b1ai = b1a

j implies aj−i = e, and b1ai = aj implies b1 = aj−i.
By continuing this way we will have distinct elements

e, a, . . . , am−1,

b1, b1a, . . . , b1a
m−1,

...
bk, bka, . . . , bka

m−1.

This process must stop at some step, since G is a finite set. Hencem(k+1) = n. �



Appendix B

Factorization

B.1 Euclidean Domains

Definition B.1. Let R be an integral domain, and a, b ∈ R. If there exists r ∈ R
such that b = ra, then we say a divides b, or a is a divisor of b, or b is a multiple
of a; and we write a|b.

An element u ∈ R is called a unit if u|1. Two elements a, b are associates if
a|b and b|a.

Proposition B.2. Suppose R is an integral domain and a, b, c ∈ R. Then
(i) The units of R are exactly the invertible elements of R.
(ii) For all a ∈ R we have 1|a, a|a, and a|0.
(iii) a, b are associates if and only if there is a unit u ∈ R such that a = ub.
(iv) a|b and b|c implies a|c.
(v) a|b implies a|bc, and ac|bc.
(vi) a|b and a|c imply a|(b+ c).

Proof. (i) a|1 if and only if there is r ∈ R such that ra = 1, i.e. a is invertible
with a−1 = r.

(ii) We have a1 = 1a = a, and 0a = 0.
(iii) If a, b are associates, then a|b and b|a. Thus there are r, s ∈ R such that

ra = b and sb = a. If a = 0 then b = 0, hence a = 1b. So suppose a 6= 0. Now we
have

1a = a = sb = sra.

Thus sr = 1, since R is an integral domain. Therefore s is a unit, and a = sb.
Conversely, if a = ub for some unit u, then b = u−1a. Hence a|b and b|a.

(iv) There are r, s ∈ R such that b = ra and c = sb. Hence c = sra, so a|c.
(v) There is r ∈ R such that b = ra. Thus bc = rac = rca. So a|bc, and ac|bc.

219
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(vi) There are r, s ∈ R such that b = ra and c = sa. Therefore b+ c = (r+ s)a,
so a|(b+ c). �

Exercise B.3. Suppose R is an integral domain and a, b, c ∈ R. Show that if a, b
are associates, and b, c are associates, then a, c are associates too.

Proposition B.4. Let a, b ∈ Z, and suppose b 6= 0. If a|b then |a| ≤ |b|.

Proof. There is c ∈ Z such that b = ca. Hence |b| = |ca| = |c||a|. But c 6= 0 since
b 6= 0. Thus |c| ≥ 1. Therefore |b| = |c||a| ≥ |a|. �

Definition B.5. A Euclidean domain is an integral domain R on which there
exists a degree function

d : R− {0} → {n ∈ Z : n ≥ 0},

such that
(i) For nonzero a, b ∈ R if a|b then d(a) ≤ d(b).
(ii) (Division Algorithm) For all a ∈ R and all nonzero b ∈ R, there are

q, r ∈ R such that

a = bq + r, where either r = 0, or d(r) < d(b).

Here q is called the quotient and r is called the remainder.

Theorem B.6. Z is a Euclidean domain with the degree function d(n) = |n|.
Furthermore, the quotient and the remainder in its division algorithm are unique,
if we require the remainder to be nonnegative.

Proof. Let n,m ∈ Z, and assume m 6= 0. We prove the existence of a division
algorithm

n = mq + r,

by induction on |n|. At first, we do not impose any sign restriction on the remainder.
If |n| < |m| we can simply put q = 0 and r = n. If |n| = |m| then we have n = ±m,
so we can put q = ±1 and r = 0.

Now suppose |n| > |m|, and the conclusion holds for all integers with absolute
value less than |n|. Then we have

|n−m| or |n+m| < |n|,

where we have to choose ± according to the signs of n,m. Thus by the induction
hypothesis we have

n±m = mq + r,

where r is either 0 or |r| < |m|. Therefore we have n = m(q ∓ 1) + r as desired.
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It is easy to see that we can take r to be nonnegative. Since if r < 0 we have

n = mq + r = m(q ∓ 1) + (±m+ r).

Now as we have |r| < |m|, we can choose ± according to the sign of m, so that

0 < ±m+ r < |m|.

Next to prove the uniqueness, suppose to the contrary that we have

mq1 + r1 = n = mq2 + r2,

where 0 ≤ ri < |m|. Then we have m(q1 − q2) = r2 − r1. If r2 − r1 6= 0 then
q1 − q2 6= 0, and we have m|r2 − r1. But |r2 − r1| < |m| and we have arrived at a
contradiction. Hence r1 = r2, and therefore q1 = q2. �

Example B.7. As we saw in the last chapter, when F is a field, F [x] is a Euclidean
domain with the degree function d(f) = deg f . In addition for nonzero polynomials
f, g we have

g|f =⇒ deg g ≤ deg f.

Since if f = gh, then deg f = deg g + deg h. As a result, the units of F [x] are
precisely the nonzero constant polynomials. Because if u ∈ F [x] is unit then it is
invertible, hence it is nonzero. Thus we have deg u ≤ deg 1 = 0, since u|1. Therefore
deg u = 0, and u is constant. On the other hand, nonzero constant polynomials are
units, since they are invertible as F is a field.

Proposition B.8. Suppose R is a Euclidean domain, and a, b ∈ R. If b is nonzero
and it is not a unit, then for all nonzero a we have

d(a) < d(ab).

Proof. We know that d(b) ≤ d(ab), since b|ab. Suppose to the contrary that
d(ab) = d(a). Then we have a = abq + r where d(r) < d(ab) = d(a) or r = 0. If
r = 0 we have a(1− bq) = 0 which is a contradiction, since b is not a unit and a is
nonzero. Hence we have r 6= 0, and d(r) < d(a). Now

a(1− bq) = a− abq = r.

Thus a|r and we must have d(a) ≤ d(r). This contradiction proves the result. �

Theorem B.9. Let n, b ∈ N, and suppose b > 1. Then there is a unique integer
m ≥ 0, and unique integers 0 ≤ r0, r1, . . . , rm < b with rm 6= 0, such that

n = rmb
m + rm−1b

m−1 + · · ·+ r1b+ r0.
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Remark. This is the base b representation of the number n. It is sometimes
denoted by n = (rm . . . r0)b.

Proof. First we prove the existence. The proof is by induction on n. If 1 ≤ n < b,
then we can put m = 0 and r0 = n > 0. Suppose the conclusion holds for all k < n.
We can assume that n ≥ b. Now we have n = bq+r where 0 ≤ r < b. But q cannot
be nonpositive since then we would have n ≤ r < b, contrary to our assumption.
Thus we must have q > 0. Then n = bq+r > q+r ≥ q. Therefore by the induction
hypothesis we have

q = smb
m + · · ·+ s1b+ s0,

for some 0 ≤ si < b, with sm 6= 0. Then we have

n = bq + r = smb
m+1 + · · ·+ s1b

2 + s0b+ r,

as desired.
For the uniqueness, again the proof is by induction on n. If 1 ≤ n < b, then the

representation is obviously unique. Because bi ≥ b > n, so we cannot have m > 0.
Suppose the uniqueness holds for all positive integers less than n. We can assume
that n ≥ b. Suppose that

skb
k + · · ·+ s1b+ s0 = n = rmb

m + · · ·+ r1b+ r0,

where 0 ≤ ri, sj < b, and rm, sk 6= 0. Then m, k > 0, since n ≥ b. Now we have

(skb
k−1 + · · ·+ s1)b+ s0 = n = (rmb

m−1 + · · ·+ r1)b+ r0.

Therefore r0, s0 are the remainder in the division of n by b. Hence r0 = s0. Since
the quotient is also unique, we have

skb
k−1 + · · ·+ s1 = rmb

m−1 + · · ·+ r1.

But, in the above paragraph we showed that when n ≥ b then the quotient is
a positive integer strictly less than n. Therefore by the induction hypothesis we
have m − 1 = k − 1, and ri = si for 1 ≤ i ≤ m. Hence m = k, and the base b
representation of n is unique. �

Theorem B.10. Let F be a field. Let f, g ∈ F [x] be nonzero polynomials, and
suppose deg g ≥ 1. Then there is a unique integer m ≥ 0, and unique polynomials
r0, r1, . . . , rm ∈ F [x] with rm 6= 0, such that

f = rmg
m + rm−1g

m−1 + · · ·+ r1g + r0,

where deg ri < deg g for each i.
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Proof. First we prove the existence. The proof is by induction on deg f . If
0 ≤ deg f < deg g, then we can put m = 0 and r0 = f 6= 0. Suppose the
conclusion holds for all polynomials with degree less than deg f . We can assume
that deg f ≥ deg g. Now we have f = gq+ r where deg r < deg g. Then gq = f − r,
so deg q + deg g = deg(f − r). But deg r < deg f . Thus deg(f − r) = deg f , since
subtracting r does not change the coefficient of the highest degree term in f . Hence

deg q = deg f − deg g < deg f.

Also q 6= 0, since otherwise we would have f = r, which implies deg f = deg r <
deg g. Therefore by the induction hypothesis we have

q = smg
m + · · ·+ s1g + s0,

for some si ∈ F [x], with sm 6= 0, and deg si < deg g. Then we have

f = gq + r = smg
m+1 + · · ·+ s1g

2 + s0g + r,

as desired.
For the uniqueness, again the proof is by induction on deg f . If 0 ≤ deg f <

deg g, then the representation is unique. Because if

f = rmg
m + rm−1g

m−1 + · · ·+ r1g + r0

for some m > 0, where deg ri < deg g and rm 6= 0, then

deg(rm−1g
m−1 + · · ·+ r1g + r0) ≤ max

j≤m−1

(
deg(rjg

j)
)

= max
j≤m−1

(deg rj + j deg g)

< mdeg g ≤ deg(rmg
m).

Hence deg f = deg(rmg
m) ≥ deg g, which is contrary to our assumption. Thus

m = 0, and therefore r0 = f .
Now suppose the uniqueness holds for all polynomials with degree less than

deg f . We can assume that deg f ≥ deg g. Suppose that

skg
k + · · ·+ s1g + s0 = f = rmg

m + · · ·+ r1g + r0,

where deg ri,deg sj < deg g, and rm, sk 6= 0. Then m, k > 0, since deg f ≥ deg g >
deg r0, deg s0. Now we have

(skg
k−1 + · · ·+ s1)g + s0 = f = (rmg

m−1 + · · ·+ r1)g + r0.
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Therefore r0, s0 are the remainder in the division of f by g. Hence r0 = s0, since
the remainder and the quotient in the division of polynomials are unique. Thus we
also have

skg
k−1 + · · ·+ s1 = rmg

m−1 + · · ·+ r1.

But, in the first part of this proof we showed that when deg f ≥ deg g then the
quotient is a nonzero polynomial whose degree is strictly less than deg f . Therefore
by the induction hypothesis we have m − 1 = k − 1, and ri = si for 1 ≤ i ≤ m.
Hence m = k, and the representation of f is unique. �

Remark. As a special case of the above theorem we set g(x) = x − a, for some
a ∈ F . Then deg ri < deg g = 1, so each ri is a constant. Hence for every f ∈ F [x]
there are unique a1, . . . , am ∈ F , where am 6= 0 when f is not constant, such that

f(x) = am(x− a)m + · · ·+ a1(x− a) + f(a).

The fact that r0 = f(a) follows easily by evaluating both sides of the identity at a.
Note that we can allow f to be zero by setting each ai = 0.

B.2 Principal Ideal Domains

Definition B.11. Let R be a commutative ring. An ideal is a nonempty subset
I ⊂ R such that
(i) For all a, b ∈ I we have a+ b ∈ I.
(ii) For all a ∈ I and r ∈ R we have ra ∈ I.

Example B.12. Let a1, . . . , an ∈ R. Then it is easy to see that the set

(a1, . . . , an) := {r1a1 + · · ·+ rnan : for all ri ∈ R}

is an ideal. It is called the ideal generated by a1, . . . , an.

Definition B.13. An ideal I is called principal if

I = (a) = {ra : r ∈ R}

for some a ∈ R.

Proposition B.14. Suppose R is an integral domain, and a, b ∈ R. Then
(i) (a) = R if and only if a is a unit.
(ii) (b) ⊂ (a) if and only if a|b, if and only if b ∈ (a).
(iii) (b) = (a) if and only if a, b are associates.
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Proof. (i) If a is unit then 1 = a−1a ∈ (a). Hence for all r ∈ R we have
r = r1 ∈ (a). Thus R = (a). Conversely, if R = (a) then 1 ∈ (a). Hence there is
s ∈ R such that sa = 1, i.e. a is a unit.

(ii) If a|b then b = sa for some s ∈ R. Hence b ∈ (a). Thus for all r ∈ R we
have rb ∈ (a), i.e. (b) ⊂ (a). Conversely, if (b) ⊂ (a) then b = 1b ∈ (b) ⊂ (a).
Therefore b = sa for some s ∈ R, hence a|b.

(iii) (b) = (a) is equivalent to (b) ⊂ (a) and (a) ⊂ (b). Thus (b) = (a) if and
only if a|b and b|a, i.e. if and only if a, b are associates. �

Definition B.15. An integral domain is called a principal ideal domain (PID),
if all of its ideals are principal.

Theorem B.16. Every Euclidean domain is a PID.

Proof. Let I be an ideal in R. Let a ∈ I be a nonzero element that has the least
degree among all nonzero elements of I. This is possible due to the well ordering
of nonnegative integers. We claim that I = (a). It is obvious that (a) ⊂ I. For the
other inclusion, let b be an arbitrary element of I. We have b = aq+ r where either
r = 0 or d(r) < d(a). Since r = b+ (−q)a ∈ I, we cannot have d(r) < d(a). Thus
r = 0, and therefore b ∈ (a). Hence I ⊂ (a) as desired. �

Definition B.17. A greatest common divisor (g.c.d) of two elements a, b in
an integral domain R, is an element c ∈ R such that
(i) c|a and c|b.
(ii) If r ∈ R is a common divisor of a, b, i.e. r|a and r|b, then r|c.

Remark. Note that when R = Z, and c is a greatest common divisor of nonzero
a, b ∈ Z, then for any common divisor r of a, b we have |r| ≤ |c|, since r|c. Note
that c 6= 0, because 0 cannot be a divisor of a nonzero element.

Proposition B.18. Suppose R is an integral domain, and a, b ∈ R. Then any two
greatest common divisors of a, b are associates.

Proof. Suppose c1, c2 are greatest common divisors of a, b. Then c1, c2 are both
common divisors of a, b. Hence we must have c1|c2 and c2|c1, since c1, c2 are both
greatest common divisors of a, b. Thus c1, c2 are associates. �

Euclidean Algorithm. Suppose R is a Euclidean domain, and a, b ∈ R are
nonzero. Consider the following sequence of divisions

a = bq0 + r0,

b = r0q1 + r1,

r0 = r1q2 + r2,

...
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Then after finitely many divisions the remainder becomes zero, i.e. we have

rn−1 = rnqn+1.

Also, rn is a greatest common divisor of a, b.

Proof. Note that d(b) > d(r0) > d(r1) > · · · . Hence the process must stop at
some point, since the d-values are nonnegative integers. Therefore the division must
be impossible at some step, which means that the remainder in the last step is zero.
Now let us show that the remainder from one step before the last step, i.e. rn, is
a g.c.d of a, b. First note that rn|rn−1. Thus from rn−2 = rn−1qn + rn we see that
rn|rn−2. If we continue inductively we get rn|b and rn|a. Hence rn is a common
divisor of a, b. Next suppose c|a and c|b. Then c|a− bq0 = r0. Again we can show
inductively that c|rn. Thus rn is a g.c.d of a, b. �

Theorem B.19. Suppose R is a PID, and a, b ∈ R are nonzero. Then a, b have a
greatest common divisor c ∈ R. Furthermore we have

c = ra+ sb,

for some r, s ∈ R.

Proof. The ideal generated by a, b, i.e. (a, b) is principal, since R is a PID. Thus
there is c ∈ R such that

(a, b) = (c).

We claim that c is a greatest common divisor of a, b. Since a, b ∈ (a, b) = (c), we
have c|a, c|b. On the other hand c ∈ (c) = (a, b), so c = ra+ sb for some r, s ∈ R.
Thus if an element q ∈ R divides both a, b, then it will also divide both ra, sb.
Hence q divides ra+ sb = c too. �

Remark. Recall that when R is a Euclidean domain, the generator of an ideal is
a nonzero element with the least degree in that ideal. Hence in this case, we can
say that a g.c.d of a, b is a nonzero element with the least degree in the set

{ra+ sb : r, s ∈ R}.

Remark. The above two theorems are in particular true in Z, and in F [x] when
F is a field.
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B.3 Unique Factorization Domains

Definition B.20. Let R be an integral domain. A nonzero element r ∈ R is called
irreducible if it is not a unit, and its only divisors are units or associates of itself,
i.e.

r = ab =⇒ a, b are either unit, or associates of r.

A nonzero element p ∈ R is called prime, if it is not a unit, and for all a, b ∈ R we
have

p|ab =⇒ p|a or p|b.

Remark. The contrapositive of the definition of a prime element p is that

p 6 |a and p66 |b =⇒ p66 |ab.

By an easy induction we can show that if p is prime, then for a1, . . . , an ∈ R we
have

p 6 |a1 and p 66 |a2 and . . . and p 66 |an =⇒ p66 |a1 · · · an.
Equivalently, if p|a1 · · · an then p|ai for some i.

Exercise B.21. Let R be an integral domain, and suppose a, b ∈ R are associates.
Show that if a is irreducible then b is also irreducible, and if a is prime then b is
also prime.

Theorem B.22. Every prime element of an integral domain is irreducible.

Proof. Suppose p is a prime, and we have a factorization p = ab. Then p|ab
so either p|a or p|b. On the other hand, both a, b divide p. Thus either a is an
associate of p, or b is. Suppose for instance that a, p are associates. Then a = pu
for some unit u. Hence

0 = p− ab = p− pub = p(1− ub) =⇒ ub = 1.

Therefore b is a unit. �

Theorem B.23. Every irreducible element of a PID is prime.

Proof. Let r be an irreducible element of the PID R. Suppose for a, b ∈ R we
have r|ab, and r 6 |a. We must show that r|b. We claim that the greatest common
divisor of r, a is a unit. The reason is that if the g.c.d of r, a is u, then u|r. Hence
u is either a unit or an associate of r, since r is irreducible. But u|a too, so it
cannot be an associate of r. Because otherwise we would have u = rv for some unit
element v, and therefore r|a, which is a contradiction.

Now we know that for some x, y ∈ R we have u = xr + ya. Therefore we have

b = u−1xbr + u−1yab.

Since r divides the right hand side of the above equation, we get r|b as desired. �
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Definition B.24. An integral domain R is called a unique factorization domain
(UFD), if every nonzero element of R that is not a unit, can be written as a product
of irreducible elements in a unique way. In other words, for all nonzero a ∈ R which
is not a unit we have
(i) There are irreducible elements p1, . . . , pn ∈ R such that a has the factorization

a = p1 · · · pn.

(ii) If there is another factorization of a into irreducible elements a = q1 · · · qm,
then m = n, and there is a permutation σ ∈ Sn such that pi, qσ(i) are asso-
ciates.

Exercise B.25. Show that every irreducible element of a UFD is prime.

Theorem B.26. Every PID is a UFD.

Proof. The uniqueness of a factorization is a consequence of the fact that in a
PID irreducible elements are prime. Suppose

p1 · · · pn = q1 · · · qm,

where pi, qj ’s are primes. We proceed by induction on n. When n = 1 we have
p1|q1 · · · qm. Thus p1|qk for some k. But qk is irreducible and p1 is not a unit, hence
p1 = uqk for some unit u. Therefore

1 = q1 · · · qk−1uqk+1 · · · qm,

since the cancellation law holds in integral domains. Hence if m > 1, the other qj ’s
must be units, which is a contradiction.

Now suppose the uniqueness is true for n, and we have

p1 · · · pnpn+1 = q1 · · · qm.

Then pn+1|q1 · · · qm, and therefore pn+1|qk for some k. We can argue as above and
conclude that for some unit u we have

p1 · · · pn = q1 · · · qk−1uqk+1 · · · qm = q1 · · · qk−1(uqk+1) · · · qm.

Note that uqk+1 is also irreducible. Now by the induction hypothesis we have
n = m − 1, and there is a permutation σ ∈ Sn such that for i ≤ n, pi, qσ(i) are
associates when σ(i) < k, pi, uqk+1 are associates when σ(i) = k, and pi, qσ(i)+1 are
associates when σ(i) > k. Let

σ̂(i) :=


σ(i) i ≤ n, σ(i) < k

k i = n+ 1

σ(i) + 1 i ≤ n, σ(i) > k
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be a permutation in Sn+1. Then pi, qσ̂(i) are associates for all i ≤ n+ 1 as desired.
Note that when pi, uqk+1 are associates, then pi, qk+1 are associates too.

Next for the existence of a factorization, let a be a nonzero element of our PID,
which is not a unit. Suppose to the contrary that a does not have a factorization
into irreducible elements. Then a cannot be irreducible itself, since then we have
the factorization a = a. Thus a = bc where b, c are not unit nor an associate of
a. If both b, c can be factorized into irreducible elements, then a can be factorized
too. Hence at least one of them, which we call it a1, does not have a factorization.
As a1 is not an associate of a and divides a, we have

(a) ( (a1).

Since a1 does not have a factorization into irreducible elements, we can argue as
above and find another element a2 such that

(a) ( (a1) ( (a2).

We can continue this process inductively and get

(a) ( (a1) ( · · · ( (an) ( · · · .

Now, let I :=
⋃
n≥1(an). It is easy to see that I is an ideal. Because if b, c ∈ I

then b ∈ (ai) and c ∈ (aj) for some i, j. Let n = max{i, j}. Then b, c ∈ (an).
Hence b + c ∈ (an) ⊂ I, and also sb ∈ (an) ⊂ I for all elements s. Thus we have
I = (r) for some element r. Then r ∈ I, so r ∈ (am) for some m. But this means
that (r) ⊂ (am). In particular we have (am+1) ⊂ (am), which is a contradiction.
Therefore a must have a factorization into irreducible elements. �

Second Proof. Here we give another proof for the existence of the factorization
when our PID is a Euclidean domain. Let a be a nonzero element which is not a
unit. The proof is by strong induction on d(a), the degree of a. If a has the least
d-value among the nonzero elements that are not units, then a must be irreducible.
To see this suppose that a = bc, and c is not a unit. Note that b, c 6= 0 since a 6= 0.
Then by Proposition B.8 we have d(b) < d(bc) = d(a). But a has the least d-value
among nonzero elements which are not units, so b must be unit. Therefore a is
irreducible, and thence has a factorization into irreducible elements.

Now suppose every element with degree less than d(a) has a factorization into
irreducible elements. If a is irreducible, then it has a factorization. Otherwise
we have a = bc, where b, c are nonzero and they are not units. Hence again by
Proposition B.8 we have d(b) < d(bc) = d(a). Similarly d(c) < d(bc) = d(a).
Therefore by the induction hypothesis b, c can be written as a product of irreducible
elements. Now if we multiply those expressions we obtain a factorization of a into
irreducible elements, as desired. �
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Fundamental Theorem of Arithmetic. Z is a UFD, i.e. every nonzero integer
other than ±1 can be written uniquely as a product of prime integers.

Proof. Z is a Euclidean domain, so it is a PID, hence it is a UFD. Note that
±1 are the only units of Z, since they are the only invertible elements of the ring
Z. �

Theorem B.27. Suppose F is a field. Then F [x] is a UFD, i.e. every noncon-
stant polynomial with coefficients in a field can be written uniquely as a product of
irreducible polynomials.

Proof. F [x] is a Euclidean domain, so it is a PID, hence it is a UFD. Note that
the nonzero constant polynomials are precisely the units of F [x], as we showed in
Example B.7. �
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