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Chapter 1

Real Numbers

1.1 Ordered Fields

Definition 1.1. A field is a nonempty set F equipped with two binary operations

F × F −→ F
(a, b) 7→ a+ b

,
F × F −→ F
(a, b) 7→ ab

,

called respectively addition and multiplication, such that
(i) The operations are associative and commutative, i.e. for every a, b, c ∈ F

a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c,

a+ b = b+ a, ab = ba.

(ii) There exist elements 0, 1 ∈ F , called respectively zero and identity of F , such
that 1 6= 0, and for every a ∈ F

a+ 0 = a, a1 = a.

(iii) For every a ∈ F there exists an element −a ∈ F , called the opposite of a,
such that

a+ (−a) = 0.

(iv) For every a ∈ F −{0} there exists an element a−1 ∈ F , called the inverse of
a, such that

aa−1 = 1.

(v) Multiplication is distributive over addition, i.e. for every a, b, c ∈ F

a(b+ c) = ab+ ac.

1
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Let a, b be two elements in a field F . Then a+ b is called the sum of a, b. And
a, b are called the summands of a + b. Also, ab is called the product of a, b; and
a, b are called the factors of ab. We sometimes denote the product of two elements
a, b by a · b, or a × b. In addition, the square and the cube of an element a are
respectively defined as

a2 := aa, a3 := a2a = aaa.

The inverse of a is also called the reciprocal of a.
Furthermore, the subtraction and the division of two elements a, b ∈ F are

respectively defined as follows

a− b := a+ (−b), a/b =
a

b
:= ab−1 when b 6= 0.

The element a − b is called the difference of a, b. The element a
b is called the

quotient or the ratio of a, b. We also call ab a fraction. In a fraction a
b , a is called

the numerator, and b is called the denominator. The reciprocal of the fraction a
b is

the fraction b
a , provided that a is also nonzero. We will see that b

a is the inverse of
a
b ; so the two uses of the term “reciprocal” are compatible.

Remark. Note that due to the commutativity we have

0 + a = a, 1a = a, (−a) + a = 0.

We also have a−1a = 1, if a 6= 0.

Remark. Informally, a field is a structure in which we can perform the four basic
arithmetic operations, i.e. addition, subtraction, multiplication, and division.

Notation. We will assume that in a field, multiplication binds stronger than addi-
tion; thus, for example, ab+ c means (ab) + c, not a(b+ c). In addition, we assume
that multiplication binds stronger than taking the opposite. So for example, −ab
means −(ab).

Example 1.2. Q is a field.

Theorem 1.3. Let F be a field. Then for every a, b, c, d ∈ F we have
(i) (Cancellation Laws)

a+ c = b+ c =⇒ a = b,

ac = bc, c 6= 0 =⇒ a = b.

(ii) The zero and identity of F are unique.
(iii) The opposite of every element of F is unique; and the inverse of every nonzero

element of F is unique.
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(iv) −0 = 0, and 1−1 = 1.
(v) 0a = 0 = a0. And ab = 0 =⇒ a = 0 or b = 0.
(vi) −(−a) = a, and −(a+ b) = (−a) + (−b) = −a− b.
(vii) If a 6= 0 then (a−1)−1 = a. And if a, b 6= 0 then (ab)−1 = a−1b−1.
(viii) (−a)b = −ab = a(−b), and (−a)(−b) = ab.
(ix) −a = (−1)a, −(b− c) = c− b, and a(b− c) = ab− ac.
(x) If a 6= 0 then a−1 = 1

a , and (−a)−1 = −a−1.
(xi) If b, d 6= 0 then

a

b
+
c

d
=
ad+ bc

bd
,

a

b
· c
d

=
ac

bd
.

(xii) If b, c, d 6= 0 we have

−a
b

=
−a
b

=
a

−b
,

( c
d

)−1
=
d

c
,

a

b
c

d

=
ad

bc
.

Proof. (i) By adding −c to both sides of a+ c = b+ c we obtain (a+ c) + (−c) =
(b+c)+(−c). Now by associativity of addition we have a+(c+(−c)) = b+(c+(−c)).
Since c+ (−c) = 0, we get a+ 0 = b+ 0; and hence a = b. The multiplicative case
can be proved similarly using c−1.

(ii) Suppose 0, 0̃ are both zeros of F . Then we have 0̃ = 0̃ + 0, since 0 is a zero.
We also have 0+0̃ = 0, since 0̃ is a zero. However we know that 0̃+0 = 0+0̃, because
addition is commutative. Therefore we must have 0̃ = 0, as desired. Similarly, for
two identities 1, 1̃ we have 1̃ = 1̃1 = 1.

(iii) Suppose ã is also an opposite of a. Then we have

ã+ a = 0 = (−a) + a.

Thus by cancellation law we get ã = −a, as desired. The case of inverse is similar.
(iv)We have 0+0 = 0, and 1·1 = 1. Now the result follows from the uniqueness

of opposite and inverse.
(v) We have

0 + 0a = 0a = (0 + 0)a = 0a+ 0a,

Thus by cancellation law we get 0 = 0a. Now we have 0a = a0 = 0.
Next, if ab = 0 and a 6= 0 then we have

b = 1b = (a−1a)b = a−1(ab) = a−10 = 0.

(vi) The proof is similar to (vii). Note that the last equality in (vi) holds by
definition.

(vii) First note that if a−1 = 0 then we get 1 = aa−1 = a0 = 0; which
contradicts the fact that 1 6= 0. Therefore we must have a−1 6= 0. Hence a−1 is
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invertible. Now note that (a−1)−1a−1 = 1 = aa−1. Thus by cancellation law we
get (a−1)−1 = a, as desired.

Next, note that when a, b are nonzero, ab is also nonzero by (v); hence ab is
invertible. Furthermore

(a−1b−1)(ab) = (b−1a−1)(ab) = b−1(a−1(ab))

= b−1((a−1a)b) = b−1(1b) = b−1b = 1.

Hence (ab)(a−1b−1) = 1. Thus by the uniqueness of inverse we obtain (ab)−1 =
a−1b−1.

(viii) Note that

ab+ (−a)b = (a+ (−a))b = 0b = 0.

Thus uniqueness of opposite implies (−a)b = −ab. The other equalities can be
proved similarly.

(ix) We have (−1)a+ a = ((−1) + 1)a = 0a = 0. Therefore (−1)a = −a, since
the opposite is unique. We also have

−(b− c) = −(b+ (−c)) = −b+ (−(−c)) = −b+ c = c− b,
a(b− c) = a(b+ (−c)) = ab+ a(−c) = ab+ (−ac) = ab− ac.

(x) By the definition of division, for a 6= 0 we have 1
a = 1a−1 = a−1. Also,

(−a−1)(−a) = a−1a = 1. Hence we get the desired by uniqueness of inverse.
(xi) By the definition of division we have

ad+ bc

bd
= (ad+ bc)(bd)−1 = (ad+ bc)b−1d−1

= adb−1d−1 + bcb−1d−1 = ab−1 + cd−1 =
a

b
+
c

d
,

a

b
· c
d

= (ab−1)(cd−1) = acb−1d−1 = ac(bd)−1 =
ac

bd
.

(xii) We have
−a
b

= (−a)b−1 = −ab−1 = −a
b
,

a

−b
= a(−b)−1 = a(−b−1) = −ab−1 = −a

b
.

We also have ( c
d

)−1
= (cd−1)−1 = c−1(d−1)−1 = c−1d =

d

c
,

a

b
c

d

=
(a
b

)( c
d

)−1
=
a

b
· d
c

=
ad

bc
.

�
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Definition 1.4. An ordered field is a field F equipped with a binary relation <,
such that
(i) The relation < is a linear order, which means < is transitive and satisfies the

trichotomy, i.e. for every a, b, c ∈ F

a < b, b < c =⇒ a < c,

Exactly one of the a < b, a = b, b < a, is true.

(ii) For every a, b, c ∈ F we have

a < b =⇒ a+ c < b+ c,

0 < a, 0 < b =⇒ 0 < ab.

Notation. As usual, we define a ≤ b to mean a < b or a = b. Similarly we define
a > b to mean b < a, and a ≥ b to mean b ≤ a. We say a is positive if a > 0,
and a is negative if a < 0. We also say a is nonnegative or nonpositive, if a ≥ 0 or
a ≤ 0 respectively.

Example 1.5. Q is an ordered field.

Theorem 1.6. Suppose F is an ordered field. Then for every a, b, c, d ∈ F we have
(i) a < b if and only if b− a > 0.
(ii) a > 0 if and only if −a < 0.
(iii) If a 6= 0 then a2 > 0. As a result 1 = 12 > 0.
(iv) a < b if and only if a+ c < b+ c.
(v) If a < c, b ≤ d then a+ b < c+ d.
(vi) If c > 0, then a < b if and only if ac < bc.
(vii) If c < 0, then a < b if and only if ac > bc.
(viii) If a, b < 0 then ab > 0.
(ix) If 0 ≤ a < c, 0 < b ≤ d then ab < cd.
(x) If a > 0 then a−1 > 0.
(xi) If 0 < a < b then a−1 > b−1 > 0. In particular, a > 1 if and only if

0 < a−1 < 1.
(xii) If a ≤ b and a ≥ b then a = b.
(xiii) If a1, . . . , an ≥ 0 and a1 + · · ·+ an = 0 then ai = 0 for all i.

Proof. (i) We have

a < b =⇒ a+ (−a) < b+ (−a) =⇒ 0 < b− a.

Similarly, for the converse we can add a to both sides of 0 < b− a.
(ii) By (i) we have −a < 0 ⇐⇒ 0 < 0− (−a) = a.
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(iii) If a 6= 0 then either 0 < a or a < 0. Hence by (ii) we either have 0 < a or
0 < −a. Thus either

0 < aa = a2, or 0 < (−a)(−a) = a2.

(iv) a < b implies a+c < b+c by definition. On the other hand, if a+c < b+c
then we cannot have a ≥ b. Since in that case we would obtain a+ c ≥ b+ c, which
is a contradiction. So we must have a < b. Alternatively, we can add −c to both
sides of a+ c < b+ c to get a < b.

(v) When b = d then the claim holds by the definition of ordered fields. So
suppose b < d. Then we add b to both sides of a < c, and add c to both sides of
b < d, to obtain

a+ b < c+ b < c+ d.

(vi) By (i) we have 0 < b− a. Thus if c > 0 then

0 < (b− a)c = bc− ac =⇒ ac < bc.

Conversely, suppose ac < bc. Then we cannot have a ≥ b, since in this case we
would obtain ac ≥ bc, which is a contradiction. So we must have a < b.

(vii) When c < 0 we have −c > 0. Hence

0 < (b− a)(−c) = −(bc− ac) = ac− bc =⇒ bc < ac.

Conversely, suppose ac > bc. Then we cannot have a ≥ b, since in this case we
would obtain ac ≤ bc, which is a contradiction. So we must have a < b.

(viii) We multiply both sides of a < 0 by b to obtain ab > 0b = 0.
(ix) When b = d then the claim holds by (v). So suppose b < d. Then we

multiply both sides of a < c by b, and both sides of b < d by c, to obtain

ab < cb < cd.

(x) Note that a−1 6= 0, since otherwise we would have 1 = aa−1 = a0 = 0.
Therefore if the claim does not hold we must have a−1 < 0. But this implies that
1 = aa−1 < a0 = 0, which is a contradiction. So a−1 > 0.

(xi) Note that a−1 6= b−1, since a 6= b and the inverse is unique. Also note
that by (x) we have a−1, b−1 > 0. Therefore if the claim does not hold we must
have 0 < a−1 < b−1. But then by (ix) we get 1 = aa−1 < bb−1 = 1, which is a
contradiction. The last statement follows easily since 1−1 = 1.

(xii) We either have a < b, a = b, or a > b. But we cannot have a < b, since we
know that a ≥ b. Similarly we cannot have a > b. Therefore we must have a = b.

(xiii) We have ai = −
∑

j 6=i aj ≤ 0, hence ai = 0. �
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Remark. The following version of the above theorem can be proved easily from
it. We only need to consider some trivial cases in which the inequalities become
equalities.
(i) If a ≤ b, b ≤ c then a ≤ c.
(ii) a ≤ b if and only if b− a ≥ 0.
(iii) a ≥ 0 if and only if −a ≤ 0.
(iv) a2 ≥ 0.
(v) a ≤ b if and only if a+ c ≤ b+ c.
(vi) If a ≤ c, b ≤ d then a+ b ≤ c+ d.
(vii) If a ≤ b then

c ≥ 0 =⇒ ac ≤ bc,
c ≤ 0 =⇒ ac ≥ bc.

(viii) If a, b ≥ 0, or a, b ≤ 0, then ab ≥ 0.
(ix) If 0 ≤ a ≤ c, 0 ≤ b ≤ d then ab ≤ cd.

Theorem 1.7. Suppose F is an ordered field, and a, b, c ∈ F . If a > 0, then the
quadratic expression

f(x) = ax2 + bx+ c

is nonnegative for every x ∈ F if and only if its discriminant ∆ := b2 − 4ac is
nonnegative.

Proof. First note that in a field F , the element n is defined to be
n times︷ ︸︸ ︷

1 + 1 + · · ·+ 1,
where 1 is the identity of F . By the last proposition, in an ordered field we have
n > 0, since 1 > 0. Thus in particular, n 6= 0 in an ordered field.

Now for every x ∈ F we have

ax2 + bx+ c = a
(
x2 + 2

b

2a
x+

c

a

)
= a

(
x2 + 2

b

2a
x+

b2

4a2
− b2

4a2
+
c

a

)
= a

((
x+

b

2a
)2 − b2 − 4ac

4a2

)
= a

((
x+

b

2a

)2
+
−∆

4a2

)
.

Note that the square of any element in an ordered field is nonnegative. Thus if
∆ ≤ 0 we have (

x+
b

2a

)2
+
−∆

4a2
=
(
x+

b

2a

)2
+ (−∆)(4a2)−1 ≥ 0.

Hence f(x) ≥ 0. On the other hand, if ∆ > 0 then we have f(− b
2a) = −∆

4a < 0.
Therefore if f(x) ≥ 0 for every x, then we must have ∆ ≤ 0, as desired. �
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Theorem 1.8. Let F be an ordered field. Then there exists a one-to-one function
ϕ : Q→ F such that for every p, q ∈ Q we have
(i) ϕ(p+ q) = ϕ(p) + ϕ(q),
(ii) ϕ(pq) = ϕ(p)ϕ(q),
(iii) p < q if and only if ϕ(p) < ϕ(q).

Remark. Therefore F has a subset ϕ(Q), which looks like Q. Informally, we can
say that F contains a “copy” of Q.

Proof. For every n ∈ N let ϕ(n) :=
∑

j≤n 1 ∈ F , where 1 is the identity of F .
Note that ϕ(n) > 0, since 1 > 0 in F . Also, let ϕ(0) := 0, and ϕ(−n) := −ϕ(n).
Then it is easy to show by induction that for every n,m ∈ Z we have ϕ(n+m) =
ϕ(n) + ϕ(m), and ϕ(nm) = ϕ(n)ϕ(m). Now suppose ϕ(n) = ϕ(m). If n > m then
we have ϕ(n−m) = ϕ(n)−ϕ(m) = 0, which contradicts the fact that ϕ(n−m) > 0.
Similarly, we cannot have n < m; so n = m. Thus ϕ is one-to-one on Z. Next let
us define ϕ(p) for p ∈ Q. We know that p = m

n for some n,m ∈ Z with n 6= 0. We
define

ϕ(p) :=
ϕ(m)

ϕ(n)
∈ F.

Note that ϕ(n) 6= 0, since n 6= 0 and ϕ is one-to-one on Z. Now note that the value
of ϕ(p) does not depend on the representing fraction m

n . Because if we also have
p = m′

n′ then mn′ = m′n. Hence

ϕ(m)ϕ(n′) = ϕ(mn′) = ϕ(m′n) = ϕ(m′)ϕ(n).

Therefore we get ϕ(m)
ϕ(n) = ϕ(m′)

ϕ(n′) . Note that ϕ(n), ϕ(n′) 6= 0, since n, n′ 6= 0. So, ϕ is
a well-defined function from Q to F .

Next let us show that ϕ is one-to-one. Suppose ϕ(mn ) = ϕ(kl ). Then similarly
to the above we get

ϕ(ml) = ϕ(m)ϕ(l) = ϕ(k)ϕ(n) = ϕ(kn).

Hence ml = kn, since ϕ is one-to-one on Z. Thus m
n = k

l , as wanted. Now note
that ϕ preserves the addition and multiplication of Z. Therefore we get

ϕ
(m
n

+
k

l

)
= ϕ

(ml + kn

nl

)
=
ϕ(ml + kn)

ϕ(nl)
=
ϕ(ml) + ϕ(kn)

ϕ(n)ϕ(l)

=
ϕ(m)ϕ(l) + ϕ(k)ϕ(n)

ϕ(n)ϕ(l)
=
ϕ(m)

ϕ(n)
+
ϕ(k)

ϕ(l)
= ϕ

(m
n

)
+ ϕ

(k
l

)
,

ϕ
(m
n
· k
l

)
= ϕ

(mk
nl

)
=
ϕ(mk)

ϕ(nl)
=
ϕ(m)ϕ(k)

ϕ(n)ϕ(l)
=
ϕ(m)

ϕ(n)
· ϕ(k)

ϕ(l)
= ϕ

(m
n

)
· ϕ
(k
l

)
.
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Hence ϕ also preserves the addition and multiplication of Q. Finally, suppose
m
n < k

l , and n, l > 0. Then we have ml < kn; so kn−ml > 0. Therefore

0 < ϕ(kn−ml) = ϕ(k)ϕ(n)− ϕ(m)ϕ(l).

Also, ϕ(n), ϕ(l) > 0. Thus we get

ϕ
(m
n

)
=
ϕ(m)

ϕ(n)
<
ϕ(k)

ϕ(l)
= ϕ

(k
l

)
,

as desired. Conversely, we can similarly show that m
n ≥

k
l implies ϕ

(
m
n

)
≥ ϕ

(
k
l

)
.

Hence ϕ
(
m
n

)
< ϕ

(
k
l

)
also implies that m

n < k
l . �

Definition 1.9. Suppose F is an ordered field, and S ⊂ F . A function f : S → F
is called increasing if for every a, b ∈ S we have

a ≤ b =⇒ f(a) ≤ f(b).

Similarly, f is called decreasing if for every a, b ∈ S we have

a ≤ b =⇒ f(a) ≥ f(b).

We also say f is strictly increasing or strictly decreasing, if a < b implies
f(a) < f(b), or f(a) > f(b) respectively. Finally, we say f is monotone if it
is increasing or decreasing. And we say f is strictly monotone, if it is strictly
increasing or strictly decreasing.

Definition 1.10. Suppose F is an ordered field and S ⊂ F . The set S is bounded
above if there exists M ∈ F such that for all a ∈ S we have a ≤ M . In this case
we say M is an upper bound for S. Similarly, the set S is bounded below if there
exists m ∈ F such that for all a ∈ S we have a ≥ m. In this case we say M is
a lower bound for S. We say S is bounded if it is bounded above and bounded
below. Also, we say S is unbounded if it is not bounded, i.e. either it is not bounded
above, or it is not bounded below.

Definition 1.11. If S is nonempty and bounded above, we say c ∈ F is the least
upper bound of S, if c is an upper bound for S, and if c is less than or equal to
any upper bound for S, i.e.

∀a ∈ S a ≤ c,
∀b ∈ F If ∀a ∈ S a ≤ b =⇒ c ≤ b.

Similarly, we say d ∈ F is the greatest lower bound of a nonempty bounded below
set S, if d is a lower bound for S, and if d is greater than or equal to any lower
bound for S, i.e.

∀a ∈ S a ≥ d,
∀b ∈ F If ∀a ∈ S a ≥ b =⇒ d ≥ b.
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Remark. It is easy to see that the least upper bound and the greatest lower bound
are unique, when they exist.

Definition 1.12. An ordered field F is complete, if every nonempty and bounded
above subset S ⊂ F has a least upper bound in F .

Theorem 1.13. Let F be a complete ordered field. Suppose S ⊂ F is nonempty
and bounded below. Then S has a greatest lower bound in F .

Proof. Let
T := {−x : x ∈ S}.

Then T is nonempty. Also, if z is a lower bound for S then −z is an upper bound
for T . So T is bounded above. Hence it has a least upper bound, which we call y.
We claim that −y is the greatest lower bound of S. First note that for every x ∈ S
we have −x ∈ T ; so −x ≤ y. Thus x ≥ −y. So −y is a lower bound for S. Now
let w be a lower bound for S. Then −w is an upper bound for T . Hence −w ≥ y.
Therefore w ≤ −y. Thus −y is the greatest lower bound of S, as desired. �

Example 1.14. Q is an ordered field which is not complete. For example

{r ∈ Q : r ≥ 0, r2 < 2}

is a nonempty bounded above subset of Q which has no least upper bound in Q.
Because, as we will show in the proof of Theorem 1.46, if the above set has a
supremum, its supremum must be a square root of 2. However, in Theorem 1.50
we will show that no rational number can be a square root of 2.

1.2 Real Numbers

In the field of rational numbers, we can perform the four basic arithmetic operations.
Therefore rational numbers are adequate for many purposes. However, the field Q
has some deficiencies. For example, the length of the diagonal of a square whose
side length is one cannot be expressed by a rational number, i.e. by the ratio of two
integers. In other words, there is no rational number p that satisfies p2 = 2 (for
the proof, see Theorem 1.50). Hence, in order to fill the gaps of the set of rational
numbers, we need to extend it to a larger set, which is known as the set of real
numbers.

But, what is a real number? For example, what is “square root of two”? It turns
out that from a mathematical point of view, the inherent nature of “square root
of two” is not very important. The important thing about “square root of two” is
that it is a positive number whose square is two. Hence, we just need to find a set
whose elements represent the real numbers, and have the properties that we expect
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from the real numbers; and we are not concerned with the inherent nature of real
numbers.

The basic idea, due to Dedekind, is to consider a real number as the set of
all rational numbers smaller than it. Because, intuitively we know that if two
real numbers are different, then there is a rational number between them; so the
set of rational numbers less than the larger real number is distinct from the set of
rational numbers less than the smaller real number. Thus, a real number is uniquely
determined by the set of rational numbers smaller than it.

Definition 1.15. A Dedekind cut is a pair (A,B), where A,B ⊂ Q satisfy the
following conditions:
(i) A 6= ∅, B 6= ∅, A ∩B = ∅, and A ∪B = Q.
(ii) If a ∈ A and b ∈ B, then a < b.
(iii) A does not contain a largest element.

Remark. We denote a Dedekind cut (A,B) by A|B. Note that in a Dedekind cut
A|B we have B = Q−A; so B is uniquely determined from A, and vice versa.
Remark. Also note that if a ∈ A and c ≤ a, then we must have c ∈ A. Since if
c ∈ B then we would have a < c, contrary to our assumption. Similarly, if b ∈ B
and d ≥ b, then we must have d ∈ B.
Remark. Note that B may or may not have a smallest element.

Definition 1.16. A real number is a Dedekind cut. The set of all real numbers
is

R := {x ∈ P(Q)× P(Q) : x is a Dedekind cut},
where P(Q) is the power set of Q.

Remark. Intuitively, we think of R as a line. Thus, a real number x = A|B
represents the cut in the line R at the point x, and A,B are the set of rational
numbers in the two pieces of the line that remain after the cut.

Proposition 1.17. Let p ∈ Q. Also let

A = {r ∈ Q : r < p}, B = {r ∈ Q : r ≥ p}.

Then A|B is a real number, i.e. a Dedekind cut.

Proof. First note that A,B are nonempty; because Q does not have a largest or
smallest element. Also A ∩ B = ∅, since we cannot have r < p and r ≥ p for any
r. In addition, note that A ∪ B = Q, since by trichotomy law we have r < p or
r ≥ p for every r. Furthermore, for a ∈ A and b ∈ B we have a < p ≤ b; so a < b.
Finally, note that A does not have a largest element. Because for every a ∈ A we
have a < p. Hence there is a rational number c such that a < c < p. Thus c ∈ A,
and c > a. Therefore a cannot be the largest element of A. So A|B is a Dedekind
cut. �



CHAPTER 1. REAL NUMBERS 12

Now let us define the order of real numbers. If x = A|B and y = C|D are two
real numbers, then intuitively we know that A consists of rational numbers less
than x, and similarly C consists of rational numbers less than y. Hence if x < y we
must have A ⊂ C. In addition, we intuitively know that there are rational numbers
between x, y; hence we also must have A 6= C. Thus we arrive at the following
definition of order for real numbers.

Definition 1.18. Let x = A|B and y = C|D be two real numbers. Then we say
x < y if A ⊂ C and A 6= C.

Remark. We know that by definition, x ≤ y means that x < y or x = y. But x = y
is equivalent to A = C, since B,D are uniquely determined from A,C respectively.
Therefore we have x ≤ y if and only if A ⊂ C.

Theorem 1.19. The relation < on R is a linear order. In addition, R does not
have a smallest element, nor a largest element.

Proof. Let x = A|B, y = C|D, and z = E|F . First note that x ≮ x, since
A = A. So < is irreflexive. Now suppose x < y and y < z. Then we have

A ⊂ C, A 6= C, C ⊂ E, C 6= E.

Hence we get A ⊂ E. We also have A 6= E, since otherwise we would get C ⊂ A,
which contradicts the fact that A 6= C and A ⊂ C. Thus < is also transitive.

Next suppose x 6= y. Then A 6= C. We need to show that either A ⊂ C, or
C ⊂ A; in order to conclude that either x < y, or x > y. Suppose A 6⊂ C. Then
there is a ∈ A such that a /∈ C. Hence we have a ∈ D. Thus for every c ∈ C we
must have c < a. Now note that if c ∈ B then we cannot have a ∈ A, since c < a.
Therefore c /∈ B. Hence c ∈ A. Thus we have C ⊂ A, as desired. So < is a linear
order on R.

Finally, let us show that for every x = A|B there are y, z ∈ R such that
y < x < z. Let p ∈ A and q ∈ B. Let y := C|D and z := E|F , where

C = {r ∈ Q : r < p}, D = {r ∈ Q : r ≥ p},
E = {r ∈ Q : r < q + 1}, F = {r ∈ Q : r ≥ q + 1}.

Then we have A ⊂ E, since for every a ∈ A we have a < q < q + 1. Also, A 6= E;
because q ∈ E − A. In addition, we have C ⊂ A, since if r ∈ B then r > p; so for
every r < p we must have r ∈ A. Furthermore, C 6= A; because A must contain an
element larger than p, since A does not have a largest element. So we have shown
that y < x < z. Therefore no real number like x can be the smallest element, nor
the largest element of R. �

Theorem 1.20. Suppose S ⊂ R is nonempty and bounded above. Then S has a
least upper bound in R.
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Proof. Let

A := {r ∈ Q : r ∈ C for some C|D ∈ S}, B := Q−A.

First note that A|B is a cut. It is obvious that A ∩ B = ∅, and A ∪ B = Q. It is
also obvious that A 6= ∅, since S is nonempty. We also have B 6= ∅. To see this let
E|F be an upper bound for S. Then for every C|D ∈ S we have C ⊂ E; so A ⊂ E.
Thus F ⊂ B. Hence B 6= ∅. Now let a ∈ A and b ∈ B. Then a ∈ C for some
C|D ∈ S. If b ∈ C then b ∈ A, which contradicts our assumption. So b ∈ D. Thus
we must have a < b. Finally, let a ∈ A. Then a ∈ C for some C|D ∈ S. But we
know that there is c ∈ C such that a < c, since C does not have a largest element.
However, we also have c ∈ A. Thus no element a ∈ A can be the largest element of
A. Therefore we have shown that A|B is a cut.

Next let us show that A|B is an upper bound for S. Let C|D ∈ S, and let
r ∈ C. Then by definition we have r ∈ A. Hence C ⊂ A. Thus C|D ≤ A|B, as
desired. Now let E|F be an upper bound for S. Let r ∈ A. Then there is C|D ∈ S
such that r ∈ C. However, we know that C ⊂ E. Thus we have r ∈ E. Hence
A ⊂ E. Therefore A|B ≤ E|F . So A|B is the least upper bound of S. �

Next, we have to define the addition and multiplication on R, and show that
they have the expected properties. Let x = A|B, y = C|D ∈ R. Informally, these
cuts represent the real numbers which are the supremum of the set of rational
numbers in A,C respectively. Thus, at first glance, if we want to add and multiply
x, y, the results should be cuts whose first components are respectively

{a+ c : a ∈ A, c ∈ C},
{ac : a ∈ A, c ∈ C}.

Because if a < x and c < y, then we have a + c < x + y. We also have ac < xy,
provided that a, c > 0. However, if a, c are negative, then ac can be a large positive
number greater than xy. Thus the definition of multiplication of real numbers needs
more attention, which will be discussed later.

Furthermore, given a real number like x = A|B, we need to find its opposite
and its inverse (provided that x is nonzero). Intuitively, we know that if the real
number B′|A′ is the opposite of x, then B′ consists of rational numbers s less than
−x. However s < −x if and only if −s > x. Therefore we must have −s ∈ B. In
other words, the cut whose first component, i.e. B′, consists of the opposite of the
elements of B is our candidate for −x. But we must note that B can have a least
element, and B′ cannot have a largest element. Therefore when we construct B′

from B we have to exclude the least element of B, if it exists. Hence we arrive at
the following definition. The idea for finding the inverse of a nonzero real number is
similar, and will be discussed later. First let us check that these proposed definitions
for the sum and opposite are actually Dedekind cuts.
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Proposition 1.21. Let x, y ∈ R, and suppose x = A|B, y = C|D. Let

E = {a+ c : a ∈ A, c ∈ C}, F = Q− E.

Also let

B′ = {−b : b ∈ B, b is not the smallest element of B}, A′ = Q−B′.

Then E|F and B′|A′ are real numbers.

Proof. First note that E is nonempty, since A,C are nonempty. It is also obvious
that E ∩ F = ∅, and E ∪ F = Q. Now let b ∈ B and d ∈ D. Then for every a ∈ A
and c ∈ C we have a < b and c < d. Thus a+c < b+d. So b+d /∈ E. Hence F 6= ∅.
Next let a+ c ∈ E and r ∈ F . If r ≤ a+ c then r − a ≤ c. Thus r − a ∈ C. Hence
we have r = a + (r − a) ∈ E, which is a contradiction. Therefore we must have
a+ c < r. Finally, let a+ c ∈ E. Then there are p ∈ A and q ∈ C such that a < p
and c < q; because A,C do not have largest elements. Now we have p+ q ∈ E, and
a+ c < p+ q. Thus no element a+ c can be the largest element of E.

Next lest us consider B′, A′. Note that B′ is nonempty. Because B is nonempty,
and for every b ∈ B we also have b + 1 ∈ B; so B has elements which are not its
smallest element. It is also obvious that B′ ∩A′ = ∅, and B′ ∪A′ = Q. In addition,
for a ∈ A we must have −a ∈ A′. Thus A′ 6= ∅. Now let b′ ∈ B′ and a′ ∈ A′. Then
−b′ ∈ B. Also, −a′ either belongs to A, or is the smallest element of B (otherwise
a′ belongs to B′). In either case we have −a′ < −b′. Hence b′ < a′.

Finally, note that if b′ ∈ B′ is its largest element, then −b′ must be less than
or equal to every element of B except its smallest element (if B has a smallest
element). Now if B does not have a smallest element, then −b′ is less than or equal
to every element of B. Hence −b′ is the smallest element of B, contrary to our
assumption. So suppose p ∈ B is its smallest element. Then we have p < −b′. Let
q be a rational number such that p < q < −b′. Then we have q ∈ B, since p < q.
However, q is not the smallest element of B. So it cannot be smaller than −b′.
Thus we have a contradiction, and therefore B′ cannot have a largest element. �

Definition 1.22. Let x, y ∈ R, and suppose x = A|B, y = C|D. Then we define
their addition to be x+ y := E|F , where

E = {a+ c : a ∈ A, c ∈ C}, F = Q− E.

The zero and identity of R are

0 := {r ∈ Q : r < 0} | {r ∈ Q : r ≥ 0},
1 := {r ∈ Q : r < 1} | {r ∈ Q : r ≥ 1},

respectively. The opposite of x is −x := B′|A′, where

B′ = {−b : b ∈ B, b is not the smallest element of B}, A′ = Q−B′.
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Remark. It is easy to see that in R we have 0 < 1; because {r < 0} ⊂ {r < 1},
and

1

2
∈ {r ∈ Q : r < 1} − {r ∈ Q : r < 0}.

So in particular we have 0 6= 1.

Remark. Note that if x = A|B and x > 0, then {r < 0} $ A. Therefore there
must be a nonnegative rational number r such that r ∈ A. However, A does not
have a largest element. So 0 cannot be the only nonnegative rational number in A.
Hence there must be a positive rational number r such that r ∈ A. In addition,
note that every element of B is positive.

Theorem 1.23. The addition of real numbers has the following properties: for
every x, y, z ∈ R we have

(i) Associativity :
x+ (y + z) = (x+ y) + z.

(ii) Commutativity :
x+ y = y + x.

(iii) Identity element :
x+ 0 = x.

(iv) Additive inverse :
x+ (−x) = 0.

(v) If x < y then x+ z < y + z.

Proof. Let x = A|B, y = C|D, and z = E|F .
(i) Suppose x+ (y + z) = G|H and (x+ y) + z = I|J . Then we have

r ∈ G ⇐⇒ ∃a ∈ A ∃c ∈ C ∃e ∈ E r = a+ (c+ e)

⇐⇒ ∃a ∈ A ∃c ∈ C ∃e ∈ E r = (a+ c) + e ⇐⇒ r ∈ I.

Hence G = I. Thus x+ (y + z) = (x+ y) + z.
(ii) Suppose x+ y = G|H and y + x = I|J . Then we have

r ∈ G ⇐⇒ ∃a ∈ A ∃c ∈ C r = a+ c

⇐⇒ ∃c ∈ C ∃a ∈ A r = c+ a ⇐⇒ r ∈ I.

Hence G = I. Thus x+ y = y + x.
(iii) Suppose x + 0 = G|H. Let r ∈ G. Then there are a ∈ A and c < 0 such

that r = a + c. Thus r < a. Hence r ∈ A. So G ⊂ A. Conversely, let p ∈ A.
Then there is q > p such that q ∈ A. Now we have p = q + (p− q), and p− q < 0.
Therefore p ∈ G. Hence A ⊂ G. So A = G. Thus we have x+ 0 = x.
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(iv) Suppose −x = B′|A′, and x + (−x) = G|H. Let r ∈ G. Then there are
a ∈ A and b′ ∈ B′ such that r = a+ b′. We know that −b′ ∈ B. Therefore we have
a < −b′. Hence r = a+ b′ < 0. Thus G ⊂ {r < 0}.

Conversely, suppose r < 0. We claim that there is a ∈ A such that a − r ∈ B.
Because otherwise for every a ∈ A we would have a− r ∈ A. Hence we would also
have a−2r = (a−r)−r ∈ A. In fact, by induction we can show that a−nr ∈ A for
every n ∈ N. But this leads to a contradiction, since we can make a−nr larger than
any rational number by taking n large enough (this is known as the Archimedean
property of Q). To see this let b ∈ B. Then b > a. We know that −r, b − a
are positive rational numbers. So we have −r = m/k and b − a = l/j, for some
m, k, l, j ∈ N. Now for n = kl we have −nr = n(−r) = kl×m/k = lm ≥ l/j = b−a,
since mj ≥ 1. Hence we would get b ≤ a− nr, which implies that b ∈ A; and this
is a contradiction.

Therefore there is a ∈ A such that a − r ∈ B. Now we need r − a = −(a − r)
to be in B′. The only obstruction is that a− r might be the smallest element of B.
To solve this problem let c ∈ A be such that c > a. Then we also have c− r ∈ B,
since a− r < c− r. Let b := c− r. Then b is not the smallest element of B. Hence
−b ∈ B′. Now we have

r = c+ r − c = c+ (−b) ∈ G.

Thus we have shown that {r < 0} ⊂ G. Therefore G = {r < 0}, and we have
x+ (−x) = 0, as desired.

(v) Suppose x < y, x+ z = G|H, and y+ z = I|J . Then we know that A ⊂ C.
Let r ∈ G. Then we have r = a + e, for some a ∈ A and e ∈ E. However, we
also have a ∈ C. Hence r ∈ I too. Thus G ⊂ I. So we have x + z ≤ y + z. But
x+ z = y + z implies that

x = x+ 0 = x+ (z + (−z)) = (x+ z) + (−z)
= (y + z) + (−z) = y + (z + (−z)) = y + 0 = y;

which contradicts our assumption. So we must have x + z 6= y + z. Therefore
x+ z < y + z, as desired. �

Remark. As a consequence of the above theorem, for every x, y ∈ R we have

−(−x) = x, −(x+ y) = (−x) + (−y).

These are proved in Theorem 1.3 for arbitrary fields; however, note that we did not
use the multiplication of field in their proof. So, that proof works here too. Thus,
as a trivial consequence we have y = −x if and only if −y = x. In addition, we
have

x < 0 ⇐⇒ −x > 0.
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Because x < 0 =⇒ x+ (−x) < 0 + (−x) =⇒ 0 < −x, and 0 < −x =⇒ 0 + x <
(−x) + x =⇒ x < 0.

The next step is to define multiplication and inverse, and to conclude their
properties. Let x = A|B, y = C|D ∈ R. We have seen that a suitable candidate for
the product of x, y should be a cut whose first component is

{ac : a ∈ A, c ∈ C}.

Because if a < x and c < y, then we have ac < xy, provided that a, c > 0. However
as we noted before, a, c can be negative, and consequently ac can be a large positive
number greater than xy. In order to overcome this difficulty, we first assume that
x, y > 0. Then we can represent the positive rational numbers less than xy by ac,
where a, c > 0. And to construct the first component of the Dedekind cut of xy
we also include all nonpositive rational numbers, since they are all less than xy.
Finally we can extend the definition of multiplication to all real numbers by taking
the opposites, and reducing the general case to the case of positive real numbers,
as explained below.

In addition, to find the inverse of a given nonzero real number like x = A|B, we
first assume x > 0. Intuitively, we know that if the real number B̃|Ã is the inverse
of x, then B̃ consists of rational numbers s less than x−1. However for s > 0 we have
s < x−1 if and only if s−1 > x. Therefore we must have s−1 ∈ B. In other words,
the cut whose first component, i.e. B̃, consists of nonpositive rational numbers
together with the inverse of the elements of B (which are all positive, since they
are not less than x) is our candidate for x−1. But we must note that B can have a
least element, and B̃ cannot have a largest element. Therefore when we construct
B̃ from B we have to exclude the least element of B, if it exists. Hence we arrive at
the following definition. For the inverse of negative real numbers we can take their
opposites and use the definition of inverse of positive numbers, as explained below.
But first let us check that these proposed definitions for the product and inverse of
positive numbers are actually Dedekind cuts.

Proposition 1.24. Let x, y ∈ R, and suppose x = A|B, y = C|D. Suppose
x, y > 0. Let

G = {r ∈ Q : r ≤ 0} ∪ {ac : a ∈ A, c ∈ C, a, c > 0}, H = Q−G.

Also let

B̃ = {r ∈ Q : r ≤ 0} ∪ {b−1 : b ∈ B, b is not the smallest element of B},
Ã = Q− B̃.

Then G|H and B̃|Ã are real numbers.
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Remark. Note that when x > 0, A contains a positive rational number; so every
element of B is positive, since every element of B is greater than every element of
A. Thus the definition of B̃ makes sense.

Proof. It is obvious that G is nonempty, G ∩H = ∅, and G ∪H = Q. Now let
b ∈ B and d ∈ D. Let a ∈ A and c ∈ C be positive. We know that a < b and
c < d. Hence we have ac < bd. So bd /∈ G. Thus H 6= ∅. Next let g ∈ G and
h ∈ H. Note that by definition every element of H is positive. Thus if g ≤ 0 then
g < h. So suppose g = ac > 0. If h ≤ ac then h/a ≤ c. Thus h/a ∈ C. Hence we
have h = a × h/a ∈ G, which is a contradiction. Therefore we must have ac < h.
Finally, let ac be a positive element of G. Then there are p ∈ A and q ∈ C such
that a < p and c < q; because A,C do not have largest elements. Now we have
pq ∈ G, and ac < pq. Thus no element ac can be the largest element of G. It is
also obvious that a nonpositive element of G cannot be its largest element.

Next lest us consider B̃, Ã. Note that all the elements of B are positive, since
x > 0. It is obvious that B̃ is nonempty, B̃ ∩ Ã = ∅, and B̃ ∪ Ã = Q. In addition,
for a positive a ∈ A we have a−1 > 0; therefore a−1 ∈ Ã. Thus Ã 6= ∅. Now let
b′ ∈ B̃ and a′ ∈ Ã. Note that by definition every element of Ã is positive. Thus if
b′ ≤ 0 then b′ < a′. So suppose b′ > 0. Then b′−1 ∈ B. Also, a′−1 either belongs
to A, or is the smallest element of B (otherwise a′ belongs to B̃). In either case we
have a′−1 < b′−1. Hence b′ < a′, since a′, b′ > 0.

Finally, note that if b′ ∈ B̃ is its largest element, then b′ must be positive. So
b′−1 ∈ B, and it must be less than or equal to every element of B except its smallest
element (if B has a smallest element). Now if B does not have a smallest element,
then b′−1 is less than or equal to every element of B. Hence b′−1 is the smallest
element of B, contrary to our assumption. So suppose p ∈ B is its smallest element.
Then we have p < b′−1. Let q be a rational number such that p < q < b′−1. Then
we have q ∈ B, since p < q. However, q is not the smallest element of B. So it
cannot be smaller than b′−1. Thus we have a contradiction, and therefore B̃ cannot
have a largest element. �

Definition 1.25. Let x, y ∈ R, and suppose x = A|B, y = C|D. When x, y > 0,
we define the multiplication of x, y to be xy := G|H, where

G = {r ∈ Q : r ≤ 0} ∪ {ac : a ∈ A, c ∈ C, a, c > 0}, H = Q−G.

In other cases, we define
(i) When x < 0 and y > 0, xy := −((−x)y).
(ii) When x > 0 and y < 0, xy := −(x(−y)).
(iii) When x < 0 and y < 0, xy := (−x)(−y).
(iv) For every x ∈ R, x0 := 0 and 0x := 0.
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Suppose x 6= 0. When x > 0 the inverse of x is x−1 := B̃|Ã, where

B̃ = {r ∈ Q : r ≤ 0} ∪ {b−1 : b ∈ B, b is not the smallest element of B},
Ã = Q− B̃.

And when x < 0 we define x−1 := −(−x)−1.

Remark. Note that when x, y > 0 we have xy > 0. Hence if one of the x, y is
positive, and the other one is negative, we have xy < 0; and if both x, y are negative
we have xy > 0. Also note that when x > 0 we have x−1 > 0. Thus when x < 0
we have x−1 < 0.

Theorem 1.26. The multiplication of real numbers has the following properties:
for every x, y, z ∈ R we have

(i) Associativity :
x(yz) = (xy)z.

(ii) Commutativity :
xy = yx.

(iii) Identity element :
x1 = x.

(iv) Multiplicative inverse :
x 6= 0 =⇒ xx−1 = 1.

(v) Distributivity :
x(y + z) = xy + xz.

(vi) If x > 0 and y > 0, then xy > 0.

Remark. This theorem and the previous theorem show that R is an ordered field.

Proof. Let x = A|B, y = C|D, and z = E|F .
(i) Suppose x(yz) = G|H and (xy)z = I|J . If one of x, y, z is zero, then both

x(yz), (xy)z are zero; so x(yz) = (xy)z. So we can assume that x, y, z are all
nonzero. First suppose x, y, z > 0. Then we have

r ∈ G ⇐⇒ r ≤ 0 or ∃a ∈ A ∃c ∈ C ∃e ∈ E a, c, e > 0 and r = a(ce)

⇐⇒ r ≤ 0 or ∃a ∈ A ∃c ∈ C ∃e ∈ E a, c, e > 0 and r = (ac)e

⇐⇒ r ∈ I.
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Hence G = I. Thus x(yz) = (xy)z. Now we have (Note that the sign of xy and yz,
which are needed in the following computations, can be determined from the sign
of x, y, z.)

x < 0, y > 0, z > 0 =⇒ x(yz) = −[(−x)(yz)] = −[((−x)y)z]

= −[(−(xy))z] = (xy)z,

x > 0, y < 0, z > 0 =⇒ x(yz) = −[x(−(yz))] = −[x((−y)z)]

= −[(x(−y))z] = −[(−(xy))z] = (xy)z,

x < 0, y < 0, z > 0 =⇒ x(yz) = (−x)(−(yz)) = (−x)((−y)z))

= ((−x)(−y))z = (xy)z,

x > 0, y > 0, z < 0 =⇒ x(yz) = −[x(−(yz))] = −[x(y(−z))]
= −[(xy)(−z)] = (xy)z,

x < 0, y > 0, z < 0 =⇒ x(yz) = (−x)(−(yz)) = (−x)(y(−z))
= ((−x)y)(−z) = (−(xy))(−z) = (xy)z,

x > 0, y < 0, z < 0 =⇒ x(yz) = x((−y)(−z)) = (x(−y))(−z)
= (−(xy))(−z) = (xy)z,

x < 0, y < 0, z < 0 =⇒ x(yz) = −[(−x)(yz)] = −[(−x)((−y)(−z))]
= −[((−x)(−y))(−z)] = −[(xy)(−z)] = (xy)z.

(ii) Suppose xy = G|H and yx = I|J . If one of x, y is zero, then both xy, yx
are zero; so xy = yx. So we can assume that both x, y are nonzero. First suppose
x, y > 0. Then we have

r ∈ G ⇐⇒ r ≤ 0 or ∃a ∈ A ∃c ∈ C a, c > 0 and r = ac

⇐⇒ r ≤ 0 or ∃c ∈ C ∃a ∈ A c, a > 0 and r = ca ⇐⇒ r ∈ I.

Hence G = I. Thus xy = yx. Now we have

x < 0, y > 0 =⇒ xy = −((−x)y) = −(y(−x)) = yx,

x > 0, y < 0 =⇒ xy = −(x(−y)) = −((−y)x) = yx,

x < 0, y > 0 =⇒ xy = (−x)(−y) = (−y)(−x) = yx.

(iii) Suppose x1 = G|H. If x = 0 we have x1 = 0× 1 = 0 = x. Let us assume
x > 0. Let r ∈ G. If r ≤ 0 then we have r ∈ A, since x > 0. So suppose r > 0.
Then there are a ∈ A and c < 1 such that a, c > 0, and r = ac. Hence we have
r = ac < a1 = a. Thus r ∈ A. So G ⊂ A. Conversely, let p ∈ A. If p ≤ 0 then
p ∈ G by definition. So suppose p > 0. Then there is q > p such that q ∈ A. Now
we have p = q× p/q, and 0 < p/q < 1. Therefore p ∈ G. Hence A ⊂ G. So A = G.
Thus we have x1 = x. Finally, let us assume x < 0. Then we have

x1 = −((−x)1) = −(−x) = x,
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since −x, 1 > 0.
(iv) Suppose x 6= 0, x−1 = B̃|Ã, and xx−1 = G|H. First let us assume that

x > 0. Note that in this case all the elements of B are positive. Let r ∈ G. If
r ≤ 0 then r < 1. So suppose r > 0. Then there are a ∈ A and b′ ∈ B̃ such that
a, b′ > 0, and r = ab′. We know that b′−1 ∈ B. Therefore we have a < b′−1. Hence
r = ab′ < 1, since b′ > 0. Thus G ⊂ {r < 1}.

Conversely, suppose r < 1. If r ≤ 0 then r ∈ G by definition. So suppose r > 0.
Note that A contains some positive rational numbers, since x > 0. We claim that
there is a ∈ A such that a > 0, and a/r ∈ B. Because otherwise for every positive
a ∈ A we would have a/r ∈ A. Hence we would also have a/r2 = (a/r)/r ∈ A,
since a/r is positive too. In fact, by induction we can show that a/rn ∈ A for every
n ∈ N. But this leads to a contradiction, since we can make a/rn larger than any
rational number by taking n large enough (this also follows from the Archimedean
property of Q, but we have to convert the multiplicative form a/rn to the additive
form a + nd for some positive rational number d). To see this note that r < 1, so
s := 1− r > 0. It is easy to show by induction that

1

(1− s)n
≥ 1 + ns.

Because for n = 0 both sides are 1. And if the inequality holds for some n, then
for n+ 1 we have

1

(1− s)n+1
=

1

1− s
1

(1− s)n
≥ 1 + ns

1− s
≥ 1 + (n+ 1)s,

because we have

(1− s)(1 + (n+ 1)s) = 1− s+ (n+ 1)s− (n+ 1)s2 ≤ 1 + ns,

since 1− s, (n+ 1)s2 are positive. Therefore we get

a

rn
=

a

(1− s)n
≥ a(1 + ns) = a+ nas.

Let b ∈ B. Then b > a. We know that as, b− a are positive rational numbers. So
we have as = m/k and b− a = l/j, for some m, k, l, j ∈ N. Now for n = kl we have
nas = kl ×m/k = lm ≥ l/j = b− a, since mj ≥ 1. Thus we get

b ≤ a+ nas ≤ a

rn
.

However, this implies that b ∈ A, which is a contradiction.
Therefore there is a positive a ∈ A such that a/r ∈ B. Now we need r/a =

(a/r)−1 to be in B̃. The only obstruction is that a/r might be the smallest element
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of B. To solve this problem let c ∈ A be such that c > a. Then we also have
c/r ∈ B, since a/r < c/r. Let b := c/r. Then b is not the smallest element of B.
Hence b−1 ∈ B̃. Now we have

r = c× r

c
= c×

( c
r

)−1
= cb−1 ∈ G.

Thus we have shown that {r < 1} ⊂ G. Therefore G = {r < 1}, and we have
xx−1 = 1, as desired. Finally, suppose x < 0. Then −x > 0, and by definition we
have x−1 = −(−x)−1. Hence x−1 < 0 too, and we have −x−1 = −(−(−x)−1) =
(−x)−1. Thus we get

xx−1 = (−x)(−x−1) = (−x)(−x)−1 = 1,

as desired.
(v) Suppose x(y + z) = G|H, xy + xz = I|J , y + z = K|K ′, xy = L|L′, and

xz = M |M ′. If x = 0 then

x(y + z) = 0 = 0 + 0 = xy + xz.

And if one of y, z is zero, say y is zero, then

x(y + z) = x(0 + z) = xz = 0 + xz = xy + xz.

So we can assume that x, y, z are all nonzero. First suppose x, y, z > 0. Note that
y + z > 0 + z = z > 0. In addition, note that xy, xz > 0. Hence we can similarly
show that xy + xz > 0. Let r ∈ G. If r ≤ 0 then r ∈ I, since xy + xz > 0. So
suppose r > 0. Then there are a ∈ A and k ∈ K such that a, k > 0, and r = ak.
On the other hand, there are c ∈ C and e ∈ E such that k = c+ e. Thus we have
r = ac + ae. If c ≤ 0 then ac ≤ 0; so ac ∈ L, since xy > 0. And if c > 0 then
ac ∈ L by definition of xy. Similarly, we have ae ∈M . Therefore r = ac+ ae ∈ I.
Hence G ⊂ I.

Conversely, let r ∈ I. Then we know that r = l+m, for some l ∈ L and m ∈M .
Suppose l,m > 0. Then there are positive numbers a, a′ ∈ A, c ∈ C, and e ∈ E
such that l = ac, and m = a′e. Without loss of generality we can assume a′ ≤ a.
Then we have

r = l +m = ac+ a′e ≤ ac+ ae = a(c+ e).

However, c + e ∈ K, and c + a > 0; so a(c + e) ∈ G. Therefore we also have
r ∈ G. Next suppose one of l,m is positive and the other one is nonpositive, say
l > 0,m ≤ 0. Then there are positive numbers a ∈ A and c ∈ C such that l = ac.
Let e ∈ E be positive. Then we have

r = l +m ≤ l = ac ≤ ac+ ae = a(c+ e);
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which implies r ∈ G. Finally, if l,m ≤ 0 then r ≤ 0. Thus by definition of G we
have r ∈ G. Therefore we have I ⊂ G. Hence I = G, and we get x(y+z) = xy+xz,
as desired.

Next suppose x > 0, y < 0, and z > 0. Then −y > 0. We have to consider two
cases. If y + z ≥ 0 we have

−xy + x(y + z) = x(−y) + x(y + z) = x(−y + y + z) = xz.

Hence we get x(y+ z) = xy+xz by adding xy to both sides. And if y+ z < 0 then
−(y + z) > 0. Thus we have

−x(y + z) + xz = x(−(y + z)) + xz

= x(−(y + z) + z) = x(−y − z + z) = x(−y) = −xy.

Hence we get x(y+z) = xy+xz by adding xy, x(y+z) to both sides. Now suppose
x > 0, y > 0, and z < 0. Then we can switch y, z and use the previous case to
obtain

x(y + z) = x(z + y) = xz + xy = xy + xz.

Next suppose x > 0 and y, z < 0. Then we have y + z < 0. Hence

x(y + z) = −[x(−(y + z))] = −[x((−y) + (−z))] = −[x(−y) + x(−z)]
= −[(−xy) + (−xz)] = −[−(xy + xz)] = xy + xz.

Finally, suppose x < 0. Let us first show that for every y ∈ R we have

(−x)y = −xy. (∗)

If y = 0 then both sides of the above equation are 0. If y > 0 then by definition we
have xy = −((−x)y). Thus −xy = (−x)y. And if y < 0 then by definition we have
xy = (−x)(−y). We also have (−x)y = −((−x)(−y)), since −x > 0. Hence we get
(−x)y = −xy, as desired. Now by the previous paragraph, for every y, z ∈ R we
have

(−x)(y + z) = (−x)y + (−x)z,

since −x > 0. Hence by (∗) we get

−(x(y + z)) = (−xy) + (−xz) = −(xy + xz).

Thus we obtain x(y + z) = xy + xz; because the additive inverse of every number
is unique.

(vi) As we have noted before, this is a trivial consequence of the definition of
multiplication. �
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Although R does not contain Q as a subset, it has a subset which looks like Q.
Informally, we can say that R contains a “copy” of Q. The next theorem shows that
this subset of R behaves similarly to Q.

Theorem 1.27. Let E : Q→ R be defined as

E(p) = {r ∈ Q : r < p} | {r ∈ Q : r ≥ p},

for every p ∈ Q. Then E is a one-to-one function, and for every p, q ∈ Q we have
(i) E(p+ q) = E(p) + E(q).
(ii) E(pq) = E(p)E(q).
(iii) p < q if and only if E(p) < E(q).

Proof. First note that E is one-to-one. Because if E(p) = E(q) then we have
{r ≥ p} = {r ≥ q}. But both p, q are the minimum of this set. So we must have
p = q.

(i) Suppose E(p) + E(q) = A|B. Let r ∈ A. Then there are a < p and b < q
such that r = a+ b. Hence we have r = a+ b < p+ q. On the other hand, suppose
r < p + q. Then r − p < q. So there is b such that r − p < b < q. Hence we have
r − b < p. Thus

r = r − b+ b ∈ A.

Therefore we have A = {r < p+ q}, as desired.
(ii) Note that by definition we have E(0) = 0. Thus for every p we have

−E(p) = E(−p),

since E(p) + E(−p) = E(p + (−p)) = E(0) = 0. Now let E(p)E(q) = C|D. If
one of p, q is zero, then both E(pq) and E(p)E(q) are zero. So suppose that both
p, q are nonzero. First let us assume that p, q > 0. Then by the next part we have
E(p), E(q) > E(0) = 0. Let r ∈ C. If r ≤ 0 then we obviously have r < pq. So
suppose r > 0. Then there are a < p and b < q such that a, b > 0, and r = ab.
Thus we have r = ab < pq. On the other hand, suppose r < pq. If r ≤ 0 then by
definition we have r ∈ C. So suppose r > 0. Then we have r/p < q. So there is b
such that r/p < b < q. Hence we have r/b < p, since b > 0. Thus

r =
r

b
× b ∈ C.

Therefore we have C = {r < pq}, as desired.
Next suppose p > 0 and q < 0. Then E(q) < 0. Hence we have

E(p)E(q) = −[E(p)(−E(q))] = −[E(p)E(−q)]
= −E(p(−q)) = −E(−pq) = −(−E(pq)) = E(pq).
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Now suppose p < 0 and q > 0. Then we can switch p, q and use the previous case
to obtain

E(p)E(q) = E(q)E(p) = E(qp) = E(pq).

Finally, suppose p, q < 0. Then E(p), E(q) < 0. Hence we have

E(p)E(q) = (−E(p))(−E(q)) = E(−p)E(−q) = E((−p)(−q)) = E(pq).

(iii) If p < q then we clearly have {r < p} ⊂ {r < q}. In addition, we have
p ∈ {r < q} − {r < p}. Hence {r < p} $ {r < q}. Thus E(p) < E(q). Conversely,
if E(p) < E(q) then we must have p < q. Because if p ≥ q then we have shown
that E(p) ≥ E(q); and this contradicts our assumption. �

Definition 1.28. A real number x is called rational if there is p ∈ Q such that
x = E(p). In other words, if x = A|B and

A = {r ∈ Q : r < p}, B = {r ∈ Q : r ≥ p}.

A real number which is not rational is called irrational. A real number x is an
integer, if x = E(p) for some p ∈ Q, where p is an integer.

Remark. If x is a rational real number as above, we identify it with the rational
number p. Note that this identification is mostly harmless, since by Theorem
1.27, the addition, multiplication, and order relation will be preserved under this
identification.

Example 1.29. An example of an irrational number is x = A|B where

A = {r ∈ Q : r < 0 or r2 < 2}, B = {r ∈ Q : r > 0 and r2 ≥ 2}.

The number x is actually
√

2, and we will see later that it is indeed irrational.

1.3 More about Real Numbers

In the last section, we have shown that R is a complete ordered field. In fact, up to
isomorphism, R is the only complete ordered field, i.e. every complete ordered field
is essentially the same as R. Intuitively, this means that every complete ordered
field can be obtained from R by renaming its elements. The next theorem states
this fact precisely.

Theorem 1.30. Let F be a complete ordered field. Then F is isomorphic to R,
i.e. there exists a one-to-one and onto function ϕ : R → F such that for every
x, y ∈ R we have
(i) ϕ(x+ y) = ϕ(x) + ϕ(y),
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(ii) ϕ(xy) = ϕ(x)ϕ(y),
(iii) x < y if and only if ϕ(x) < ϕ(y).

Proof. In Theorem 1.8 we have shown that there exists a one-to-one function
ϕ : Q→ F that satisfies the above three conditions. Also remember that the image
of ϕ is the set of “rationals” m

n in F , where m,n are the “integers” in F , i.e. they are
constructed by adding the identity of F to itself. Furthermore, since F is complete,
we can show that between any two of its elements there is a “rational” element. The
proof is similar to the proof of the same property for R, as will be demonstrated
later in this section. In this proof, r, s, p denote rational numbers.

Now we extend ϕ to all of R. For x ∈ R let

Ax := {ϕ(r) : r ∈ Q and r < x}.

Then Ax is nonempty and bounded above, since for some rational number s > x
we have ϕ(s) > ϕ(r), for every rational number r < x. Now let

ϕ̂(x) := supAx.

Note that supAx exists, because F is complete. First let us show that ϕ̂(r) = ϕ(r)
for every r ∈ Q. Note that for every rational number p < r we have ϕ(p) < ϕ(r); so
ϕ(r) is an upper bound for Ar. Hence ϕ̂(r) ≤ ϕ(r). Suppose to the contrary that
ϕ̂(r) < ϕ(r). Then there is a rational element ϕ(s) ∈ F such that ϕ̂(r) < ϕ(s) <
ϕ(r). But then we must have s < r; so s ∈ Ar. However, then we get ϕ(s) ≤ ϕ̂(r),
which is a contradiction. Therefore ϕ̂(r) = ϕ(r). Hence ϕ̂ is an extension of ϕ. So
in the rest of this proof, we will simply denote ϕ̂ by ϕ.

Next let us show that ϕ is onto. Let a ∈ F , and let

Ãa := {r : r ∈ Q and ϕ(r) < a}.

Then Ãa is a nonempty and bounded above subset of R. Because there is a “rational”
element a − 1 < ϕ(p) < a. And for ϕ(s) > a we have r < s for every r ∈ Ãa. Let
x := sup Ãa. We claim that a = ϕ(x). Note that if ϕ(s) ≥ a then ϕ(s) is an upper
bound for ϕ(Ãa); so s is an upper bound for Ãa. Hence we get s ≥ x, since x is
the least upper bound of Ãa. Therefore if r < x then ϕ(r) < a. Thus a is an upper
bound for Ax. So ϕ(x) = supAx ≤ a. Suppose to the contrary that ϕ(x) < a.
Then there is ϕ(x) < ϕ(r) < a. Hence r ∈ Ãa. So we must have r ≤ x. But r 6= x,
since ϕ(x) 6= ϕ(r). On the other hand, r < x implies that ϕ(r) ∈ Ax. Hence we
get ϕ(r) ≤ ϕ(x), which is a contradiction. Thus ϕ(x) = a. So ϕ is onto.

Now suppose x < y. Then we have Ax ⊂ Ay. Hence ϕ(x) ≤ ϕ(y). Also, we
know that there are rational numbers x < r < s < y. So ϕ(s) ∈ Ay, and ϕ(r) is
an upper bound for Ax. Therefore ϕ(x) ≤ ϕ(r) < ϕ(s) ≤ ϕ(y). Thus ϕ(x) < ϕ(y).
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Hence ϕ is one-to-one. In addition, ϕ(x) < ϕ(y) also implies x < y; because
otherwise we would have x ≥ y, which implies ϕ(x) ≥ ϕ(y). Next let us show that

ϕ(x+ y) = ϕ(x) + ϕ(y).

If this does not happen, then we either have ϕ(x+ y) < ϕ(x) +ϕ(y), or ϕ(x+ y) >
ϕ(x) + ϕ(y). Suppose the latter inequality holds; the other case can be treated
similarly. Then there is a rational number r such that

ϕ(x+ y) > ϕ(r) > ϕ(x) + ϕ(y).

Hence we get r < x+ y; so r − y < x. Thus there is also a rational number s such
that r − y < s < x. Then we have r − s < y. Hence we have ϕ(s) < ϕ(x), and
ϕ(r − s) < ϕ(y). Therefore we obtain

ϕ(x) + ϕ(y) > ϕ(s) + ϕ(r − s) = ϕ(s+ r − s) = ϕ(r),

which is a contradiction.
Finally, let us show that ϕ(xy) = ϕ(x)ϕ(y). Note that since ϕ preserves addi-

tion, we have ϕ(−x) = −ϕ(x). We also know that ϕ(0) = 0. Hence it suffices to
check the equality ϕ(xy) = ϕ(x)ϕ(y) for x, y > 0. If the equality does not hold,
then either ϕ(xy) < ϕ(x)ϕ(y), or ϕ(xy) > ϕ(x)ϕ(y). Suppose the former inequality
holds; the other case can be treated similarly. Then there is a rational number r
such that

ϕ(xy) < ϕ(r) < ϕ(x)ϕ(y).

Hence we get 0 < xy < r; so x < r
y . Thus there is also a rational number s such

that 0 < x < s < r
y . Then we have y < r

s . Hence we have ϕ(x) < ϕ(s), and
ϕ(y) < ϕ( rs). Therefore we obtain

ϕ(x)ϕ(y) < ϕ(s)ϕ( rs) = ϕ(s rs) = ϕ(r),

which is a contradiction. �

Although we have constructed real numbers by using Dedekind cuts, in practice
we do not think of a real number as a pair of sets of rational numbers. Rather, as
it is common, we think of real numbers as the points of a line. And when we want
to prove something about real numbers, we will use the fact that R is a complete
ordered field.

The Extended Real Number System. There does not exist a largest or small-
est real number, but we consider the so-called “infinite real numbers” +∞ and −∞.
They are called (positive) infinity and negative infinity respectively. We also
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denote +∞ simply by ∞. Technically, ±∞ are two distinct objects that are dif-
ferent from all real numbers. In contrast to infinities, the elements of R are called
“finite real numbers”. Also, the set

R ∪ {+∞,−∞}

is called “the extended real number system”. We extend the order of R to R ∪
{+∞,−∞}, so that for all x ∈ R we have

−∞ < x < +∞.

We also define

±∞+ x = x+ (±∞) = ±∞, ±∞+ (±∞) = ±∞,
±∞ · x = x · (±∞) = ±∞ if x > 0, ±∞ · (+∞) = ±∞,
±∞ · x = x · (±∞) = ∓∞ if x < 0, ±∞ · (−∞) = ∓∞,

− (±∞) = ∓∞, x

±∞
= 0.

Note that the following expressions are not defined

±∞− (±∞), ±∞+ (∓∞),
±∞
±∞

,

where in the last expression the infinities in the numerator and denominator can
have the same or the opposite signs. Also, 0 · (±∞) is sometimes defined to be zero.
But we postpone using this convention until needed, and for now consider 0 · (±∞)
to be undefined. �

Definition 1.31. Let A ⊂ R. When A is nonempty and bounded above, we denote
its least upper bound by supA, and we call it the supremum of A. When A is
nonempty and has no upper bound we define

supA := +∞.

When A is nonempty and bounded below, we denote its greatest lower bound by
inf A, and we call it the infimum of A. When A is nonempty and has no lower
bound we define

inf A := −∞.

Remark. It is obvious that for a nonempty set A ⊂ R we always have inf A ≤
supA.
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Definition 1.32. Suppose a, b ∈ R, and a < b. The closed interval and the open
interval with endpoints a, b are respectively

[a, b] := {x ∈ R : a ≤ x ≤ b},
(a, b) := {x ∈ R : a < x < b}.

We can similarly define the half-open (or half-closed) intervals

[a, b) := {x ∈ R : a ≤ x < b},
(a, b] := {x ∈ R : a < x ≤ b}.

All these intervals are called bounded. The length of these bounded intervals is
the positive real number b − a. We also define the unbounded intervals, whose
endpoints can be ±∞, as follows

(−∞, a) := {x ∈ R : x < a},
(−∞, a] := {x ∈ R : x ≤ a},
(b,+∞) := {x ∈ R : x > b},
[b,+∞) := {x ∈ R : x ≥ b},

(−∞,+∞) := R.

An unbounded interval that contains its finite endpoint is called closed, and an
unbounded interval that does not contain its finite endpoint is called open. We
consider R to be both an open interval and a closed interval.

Archimedean Property. For every x ∈ R there exists n ∈ N such that x < n.
Also, for every x ∈ (0,∞) there exists n ∈ N such that 1

n < x.

Proof. Suppose to the contrary that there is x0 ∈ R such that x0 ≥ n for all
n ∈ N. Let

A := {x ∈ R : x ≥ n ∀n ∈ N}.

Then A is nonempty by our assumption. A is also bounded below, since for example
1 is a lower bound for it. Therefore s := inf A is a finite number. Now s + 1

2 is
not a lower bound for A, since s is the greatest lower bound for A. Hence there is
x1 ∈ A such that x1 < s+ 1

2 . On the other hand s− 1
2 does not belong to A, since

s is a lower bound for A. Thus there is n0 ∈ N such that s − 1
2 < n0. But this

implies that

x1 < s+
1

2
< n0 + 1 ∈ N,

which is a contradiction.
For the second statement, note that there is n ∈ N such that 1

x < n. Thus as
1
x > 0 we can deduce that x > 1

n . �
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The meaning of the Archimedean property is that R does not contain infinitely
large or infinitely small elements, since intuitively we consider n = 1 + · · ·+ 1 to be
finite, no matter how large n is. Similarly, we consider 1

n to be finite, even though
it might be very small.

There is an alternative way to formulate the Archimedean property, which also
states the intuition that R does not have infinitely large or small elements. Let
x, y > 0 be real numbers. Then there is n ∈ N such that nx > y. In other words,
no matter how small x is, and how large y is, in finitely many steps of length x
we can surpass y. For the proof note that there is n such that y

x < n; so we have
y < nx, since x is positive. Conversely, if this formulation of the Archimedean
property holds, then by setting x = 1 we obtain the previous formulation.

Remark. The Archimedean property of R is a consequence of its least upper bound
property, but the two properties are not equivalent. For example Q is not complete
but it is Archimedean, since for every p

q ∈ Q we have p
q < |p| + 1. Finally we

mention that there are ordered fields that are not Archimedean.

It is easy to show that the well-ordering of natural numbers implies the following
property for sets of integers in R. However, we will show that this property can be
deduced from the fact that R is a complete ordered field.

Theorem 1.33. Let A be a set of integers in R, and suppose A is nonempty.
(i) If A is bounded below then it has a least element.
(ii) If A is bounded above then it has a largest element.

Proof. (i) Since A is nonempty and bounded below, it has a greatest lower bound,
which we call m. Then m+ 1

2 cannot be a lower bound for A. Hence there is n ∈ A
such that n < m + 1

2 . Then we have n − 1 < m − 1
2 < m. We also have m ≤ n.

Thus
n− 1 < m ≤ n.

Now if m 6= n then n cannot be a lower bound for A. Therefore there must be
k ∈ A such that k < n. However k ≥ m too. So we get n − 1 < k < n, which
contradicts the assumption of k, n being integers. Hence we must have m = n;
which implies m ∈ A. Therefore m is the least element of A, since it belongs to A,
and it is a lower bound for A.

(ii) This part can be proved similarly to the previous part. We can also use
the set B := {−a : a ∈ A}, and use the previous part, similarly to the proof of
Theorem 1.13. �

Integer Part. Let x ∈ R. Then by the Archimedean property there is n1 ∈ N
such that x < n1. Thus the set

A := {n ∈ Z : x < n}
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is nonempty and bounded below. Hence A has a smallest element, which we call
n0 + 1. So n0 /∈ A. Therefore we have

n0 ≤ x < n0 + 1.

We set bxc := n0, and call bxc the integer part of x. Note that bxc is the greatest
integer less than or equal to x, and we have

bxc ≤ x < bxc+ 1, x− 1 < bxc ≤ x.

The function b c : R → Z is called the greatest integer function or the floor
function. �

Theorem 1.34. Between any two real numbers there is a rational and an irrational
number.

Proof. Suppose a < b. Let c = a+b
2 . It is easy to see that a < c < b. Then

c−a > 0, and there is n ∈ N such that c−a > 1
n . Now we have nc−1 < bncc ≤ nc.

Thus a < c− 1
n <

bncc
n ≤ c < b, and bnccn ∈ Q.

Next, let r be a rational number between a+
√

2 and b+
√

2. Then r −
√

2 is
an irrational number between a, b. �

Theorem 1.35. A subset I ⊂ R is an interval, if and only if it has more than one
element; and for every a, b ∈ I with a < b, and every c where a < c < b, we have
c ∈ I.

Proof. First suppose I is an interval with endpoints α < β, where the endpoints
can be ±∞. Then by Theorem 1.34, I has at least two elements. Let a, b ∈ I with
a < b, and let a < c < b. Then we have α ≤ a, and b ≤ β. Hence α < c < β, and
therefore c ∈ I by the definition of intervals.

Now suppose conversely that I has the specified property. Then in particular I
is nonempty. Let

α := inf I, β := sup I.

Then α < β, since otherwise I cannot have more than one element. We claim that
(α, β) ⊂ I. Let α < c < β. Then there is c < x < β. But x cannot be an upper
bound for I. Hence there is x < b ≤ β such that b ∈ I. Similarly there is α ≤ a < c
such that a ∈ I. Therefore c ∈ I. Thus (α, β) ⊂ I.

On the other hand, if c > β then c /∈ I, since β is an upper bound for I.
Similarly I cannot contain any number less than α. Hence I ⊂ [α, β]. Therefore I
equals one of the sets

(α, β), [α, β), (α, β], [α, β].

Thus I is an interval. Note that if one of the α, β is infinite, then we have to
eliminate the sets containing it. �
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Definition 1.36. Let x ∈ R. Then the absolute value of x is

|x| :=

{
x if x ≥ 0,

−x if x < 0.

Theorem 1.37. For all x, y ∈ R we have
(i) |x| ≥ 0, and for x 6= 0 we have |x| > 0.
(ii) |−x| = |x|.
(iii) |xy| = |x||y|.
(iv)

∣∣x
y

∣∣ = |x|
|y| when y 6= 0.

(v) |x| < r if and only if −r < x < r; and |x| ≤ r if and only if −r ≤ x ≤ r.
(vi) (Triangle Inequality) |x+ y| ≤ |x|+ |y|.

Proof. (i) For x > 0 we have |x| = x > 0, and for x < 0 we have |x| = −x > 0.
Also, |0| = 0.

(ii) We have

|−x| =

{
−x if − x ≥ 0

−(−x) if − x < 0
=


−x if x < 0

0 if x = 0

x if x > 0

= |x|.

(iii) When x, y ≥ 0 we have xy ≥ 0, hence |xy| = xy = |x||y|. When one of the
x or y is negative, we consider its opposite and apply the last argument using (ii).
For example when x < 0, and y ≥ 0 we have

|xy| = |−(−x)y| = |(−x)y| = |−x||y| = |x||y|.

The other two cases are similar.
(iv) We have y 1

y = 1. Thus |y|| 1y | = |1| = 1, since 1 > 0. Therefore | 1y | = 1
|y| .

Then we have
|x
y
| = |x||1

y
| = |x| 1

|y|
=
|x|
|y|
.

(v) We have

|x| ≤ r ⇐⇒

{
x ≤ r if x ≥ 0

−x ≤ r if x < 0
⇐⇒ 0 ≤ x ≤ r, or − r ≤ x < 0.

The other one is similar.
(vi) Since |x| ≤ |x|, by (v) we have

−|x| ≤ x ≤ |x|, −|y| ≤ y ≤ |y|.

If we add these two inequalities we get

−|x| − |y| ≤ x+ y ≤ |x|+ |y|.

Therefore again by (v) we obtain |x+ y| ≤ |x|+ |y|. �
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Theorem 1.38. If for all ε > 0 we have |x− y| ≤ ε then x = y.

Proof. Suppose to the contrary that x 6= y. Then |x− y| > 0. Let ε = 1
2 |x− y|.

Then we have |x− y| ≤ 1
2 |x− y|, so 2|x− y| ≤ |x− y|. Therefore we get |x− y| ≤ 0,

which is a contradiction. �

Remark. Similarly if x ≤ y + ε for all ε > 0 then x ≤ y.

1.4 Decimal Expansion

Theorem 1.39. Consider the set of sequences of the form

a0.a1a2a3 . . . ,

where a0 ∈ N∪{0}, aj ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} for j > 0, and for every j there is
k > j such that ak 6= 9. Then there exists a one-to-one and onto map from this set
of sequences to [0,∞) ⊂ R, that maps the sequence a0.a1a2a3 . . . to the real number

x := sup{xn : n ∈ N},

where xn := a0 +
∑n

j=1

aj
10j

.

Definition 1.40. The unique sequence a0.a1a2a3 . . . whose existence is proved in
the above theorem is called the decimal expansion of x.

Remark. By using the concepts of limit and series, we can easily conclude from
the following proof that

x = lim
n→∞

xn = a0 +

∞∑
j=1

aj
10j

.

Remark. In the following proof, we actually provide a concrete method for finding
the decimal expansion of x.

Proof. First note that xn+1 = xn + an+1

10n+1 ≥ xn. So xn forms an increasing
sequence, i.e. it is an increasing function of n. Next note that the set {xn} is
nonempty and bounded above, since

a0 +
∑
j≤n

aj
10j
≤ a0 +

∑
j≤n

9

10j
= a0 + 9

1
10 −

1
10n+1

1− 1
10

= a0 + 1− 1

10n
< a0 + 1.

Therefore x = sup{xn} exists. In addition, for some n we have x ≥ xn ≥ a0 ≥ 0;
thus x ∈ [0,∞).
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Now let us show that the map defined in the theorem is one-to-one. Suppose
a0.a1a2a3 . . . and b0.b1b2b3 . . . are distinct sequences, which are mapped to x, y
respectively. We want to show that x 6= y. Suppose l is the smallest index for
which we have al 6= bl. We will show that if al < bl then x < y. We know that
there is k > l such that ak 6= 9. Hence ak ≤ 8 = 9 − 1. We also have al + 1 ≤ bl.
Then for n > k we have

xn = a0 +
∑
j≤n

aj
10j

= a0 +
∑
j<l

aj
10j

+
al
10l

+
∑
l<j<k

aj
10j

+
ak
10k

+
∑
k<j≤n

aj
10j

≤ a0 +
∑
j<l

aj
10j

+
al
10l

+
∑
l<j<k

9

10j
+

9− 1

10k
+
∑
k<j≤n

9

10j

= a0 +
∑
j<l

aj
10j

+
al
10l
− 1

10k
+ 9

1
10l+1 − 1

10n+1

1− 1
10

= b0 +
∑
j<l

bj
10j

+
al
10l
− 1

10k
+

1

10l
− 1

10n

≤ b0 +
∑
j<l

bj
10j

+
bl

10l
− 1

10k
− 1

10n

= yl −
1

10k
− 1

10n
< yl −

1

10k
≤ yn −

1

10k
.

Thus we get xn + 1
10k

< yn ≤ y, since y is the supremum of {yn}. Also note that
for n ≤ k we have xn+ 1

10k
≤ xk+1 + 1

10k
< y, because xn is an increasing sequence.

Therefore we get x ≤ y − 1
10k

, since x is the supremum of {xn}. Hence we obtain
x < y, as desired.

Next let us prove that the map defined in the theorem is onto. Let x be a
nonnegative real number. Set a0 to be the integer part of x, i.e.

a0 := bxc.

We know that a0 ≤ x < a0 + 1. Hence 0 ≤ x− a0 < 1. Also note that since x ≥ 0
we have a0 > −1; so a0 ≥ 0, since it is an integer. Next let

a1 := b10(x− a0)c.

Note that 0 ≤ 10(x− a0) < 10. Thus a1 is a nonnegative integer less than 10, i.e.
it belongs to {0, 1, . . . , 9}. In addition we have

0 ≤ 10(x− a0)− a1 < 1 =⇒ 0 ≤ x−
(
a0 +

a1

10

)
<

1

10
.

We continue this process to inductively define an. More precisely, we define
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(i) x0 := bxc,
(ii) xn+1 := xn + b10n+1(x−xn)c

10n+1 .
Then for n ≥ 0 we define

an+1 := 10n+1(xn+1 − xn) = b10n+1(x− xn)c.

It is easy to show that xn = a0 +
∑n

j=1
aj
10j

. Because for n = 0 we have x0 = bxc =
a0. And if the equality holds for some n, then for n+ 1 we get

xn+1 = xn +
an+1

10n+1
= a0 +

n∑
j=1

aj
10j

+
an+1

10n+1
= a0 +

n+1∑
j=1

aj
10j

,

as desired.
Now let us show that

0 ≤ x− xn <
1

10n
. (∗)

Note that as a consequence we get 0 ≤ 10n+1(x − xn) < 10. Therefore an+1 =
b10n+1(x−xn)c is a nonnegative integer less than 10, i.e. it belongs to {0, 1, . . . , 9}.
The proof of the inequality (∗) is by induction on n. For n = 0 we have x0 = bxc,
and the inequality holds due to the properties of the integer part, as we have seen
above. Suppose the inequality holds for some n. We know that

0 ≤ 10n+1(x− xn)− b10n+1(x− xn)c < 1,

due to the properties of the integer part. Hence we get

0 ≤ x−
(
xn +

b10n+1(x− xn)c
10n+1

)
<

1

10n+1
,

which is the desired inequality for n+ 1.
Next, note that we have

an = b10n(x− xn−1)c ≤ 10n(x− xn−1) < an + 1.

Hence for small positive ε we have 10n(x−xn−1) < an+1−ε. But by Archimedean
property there is k such that k > 1

10ε ; so 10k ≥ 10k > 1
ε . Thus we get

x− xn−1 <
an
10n

+
1

10n
− 1

10n+k
.

So x−xn < 1
10n −

1
10n+k

. Now suppose to the contrary that an+1 = · · · = an+k = 9.
Then we have

xn+k − xn =
n+k∑
j=n+1

aj
10j

=
n+k∑
j=n+1

9

10j
= 9

1
10n+1 − 1

10n+k+1

1− 1
10

=
1

10n
− 1

10n+k
.
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Hence we get
x− xn+k = x− xn + xn − xn+k < 0,

which contradicts the inequality (∗). Therefore one of the an+1, . . . , an+k must be
less than 9. So the sequence a0.a1a2a3 . . . satisfies all the properties required in the
theorem.

Finally let us show that a0.a1a2a3 . . . is mapped to x, i.e. x is the supremum
of {xn}. First note that by inequality (∗) we have xn ≤ x for every n. Thus x is an
upper bound for {xn}. On the other hand, suppose y is an upper bound for {xn}.
Then (∗) implies that x − 1

10n < xn ≤ y. So x − y < 1
10n for every n. However,

as we have shown above, for every ε > 0 there is n such that ε > 1
10n , due to the

Archimedean property. Hence x − y < ε for every ε > 0; so x − y ≤ 0. Thus
x = sup{xn}, as desired. �

1.5 Powers and Roots

Definition 1.41. We define the powers of a ∈ R as follows. For a positive integer
n we inductively define

a1 := a, . . . an := an−1a.

Here a is called the base, and n is called the exponent. If a 6= 0, we define

a0 := 1, a−n := (a−1)n.

Remark. We also use the convention that 00 = 1. This is useful in some algebraic
manipulations, but we must be careful that 00 does not have a definite value when
we deal with limits in later chapters.

Notation. We assume that exponentiation binds stronger than multiplication and
addition; so, for example, d + anc means d + ((an)c). We also use the convention
that amn means a(mn).

Definition 1.42. Let n ∈ N. The n factorial is

n! := n× (n− 1)× · · · × 2× 1.

We also set 0! := 1. Suppose n, k ∈ Z, and 0 ≤ k ≤ n. The number(
n

k

)
:=

n!

k!(n− k)!

is called a binomial coefficient.

Remark. Note that for all n ≥ 1 we have n! = n(n − 1)!. It is also trivial to see
that

(
n
0

)
= 1 =

(
n
n

)
for all n ≥ 0.
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Proposition 1.43. For all integers 1 ≤ k ≤ n we have(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
.

As a result
(
n
k

)
is always a positive integer for every 0 ≤ k ≤ n.

Proof. We have(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n!

(k − 1)!(n− k)!
(
1

k
+

1

n− k + 1
)

=
n!

(k − 1)!(n− k)!

n+ 1

k(n− k + 1)

=
(n+ 1)!

k!(n+ 1− k)!
=

(
n+ 1

k

)
.

Next, we show by induction on n that
(
n
k

)
is a positive integer for all 0 ≤ k ≤ n.

For n = 1 we have
(

1
0

)
=
(

1
1

)
= 1 ∈ N. Suppose the claim holds for n. Then for

0 < k < n+ 1 we have (
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
∈ N.

Also note that
(
n+1

0

)
=
(
n+1
n+1

)
= 1 ∈ N. �

Theorem 1.44. Suppose a, b ∈ R, and n,m ∈ Z. In all of the following statements,
when the base is zero the exponent must be nonnegative.
(i) If a 6= 0 then (an)−1 = a−n = (a−1)n.
(ii) anam = an+m.
(iii) (an)m = anm.
(iv) anbn = (ab)n.
(v) (Binomial Theorem) For n > 0 we have

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk.

(vi) For n > 0 we have

an − bn = (a− b)
(n−1∑
k=0

an−1−kbk
)
.
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(vii) For n ≥ m ≥ 0 and a 6= 1 we have

n∑
k=m

ak =
an+1 − am

a− 1
.

(viii) Suppose n ≥ 0. If a > 1 then an−1 < an, and if 0 < a < 1 then an−1 > an.
(ix) If a > 0 then an > 0.
(x) If n is even then (−a)n = an, and if n is odd then (−a)n = −an.
(xi) If n > 0 and 0 ≤ a < b then an < bn.
(xii) If n > 0 is odd and a < b then an < bn.
(xiii) |an| = |a|n.

Proof. Almost all of the proofs are by induction. We will only write the induction
steps below, since the base of inductions can be checked easily.

(i) When n ≥ 0 we have

(an+1)a−n−1 = ana(a−1)n+1 = aan(a−1)na−1 = aana−na−1 = aa−1 = 1.

When n = −m < 0 we have a−m = (a−1)m. Hence by the previous part we get

(a−m)−1 = ((a−1)m)−1 = (a−1)−m = ((a−1)−1)m = am.

The second equality holds by definition when n > 0. When n = 0 we have

(a−1)0 = 1 = a0 = a−0.

And when n = −m < 0 we have

(a−1)−m = ((a−1)−1)m = am = a−n.

(ii) When n,m ≥ 0 we have

anam+1 = anama = an+ma = an+m+1.

Now suppose a is nonzero. Then we have

a−nam+1 = a−nama

= a−n+ma =


(a−1)n−ma = (a−1)n−m−1a−1a if − n+m < 0,

= (a−1)n−m−1 = a−n+m+1

a−n+m+1 if − n+m ≥ 0.
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We also have

ana−m = (a−1)−n(a−1)m = (a−1)−n+m = an−m,

a−na−m = (a−1)n(a−1)m = (a−1)n+m = a−n−m.

(iii) For n,m ≥ 0 we have

(an)m+1 = (an)man = anman = anm+n = an(m+1).

If a is nonzero we have

(a−n)m = ((a−1)n)m = (a−1)nm = a−nm,

(a±n)−m = ((a±n)m)−1 = (a±nm)−1 = a∓nm.

(iv) For n ≥ 0 we have

an+1bn+1 = anabnb = anbnab = (ab)nab = (ab)n+1,

and if a, b are nonzero we have

a−nb−n = (a−1)n(b−1)n = (a−1b−1)n = ((ab)−1)n = (ab)−n.

(v) We have

(a+ b)n+1 = (a+ b)n(a+ b) =
( n∑
k=0

(
n

k

)
an−kbk

)
(a+ b)

=

n∑
k=0

(
n

k

)
an−kbk(a+ b) =

n∑
k=0

(
n

k

)
(an−kbka+ an−kbkb)

=

n∑
k=0

(
n

k

)
an−k+1bk +

n∑
k=0

(
n

k

)
an−kbk+1

=
n∑
k=0

(
n

k

)
an+1−kbk +

n+1∑
j=1

(
n

j − 1

)
an+1−jbj

(We replaced k with j − 1 in the 2nd sum.)

= an+1 +

(
n∑
k=1

(
n

k

)
an+1−kbk +

n∑
k=1

(
n

k − 1

)
an+1−kbk

)
+ bn+1

(We replaced j with k in the 2nd sum.)

= an+1 +

(
n∑
k=1

[(
n

k

)
+

(
n

k − 1

)]
an+1−kbk

)
+ bn+1

=

n+1∑
k=0

(
n+ 1

k

)
an+1−kbk.
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(vi) We have

(a− b)
( n−1∑
k=0

an−1−kbk
)

=
n−1∑
k=0

(a− b)an−1−kbk

=
n−1∑
k=0

(aan−1−kbk − ban−1−kbk)

=

n−1∑
k=0

an−kbk −
n−1∑
k=0

an−1−kbk+1 =

n−1∑
k=0

an−kbk −
n∑
j=1

an−jbj

(We replaced k with j − 1 in the 2nd sum.)

= an +

(
n−1∑
k=1

an−kbk −
n−1∑
k=1

an−kbk

)
− bn

(We replaced j with k in the 2nd sum.)

= an − bn.

(vii) We have

(a− 1)
( n∑
k=m

ak
)

=
n∑

k=m

(ak+1 − ak)

= an+1 − an + an − an−1 + · · ·+ am+1 − am = an+1 − am.

(viii) For a > 1 we have an−1 < an; hence

an = aan−1 < aan = an+1.

The case of 0 < a < 1 is similar.
(ix) For n > 0 we multiply both sides of an > 0 by a to get an+1 > 0. When

n = 0 we have a0 = 1 > 0. And when n = −m < 0 we have an = (a−1)m > 0, since
a−1 > 0.

(x) Since (−a)n = ((−1)a)n = (−1)nan, we only need to compute (−1)n. Now
if (−1)2k = 1 then

(−1)2(k+1) = (−1)2k(−1)2 = 1 · 1 = 1.

For negative powers we have the same result since (−1)−1 = −1. Finally for odd
powers we have (−1)2k+1 = (−1)2k(−1) = −1.

(xi) First suppose 0 < a < b. Then by induction hypothesis and (ix) we know
that 0 < an < bn. Now we multiply these two inequalities to get

0 < an+1 < bn+1.
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Since 0n = 0, we can allow a = 0 too by (ix).
(xii) If 0 ≤ a < b then the claim holds by last part. If a < b ≤ 0 then

0 ≤ −b < −a, hence
−bn = (−b)n < (−a)n = −an.

Thus an < bn. Finally if a < 0 < b, then bn > 0. Also −an = (−a)n > 0, since
−a > 0. Hence an < 0 < bn.

(xiii) For n ≥ 0 we have

|an+1| = |ana| = |an||a| = |a|n|a| = |a|n+1.

When n = −m < 0 we have

|a−m| = |(a−1)m| = |a−1|m = (|a|−1)m = |a|−m. �

Exercise 1.45. Show that for a1, . . . , am ∈ R we have

(a1 + · · ·+ am)2 =
∑
i≤m

a2
i + 2

∑
j≤m

∑
i<j

aiaj .

Theorem 1.46. For every real number x ≥ 0 and every n ∈ N there is a unique
real number y ≥ 0 such that yn = x. We denote y by n

√
x or x

1
n , and call it the nth

root of x.

Notation. We denote 2
√
x by

√
x, and we call it the square root of x.

Proof. The uniqueness of y is obvious, since if 0 ≤ y1 < y2 then yn1 < yn2 . For
the existence, consider the set

A := {z ≥ 0 : zn ≤ x}.

Note that 0 ∈ A, so A is nonempty. Also if z ≥ 1 + x ≥ 1, then zn ≥ (1 + x)n ≥
1 + x > x. Thus 1 + x is an upper bound for A. Let y := supA. We need to show
that yn = x.

Suppose to the contrary that yn < x. Then for 0 < ε < 1 and k ∈ N we have
εk ≤ ε. Thus by using the binomial theorem we get

(y + ε)n =

n∑
k=0

(
n

k

)
yn−kεk ≤ yn +

n∑
k=1

(
n

k

)
yn−kε = yn +Mε,

where M :=
n∑
k=1

(
n
k

)
yn−k > 0. Now for 0 < ε < min{x−y

n

M , 1} we have

(y + ε)n ≤ yn +Mε < x,
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which contradicts the fact that y is an upper bound for A.
Next, suppose to the contrary that yn > x ≥ 0. Suppose 0 < ε < min{1, y}.

Let z := y − ε. Then as 0 < z < y we have

yn = (z + ε)n =
n∑
k=0

(
n

k

)
zn−kεk < zn +

n∑
k=1

(
n

k

)
yn−kε = zn +Mε,

where M :=
n∑
k=1

(
n
k

)
yn−k > 0. Now for 0 < ε < min{y

n−x
M , 1, y} we have

(y − ε)n = zn > yn −Mε > x.

But y is the supremum of A, so y − ε is not an upper bound for A. Hence there is
a ∈ A such that a > y−ε. Therefore an > (y−ε)n > x, which is a contradiction. �

Remark. When n ∈ N is odd we have (−1)n = −1. Thus for x < 0 we have

(− n
√
−x)n = (−1)n( n

√
−x)n = (−1)(−x) = x.

Since for y1 < y2 we have yn1 < yn2 , there is no other real number whose nth power
is x. So we define

n
√
x := − n

√
−x.

Theorem 1.47. For any two nonnegative real numbers x, y, and any n ∈ N we
have

n
√
xy = n

√
x n
√
y.

When n is odd we can allow x and/or y to be negative too.

Proof. We have
( n
√
x n
√
y)n = ( n

√
x)n( n

√
y)n = xy.

Thus when x, y ≥ 0 we get the desired result since n
√
x n
√
y ≥ 0. When n is odd, we

do not need to assume anything about the sign of x, y, since there is only one real
number whose nth power is xy. �

Theorem 1.48. For any two nonnegative real numbers x, y, and any n ∈ N we
have

x < y =⇒ n
√
x < n

√
y.

When n is odd we can allow x and/or y to be negative too.

Proof. Suppose to the contrary that n
√
x ≥ n

√
y. Then as n

√
x, n
√
y ≥ 0 we have

x = ( n
√
x)n ≥ ( n

√
y)n = y,

which is a contradiction. When n is odd the same argument works, except that we
do not need to assume n

√
x, n
√
y ≥ 0, so we can allow x, y to be negative too. �
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Theorem 1.49. For any real number x we have
√
x2 = |x|.

Proof. We have |x|2 = |x2| = x2, since x2 ≥ 0. Hence we get the desired result
because |x| ≥ 0. �

Theorem 1.50.
√

2 is irrational.

Proof. Suppose to the contrary that
√

2 ∈ Q. Thus
√

2 = p
q where p, q ∈ N, since√

2 > 0. Therefore we have p2 = 2q2. We can assume that p, q have no common
factors. Thus both of them cannot be even. Suppose p is even; so p = 2k for some
k ∈ N. Then q is odd; thus q2 is odd too. But we have 4k2 = p2 = 2q2. Hence
q2 = 2k2 is even, which is a contradiction. Next suppose p is odd. Then p2 is odd
too. But p2 = 2q2 must be even, which is again a contradiction. Hence

√
2 cannot

be rational. �

Rational and Real Exponents.

Suppose p ∈ Q and x ∈ R are positive. Then there are n, k ∈ N with no common
factor such that p = k

n . Furthermore, p = km
nm for every m ∈ N, and these are

all the representations of p as a fraction with positive denominator. Now we have
( n
√
x)k =

n
√
xk. We also have

(( nm
√
x)km)n = (( nm

√
x)nm)k = xk =⇒ ( nm

√
x)km =

n
√
xk = ( n

√
x)k.

So if we set
xp = x

k
n := ( n

√
x)k,

then xp is well defined. We also set

x−p :=
1

xp
= ( n
√
x)−k.

Also remember that x0 := 1. Hence we have defined xp for all p ∈ Q and all x > 0.

Remark. It is obvious from the definition that for all p ∈ Q we have 1p = 1, and
xp > 0 for all x > 0.

Proposition 1.51. Suppose p, q ∈ Q and p < q. Then for x > 1 we have xp < xq,
and for 0 < x < 1 we have xp > xq.

Proof. First suppose x > 1. Let p = k
n and q = l

m , where k, l ∈ Z, and n,m ∈ N.
Then we have k

n < l
m , so mk < nl. If 0 ≤ p < q then 0 ≤ mk < nl. Thus

xmk < xnl. Hence

xp =
n
√
xk =

nm
√
xmk <

nm
√
xnl =

m
√
xl = xq.
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If p < q ≤ 0 then 0 ≤ −q < −p. Therefore 0 < x−q < x−p. Hence

xp =
1

x−p
<

1

x−q
= xq.

And if p < 0 < q then xp < x0 < xq. The case of 0 < x < 1 is similar. �

Now we can define xr for all x > 0 and all r ∈ R. We set

xr :=

{
sup {xp : p ∈ Q, p ≤ r} x ≥ 1,

inf {xp : p ∈ Q, p ≤ r} 0 < x < 1.

First we have to check that the above supremum and infimum are finite. But this
is easy since if q ≥ r is a rational number, then for all rational numbers p ≤ r we
have {

xp ≤ xq x > 1,

xp ≥ xq 0 < x < 1.
(∗)

Hence the set {xp : p ≤ r}, which is obviously nonempty, has the appropriate bound
to ensure the finiteness of the above supremum and infimum. The inequalities in
(∗) also show that when r is rational, the new definition of xr agrees with the old
definition. Because in this case we have xr ∈ {xp : p ≤ r}, so xr is the required
supremum, or infimum, of this set.
Remark. Note that for all r ∈ R we have

1r = sup{1p : p ≤ r} = sup{1} = 1.

Also, for every x > 0 and r ∈ R we have xr > 0. This is obvious when x > 1, since
in this case xr is the supremum of a set of positive numbers. When 0 < x < 1, the
second inequality in (∗) implies that

xr = inf{xp : p ≤ r} ≥ xq > 0,

for some rational number q ≥ r.
Remark. We can develop the properties of powers with real exponents using the
tools that we already have, but the proofs are cumbersome and lengthy. So we will
postpone this to Chapter 6, in which we define and study the logarithm.
Remark. There are other equivalent ways to define xr. For example we can use
the notion of limit of sequences, as defined in the next chapter, and set

xr := limxpi ,

where pi is a sequence of rational numbers converging to r. We have to check that
the limit exists, and does not depend on the particular sequence pi, i.e. if pi, qi are
two sequences of rational numbers converging to r then |xpi − xqi | → 0.
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1.6 Euclidean Spaces

Definition 1.52. Let Rn := {(x1, . . . , xn) : xi ∈ R}. The elements of Rn are called
(n-dimensional) vectors. Let x, y ∈ Rn and r ∈ R. The vector addition,
scalar multiplication, and inner product are defined respectively as follows

x+ y := (x1 + y1, . . . , xn + yn),

rx := (rx1, . . . , rxn),

〈x, y〉 = x · y := x1y1 + · · ·+ xnyn.

Notation. Suppose r ∈ R is nonzero, and x ∈ Rn. Sometimes we use the shorthand
notation x

r for 1
rx.

Theorem. For every x, y, z ∈ Rn and r ∈ R we have
(i) 〈x+ ry, z〉 = 〈x, z〉+ r〈y, z〉.
(ii) 〈x, y〉 = 〈y, x〉.
(iii) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 ⇐⇒ x = 0.

Proof. (i) We have

〈x+ ry, z〉 = (x1 + ry1)z1 + · · ·+ (xn + ryn)zn

= x1z1 + · · ·+ xnzn + r(y1z1 + · · ·+ ynzn) = 〈x, z〉+ r〈y, z〉.

(ii) 〈x, y〉 = x1y1 + · · ·+ xnyn = y1x1 + · · ·+ ynxn = 〈y, x〉.
(iii) We have

〈x, x〉 = x2
1 + · · ·+ x2

n ≥ 0.

We also have 〈0, 0〉 = 02 + · · ·+ 02 = 0. Now if 〈x, x〉 = 0 then x2
1 + · · ·+ x2

n = 0.
However x2

j ≥ 0, hence x2
j = 0 for every j. Thus xj = 0 for every j. So x = 0. �

Definition 1.53. The norm or length of a vector x ∈ Rn is the nonnegative real
number

|x| :=
√
〈x, x〉 =

√
x2

1 + · · ·+ x2
n.

Theorem 1.54. For all x, y ∈ Rn and r ∈ R we have
(i) |x| ≥ 0, and |x| = 0 ⇐⇒ x = 0.
(ii) |rx| = |r||x|.
(iii) (Cauchy-Schwarz Inequality) |〈x, y〉| ≤ |x||y|.
(iv) (Triangle Inequality) |x+ y| ≤ |x|+ |y|.

Proof. (i) Obviously we have |x| ≥ 0, and |0| = 0. Now if |x| = 0 then 〈x, x〉 = 0.
Therefore x = 0.
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(ii) We have

|rx| =
√
r2x2

1 + · · ·+ r2x2
n =
√
r2

√
x2

1 + · · ·+ x2
n = |r||x|.

(iii) If y = 0 then the inequality holds trivially. So suppose that y 6= 0. Let
t ∈ R. Then

0 ≤ |x+ ty|2 = 〈x+ ty, x+ ty〉 = |x|2 + 2t〈x, y〉+ t2|y|2.

Since this inequality holds for all t ∈ R, and |y|2 > 0, the discriminant of the above
quadratic function in t must be nonpositive, i.e.

(〈x, y〉)2 − |x|2|y|2 ≤ 0.

Hence (〈x, y〉)2 ≤ |x|2|y|2, and we get the desired by taking the square root of both
sides of this inequality.

(iv) We have

|x+ y|2 = |x|2 + |y|2 + 2〈x, y〉
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2. �

Theorem 1.55. For all x, y ∈ Rn we have∣∣|x| − |y|∣∣ ≤ |x− y|.
Proof. Note that by the triangle inequality we have |x| ≤ |x−y|+ |y|. Therefore
|x| − |y| ≤ |x− y|. By switching x, y we get

|y| − |x| ≤ |y − x| = |x− y| =⇒ |x| − |y| ≥ −|x− y|.

Therefore
∣∣|x| − |y|∣∣ ≤ |x− y|. Note that here we have used | | to denote both the

length of a vector, and the absolute value of a real number. �

Definition 1.56. For two vectors x, y ∈ Rn we define their Euclidean distance
to be

d(x, y) := |x− y| =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

d is also called the Euclidean metric.

Theorem 1.57. For all x, y, z ∈ Rn we have
(i) d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y.
(ii) d(x, y) = d(y, x).
(iii) d(x, z) ≤ d(x, y) + d(y, z).
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Proof. (i) We have d(x, y) = |x − y| ≥ 0, and d(x, x) = |x − x| = |0| = 0. Now
if d(x, y) = 0 then x− y = 0, hence x = y.

(ii) We have

d(x, y) = |x− y| = |(−1)(y − x)| = |−1||y − x| = d(y, x).

(iii) We have

d(x, z) = |x− z| = |x− y + y − z| ≤ |x− y|+ |y − z| = d(x, y) + d(y, z). �

1.7 Complex Numbers

Definition 1.58. The set C of complex numbers is the set R2 equipped with
the following addition and multiplication

(a, b) + (c, d) := (a+ c, b+ d),

(a, b)(c, d) := (ac− bd, ad+ bc).

Theorem 1.59. C is a field, whose zero and identity are respectively

(0, 0), and (1, 0).

Also the opposite of a complex number z = (a, b) is

−z := (−a,−b),

and when z is nonzero its inverse is

z−1 :=
( a

a2 + b2
,
−b

a2 + b2

)
.

Proof. Let z = (a, b), w = (c, d), and u = (e, f) be complex numbers. It is easy
to check that addition is associative and commutative:

z + (w + u) =
(
a+ (c+ e), b+ (d+ f)

)
=
(
(a+ c) + e, (b+ d) + f

)
= (z + w) + u,

z + w = (a+ c, b+ d) = (c+ a, d+ b) = w + z.

We can also easily check that

(a, b) + (0, 0) = (a+ 0, b+ 0) = (a, b),

z + (−z) = (a+ (−a), b+ (−b)) = (0, 0).
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It is obvious that (1, 0) 6= (0, 0). In addition, we have

(a, b)(1, 0) = (a1− b0, a0 + b1) = (a, b).

Now let us check that multiplication is associative, commutative, and distributive
over addition. We have

zw = (ac− bd, ad+ bc) = (ca− db, cb+ da) = wz,

z(wu) = (a, b)(ce− df, cf + de)

=
(
ace− adf − bcf − bde, acf + ade+ bce− bdf

)
=
(
(ac− bd)e− (ad+ bc)f, (ac− bd)f + (ad+ bc)e

)
= (ac− bd, ad+ bc)(e, f) = (zw)u,

z(w + u) = (a, b)(c+ e, d+ f)

= (ac+ ae− bd− bf, ad+ af + bc+ be)

= (ac− bd, ad+ bc) + (ae− bf, af + be) = zw + zu.

Finally, suppose z 6= (0, 0). Then a 6= 0 or b 6= 0. Hence we must have a2 + b2 > 0.
To simplify the notation let r := a2 + b2. Then we have

zz−1 = (a, b)
(a
r
,
−b
r

)
=
(a2

r
− −b

2

r
,
−ab
r

+
ba

r

)
=
(a2 + b2

r
, 0
)

= (1, 0),

as desired. �

Remark. The map a 7→ (a, 0) from R into C is a one-to-one map that preserves
addition and multiplication, i.e.

(a, 0) + (b, 0) = (a+ b, 0), (a, 0)(b, 0) = (ab, 0).

Thus C contains a copy of the field R. We will abuse the notation and denote the
element (a, 0) by a. We also define i := (0, 1). Then any complex number z = (a, b)
can be written as

z = (a, b) = (a, 0) + (0, b) = (a, 0) + (0, 1)(b, 0) = a+ ib.

Note that we have
i2 = (0, 1)2 = (−1, 0) = −1,

i.e. i is a square root of −1.

Definition 1.60. Let z = (a, b) = a+ ib be a complex number. The real numbers
a, b are called the real part and the imaginary part of z, respectively, and we
will denote them by

a = Re z, b = Im z.
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The conjugate of z is the complex number

z̄ := (a,−b) = a− ib.

The modulus or the absolute value of z is the nonnegative real number

|z| :=
√
a2 + b2.

Remark. Note that |z| is the length of the vector (a, b) ∈ R2. Thus for every
z, w ∈ C we have
(i) |z| ≥ 0, and |z| = 0 ⇐⇒ z = 0.
(ii) |z + w| ≤ |z|+ |w|.

Also note that when a ∈ R we have |(a, 0)| =
√
a2 = |a|. Thus the absolute value

of complex numbers is compatible with the absolute value of real numbers.

Remark. Note that C does not have a natural order. In fact, there is no order on
C that makes it into an ordered field. The reason is that in any ordered field the
square of any nonzero element is positive. In particular 1 = 12 > 0. Thus −1 < 0.
But in C we have i2 = −1. Hence if C was an ordered field, then −1 must have
been simultaneously positive and negative, which is impossible.

Remark. We can define the integer powers of complex numbers, similarly to the
case of real numbers. Then all the basic properties of powers expressed in Theorem
1.44 also hold for powers of complex numbers, except obviously those properties
that are related to the order structure.

Theorem 1.61. For all z, w ∈ C and n ∈ Z we have
(i) z + w = z̄ + w̄.
(ii) zw = z̄w̄.
(iii) z̄ = z.
(iv) zz̄ = |z|2, hence z−1 = |z|−2z̄.
(v) |z̄| = |z|.
(vi) |zw| = |z||w|.
(vii) |Re z| ≤ |z|, and |Im z| ≤ |z|.
(viii) z = z̄ if and only if z ∈ R.
(ix) z + z̄ = 2 Re z, and z − z̄ = 2i Im z.
(x) |zn| = |z|n (when z = 0 we assume n > 0).
(xi) zn = z̄ n (when z = 0 we assume n > 0).

Proof. Let z = a+ ib and w = c+ id, where a, b, c, d ∈ R.
(i) We have

z + w = (a+ c) + i(b+ d)

= (a+ c)− i(b+ d) = a− ib+ c− id = z̄ + w̄.
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(ii) We have

zw = (ac− bd) + i(ad+ bc) = (ac− bd)− i(ad+ bc)

= (ac− (−b)(−d)) + i(a(−d) + (−b)c) = (a− ib)(c− id) = z̄w̄.

(iii) z̄ = a− ib = a− (−ib) = a+ ib = z.
(iv) We have

zz̄ = (a+ ib)(a− ib)
= (a2 − b(−b)) + i(a(−b) + ba) = a2 + b2 = |z|2.

Thus we have (|z|−2z̄)z = |z|−2|z|2 = 1. Hence |z|−2z̄ = z−1, since the inverse is
unique.

(v) |z̄| =
√
a2 + (−b)2 =

√
a2 + b2 = |z|.

(vi) We have

|zw| =
√

(ac− bd)2 + (ad+ bc)2

=
√
a2c2 − 2acbd+ b2d2 + a2d2 + 2adbc+ b2c2

=
√

(a2 + b2)(c2 + d2) =
√
a2 + b2

√
c2 + d2 = |z||w|.

(vii) |Re z| = |a| =
√
a2 ≤

√
a2 + b2 ≤ |z|. Note that we have used the

monotonicity of the square root function over nonnegative real numbers. The other
inequality can be proved similarly.

(viii) z = z̄ ⇐⇒ b = −b ⇐⇒ b = 0 ⇐⇒ z = a ∈ R.
(ix) z + z̄ = a+ ib+ a− ib = 2a = 2 Re z. The other one is similar.
(x) The proof is by induction on n, when n > 0. The claim holds obviously for

n = 1, so suppose it also holds for n. Then for n+ 1 we have

|zn+1| = |znz| = |zn||z| = |z|n|z| = |z|n+1.

Now suppose z 6= 0. When n = 0 both sides of the equation are one. For n = −1
we have

|z−1| = ||z|−2z̄| = ||z|−2||z̄| = |z|−2|z| = |z|−1.

Note that |z|−2 is a positive real number, therefore its modulus equals its absolute
value as a real number, which is itself. Finally for n = −m < 0 we have

|zn| = |(z−1)m| = |z−1|m = (|z|−1)m = |z|n.

(xi) The proof is by induction on n, when n > 0. The claim holds obviously
for n = 1, so suppose it also holds for n. Then for n+ 1 we have

zn+1 = znz = znz̄ = z̄ nz̄ = z̄ n+1.
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Now suppose z 6= 0. When n = 0 both sides of the equation are one. For n = −1
we have

z−1 = |z|−2z̄ = |z|−2z̄ = |z|−2z̄ = |z̄|−2z̄ = (z̄)−1.

Note that |z|−2 is a real number, therefore its conjugate is itself. Finally for n =
−m < 0 we have

zn = (z−1)m =
(
(z−1)

)m
= ((z̄)−1)m = (z̄)−m = z̄ n. �

Remark. Suppose z ∈ C is nonzero. Then r := |z| > 0. Now z
r has modulus one,

so it belongs to the unit circle in C. Hence by Theorem 6.59, there is a unique
θ ∈ [0, 2π) such that z

r = eiθ = cos θ + i sin θ. Therefore

z = reiθ = r(cos θ + i sin θ).

This is called the polar representation of z. The number θ is called the ar-
gument of z, and is denoted by arg z. In fact θ is the signed angle between the
segment connecting z and 0, and the half line of nonnegative real numbers.

Remark. Suppose z = reiθ and w = seiφ. Then by Theorem 6.56 we have

zw = rsei(θ+φ).

The interpretation of this formula is that when you multiply a complex number w
by a complex number z, you scale the modulus of w by the modulus of z, and you
rotate w around the origin by the angle arg z.

1.8 Polynomials

Definition 1.62. A polynomial is a function p : R → R for which there are
a0, . . . , an ∈ R, called the coefficients of p, such that for all x ∈ R we have

p(x) = anx
n + · · ·+ a1x+ a0.

If an 6= 0 then we define the degree of the polynomial to be n, and we denote it
by deg p. Similarly a function p : C→ C is a polynomial if

p(z) = anz
n + · · ·+ a1z + a0,

for some a0, . . . , an ∈ C, and all z ∈ C.

Remark. The zero polynomial is the function p such that p(x) = 0 for all x. We
define the degree of the zero polynomial to be −∞.

Remark. Note that we can regard a polynomial with real coefficients as either a
function on R, or a function on C.
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Theorem 1.63. The degree and coefficients of a polynomial are uniquely deter-
mined.

Proof. We prove the theorem for complex polynomials. The real case is similar.
Suppose to the contrary that a polynomial p has two different representations

anz
n + · · ·+ a0 = p(z) = bmz

m + · · ·+ b0.

We can move every term to one side of the equality, and subtract the coefficients
of the same powers of z, to obtain

ckz
k + · · ·+ c0 = 0,

for all z ∈ C. Now if n 6= m, or ai 6= bi for some i, then some cj 6= 0. We show that
this results in a contradiction. Let k be the largest integer for which ck 6= 0. Then
after some rearrangement of terms we have

zk = −c−1
k ck−1z

k−1 − · · · − c−1
k c1z − c−1

k c0

=: αk−1z
k−1 + · · ·+ α1z + α0.

Now let z0 = 1 + |α0| + · · · + |αk−1|. Then for i ≤ k − 1 we have |z0|i ≤ |z0|k−1,
since |z0| = z0 > 1. Hence we have

|αk−1z
k−1
0 + · · ·+ α1z0 + α0| ≤ |αk−1||z0|k−1 + · · ·+ |α1||z0|+ |α0|

≤ (|αk−1|+ · · ·+ |α1|+ |α0|)|z0|k−1

< |z0||z0|k−1 = |z0|k = |zk0 |,

which is a contradiction. �

Definition 1.64. Let p be a polynomial. If a number a satisfies p(a) = 0, then we
say a is a root of p.

Theorem 1.65. Suppose p is a nonzero polynomial, and a is a number. Then
p(a) = 0 if and only if there is a nonzero polynomial q such that

p(x) = (x− a)q(x),

and deg q = deg p − 1. As a result, the number of distinct roots of a nonzero
polynomial p is at most deg p.

Proof. If p = (x − a)q then p(a) = 0 obviously. Conversely, suppose p(a) = 0,
where

p(x) = anx
n + · · ·+ a1x+ a0,
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with an 6= 0. Note that we must have n ≥ 1, since otherwise p cannot have a root.
Then by the binomial theorem we have

p(x) = an(x− a+ a)n + · · ·+ a1(x− a+ a) + a0

= an(x− a)n + bn−1(x− a)n−1 + · · ·+ b1(x− a) + b0,

for some b0, . . . , bn−1. Note that the coefficients of (x − a)n is an, since (x − a)n

appears with coefficient one in the expansion of (x − a + a)n, and other terms
(x − a + a)i with i < n do not produce (x − a)n. Now by evaluating at x = a we
get b0 = p(a) = 0. Hence

p(x) = (x− a)[an(x− a)n−1 + · · ·+ b1] =: (x− a)q(x).

Note that q is also a polynomial, since again by the binomial theorem we have

q(x) = an(x− a)n−1 + · · ·+ b2(x− a) + b1 = anx
n−1 + cn−2x

n−2 + · · ·+ c0,

for some c0, . . . , cn−2. By the same argument as above, the coefficient of xn−1 is
an. But n− 1 ≥ 0, and an 6= 0, hence q is a nonzero polynomial of degree n− 1.

The last statement can be proved by induction on deg p. Nonzero polynomials
of degree zero are constant polynomials which have no root. Suppose the claim
holds for all polynomials with degree less than deg p. If p has no root, then there
is nothing to prove. So let a be a root of p. Then p = (x − a)q. We know that
deg q = deg p−1. Now if b is another root of p we must have q(b) = 0. But q has at
most deg q distinct roots, hence p has at most deg q + 1 = deg p distinct roots. �

Theorem 1.66. Suppose p is a polynomial with real coefficients, and α ∈ C is a
root of p. Then ᾱ is also a root of p.

Proof. Suppose p(z) = anz
n + · · ·+ a0 where ai ∈ R. Then we have

p(ᾱ) = anᾱ
n + · · ·+ a1ᾱ+ a0

= ānαn + · · ·+ ā1ᾱ+ ā0

= anαn + · · ·+ a1α+ a0 = p(α) = 0̄ = 0. �

Definition 1.67. Let F denote R or C. A polynomial in n variables is a
function p : Fn → F that is the sum of finitely many functions of the form

(x1, . . . , xn) 7→ cxm1
1 · · ·x

mn
n ,

where c ∈ F , and mi’s are nonnegative integers. Each term cxm1
1 · · ·xmnn is called

a monomial, and the numbers c are called the coefficients of p.

Remark. The coefficients of a multivariable polynomial are also uniquely deter-
mined by the polynomial. There is an easy proof of this fact that uses partial
derivatives. See Exercise 7.38.
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1.9 Countable Sets

Definition 1.68. A function is called injective or an injection if it is one-to-one.
A function is called surjective or a surjection if it is onto. Finally, a function is
called bijective or a bijection if it is one-to-one and onto.

Definition 1.69. A set A is finite if there exists a bijection from A onto the set
{1, 2, . . . , n} for some n ∈ N. A set that is not finite is infinite. We consider the
empty set as a finite set.

A set A is countably infinite or denumerable if there exists a bijection from
A onto N. A set is countable if it is finite or countably infinite. A set that is not
countable is uncountable.

Theorem 1.70. We have
(i) A set A is countable if and only if there exists a surjective map from N to A.
(ii) A set A is countable if and only if there exists an injective map from A to N.
(iii) A subset of a countable set is countable.
(iv) The Cartesian product of finitely many countable sets is countable.
(v) The union of countably many countable sets is countable.

Theorem 1.71. N,Z,Q are countably infinite.

Proof. N is countably infinite, since the identity map is a bijection from N onto
N. For Z we have the bijection

f(n) :=

{
2n n > 0

−2n+ 1 n ≤ 0.

Finally, Q is infinite and can be written as the union of countably many countable
sets as follows

Q =
⋃
q∈N
{p
q

: p ∈ Z}. �

Theorem 1.72. The set of all sequences of 0, 1, i.e. the set of all functions from
N into {0, 1}, is uncountable.

Proof. Let f be an injective map from N into the set of all sequences of 0, 1.
We show that f cannot be surjective. We use the diagonal method due to Cantor.
Consider

f(1) = a11a12a13 · · ·
f(2) = a21a22a23 · · ·
...
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where aij ∈ {0, 1}. Now we define the sequence b = b1b2b3 · · · as follows

bi :=

{
1 if aii = 0,

0 if aii = 1.

Then b 6= f(n) for each n ∈ N, since bn 6= ann. Hence b is not in the image of f ,
and f is not onto. �

Theorem 1.73. R is uncountable.

Proof. The proof is similar to the last theorem. We only need to use the decimal
expansion of real numbers instead of the sequences. �

Theorem 1.74. Suppose a, b ∈ R, and a < b. Then the intervals (a, b), [a, b] are
uncountable.

Proof. We will show that there are bijections from the R onto (a, b). Then it
follows that the (a, b) cannot be countable, since otherwise R would be countable
too. It also follows that [a, b] is uncountable, since (a, b) ⊂ [a, b].

Now the function
x 7→ x

1 + |x|

is a bijection from R onto (−1, 1) (why?), and x 7→ a + x+1
2 (b − a) is a bijection

from (−1, 1) onto (a, b). So their composition is the required bijection from R onto
(a, b). �



Chapter 2

Metric Spaces

2.1 Topology of Metric Spaces

Definition 2.1. A metric space (X, d), is a nonempty set X equipped with a
map

d : X ×X → R,
called the metric or the distance function, such that
(i) d is positive definite, i.e. for every x, y ∈ X we have

d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y.

(ii) d is symmetric, i.e. for every x, y ∈ X we have

d(x, y) = d(y, x).

(iii) d satisfies the triangle inequality, i.e. for every x, y, z ∈ X we have

d(x, z) ≤ d(x, y) + d(y, z).

Remark. We refer to the elements of a metric space as points of the metric space.
Notation. We denote the metric of a metric space X by dX . When it causes no
confusion, we simply denote the metric by d.

Example 2.2. Rn with its standard Euclidean metric is a metric space.

Example 2.3. On any set we can define the distance between any two distinct
elements to be 1. This is a metric called the discrete metric.

Example 2.4. Suppose (X, d) is a metric space and A ⊂ X. Then d|A×A is a
metric on A; and A is called a subspace of X. For example the n-sphere

Sn := {x ∈ Rn+1 : |x| = 1}

is a subspace of Rn+1.

56
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Definition 2.5. A sequence (an) in a set X is a function

N→ X
n 7→ an

.

We also denote this sequence by (an)n∈N. A sequence (bk)k∈N is called a subse-
quence of (an)n∈N if bk = ank , for a strictly increasing sequence n1 < n2 < · · · of
positive integers.

Definition 2.6. Suppose (an) is a sequence in the metric space X. We say the
sequence (an) converges to the limit a ∈ X, and write lim an = a or an → a, if

∀ε > 0 ∃N ∈ N such that ∀n ≥ N we have d(an, a) < ε.

Remark. It follows immediately from the definition that a sequence an → a if and
only if d(an, a)→ 0 as a sequence in R.
Remark. When we want to emphasize the index with respect to which we take
the limit, we write limn→∞ an = a, or we say an → a as n→∞.

Theorem 2.7. The limit of a convergent sequence is unique.

Proof. Suppose to the contrary that an → a and an → b with a 6= b. Let
0 < ε < 1

2d(a, b). Then for n large enough we have d(an, a) < ε and d(an, b) < ε,
which is a contradiction. �

Theorem 2.8. Every subsequence of a convergent sequence converges to the same
limit as the original sequence.

Proof. Suppose an → a and bk = ank . Given ε > 0 there is N so that d(an, a) < ε
for n ≥ N . Now since nk ≥ k, the same N works for (bk). �

Definition 2.9. Suppose X is a metric space, and r is a positive real number. Let
x ∈ X. The set

Br(x) := {y ∈ X : d(y, x) < r}

is called the open ball of radius r around x. A set U ⊂ X is open if

∀x ∈ U ∃r > 0 such that Br(x) ⊂ U.

A neighborhood of a point x is a set that contains an open set containing x.

Definition 2.10. A set C ⊂ X is closed if the limit of every convergent sequence
of points in C belongs to C, i.e. if an ∈ C for every n, and an → a, then a ∈ C.

Remark. In other words, a set is closed if it is closed under taking the limit of
sequences.
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Proposition 2.11. Open balls are open.

Proof. If y ∈ Br(x) then s := r−d(y, x) > 0. Now we have Bs(y) ⊂ Br(x), since
by the triangle inequality for z ∈ Bs(y) we have

d(z, x) ≤ d(z, y) + d(y, x) < s+ d(y, x) = r. �

Theorem 2.12. A set is open if and only if its complement is closed.

Proof. Suppose U is open. Take a sequence (an) in U c, and assume that an → a.
We have to show that a ∈ U c. If this does not happen we would have a ∈ U .
Therefore Bε(a) ⊂ U for some ε > 0. But for large enough n we have d(an, a) < ε
i.e. an ∈ Bε(a), which is a contradiction.

On the other hand suppose that A is closed. Let a ∈ Ac. We need to show that
Br(a) ⊂ Ac for some r > 0. If this does not hold then Br(a)∩A is nonempty for all
positive r. Let an be an element of B 1

n
(a) ∩ A. Now for any ε > 0 there is N ∈ N

such that 1
N < ε, due to the Archimedean property. Hence for n ≥ N we have

d(an, a) <
1

n
≤ 1

N
< ε.

Thus an → a, and we must have a ∈ A, which is again a contradiction. �

Proposition 2.13. Open intervals in R are open, and closed intervals are closed.

Proof. The openness of open intervals is easy to show. Let x ∈ (a, b), where a, b
can be respectively −∞ or +∞ too. Then for r = min{1, x− a, b− x} we have

Br(x) = (x− r, x+ r) ⊂ (a, b).

The complement of a closed interval is either empty, an open interval, or the union
of two disjoint open intervals, depending on whether the closed interval is R, an
unbounded interval other than R, or a bounded interval. The empty set and an
open interval are open. The union of two disjoint open intervals is also open as the
following theorem shows (or we can prove it similarly to the above). �

Example 2.14. The subset [0, 1) of R is neither open nor closed. It is not open
since it does not contain any open ball around 0; and it is not closed since it contains
the convergent sequence (1− 1

n)n∈N but not its limit 1.

Definition 2.15. The family of all open subsets of X is called the topology of X.

Theorem 2.16. The topology has the following properties
(i) ∅, X are open sets.
(ii) The union of any collection of open sets is an open set.
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(iii) The intersection of finitely many open sets is an open set.

Proof. (i) For every a ∈ X and r > 0 we have Br(a) ⊂ X, since by definition
Br(a) is a subset of X. So X is open. Also, the sentence “for every a ∈ ∅ there is
r > 0 such that Br(a) ⊂ ∅” is vacuously true, since ∅ has no elements. Thus ∅ is
open, as desired.

(ii) Let {Uα}α∈I be a collection of open sets. If a ∈
⋃
α∈I Uα then a ∈ Uα0 for

some α0. Hence there is r > 0 such that Br(a) ⊂ Uα0 ⊂
⋃
α∈I Uα.

(iii) Let a ∈ U1 ∩ · · · ∩ Uk where Ui’s are open. Then a belongs to each Ui.
Therefore there are positive numbers ri so that Bri(a) ⊂ Ui. Now for r = mini≤k ri
we have Br(a) ⊂ Bri(a) ⊂ Ui, for every i. Hence we have

Br(a) ⊂ U1 ∩ · · · ∩ Uk.

Note that the finiteness of the number of Ui’s is needed to ensure that r > 0. �

Theorem 2.17. The family of closed sets has the following properties
(i) ∅, X are closed sets.
(ii) The intersection of any collection of closed sets is a closed set.
(iii) The union of finitely many closed sets is a closed set.

Proof. Take the complement of the respective properties for open sets, and use
De Morgan’s laws. �

Exercise 2.18. Prove the above theorem using the definition of closed sets.

Example 2.19. The intersection of infinitely many open sets is not open in general,
and the union of infinitely many closed sets is not closed in general. For example⋂

n≥1

(− 1

n
, 1) = [0, 1),

⋃
n≥1

[
1

n
, 1] = (0, 1].

Theorem 2.20. Every open set in R is the union of countably many disjoint open
intervals.

Proof. Let U ⊂ R be an open set. Define an equivalence relation on U as follows

x ∼ y ⇐⇒ x, y belong to an open interval I ⊂ U.

It is easy to show that ∼ is an equivalence relation. We know that U is the disjoint
union of the equivalence classes; so it is enough to show that each equivalence class
is an open interval, and there are at most countably many different equivalence
classes.

Let Ix be the equivalence class of x ∈ U . Let α, β be the infimum and the
supremum of Ix respectively. We want to show that Ix = (α, β). If any number
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r ≥ β belongs to Ix, then there is an open interval I containing x, r. Thus in
particular Ix must contain numbers greater than β, which is impossible. The case
of r ≤ α is similar; so we have Ix ⊂ (α, β). To prove the other inclusion, suppose
there is r ∈ (α, β) that does not belong to Ix. Suppose for example that r > x.
Then since r is not the supremum of Ix, there is s ∈ (r, β) ∩ Ix. Therefore there
is an open interval I ⊂ U such that x, s ∈ I. But then we must have r ∈ I, and
consequently r ∈ Ix. This contradiction gives the desired result.

Finally, countability of the number of intervals follows, since we can choose a
distinct rational number from each interval. �

Remark. The above characterization of open subsets of R is a consequence of its
special order structure. There is no similar simple description of closed subsets of
R, nor of open subsets of Rn for n > 1.

Definition 2.21. Suppose X is a metric space, and A ⊂ X. The closure of A,
denoted by Ā, is the set of limits of all convergent sequences of points in A. In
other words, Ā is the set of points a ∈ X for which there is a sequence (an) in A
such that an → a.

Theorem 2.22. Suppose X is a metric space, and A ⊂ X. Then Ā is the smallest
closed set that contains A, i.e. it is closed, contains A, and is contained in any
closed set containing A.

Proof. First let us show that Ā is closed. Let (an) be a sequence in Ā, and
suppose an → a. We must prove that a ∈ Ā. Since an ∈ Ā, there is a sequence
(bk,n)k∈N in A such that

bk,n → an as k →∞.

Thus there is k(n) ∈ N such that d(bk(n),n, an) < 1
n . Now we claim that

bk(n),n → a as n→∞.

The reason is

d(bk(n),n, a) ≤ d(bk(n),n, an) + d(an, a) <
1

n
+ d(an, a) −→

n→∞
0.

Hence by the definition of Ā we have a ∈ Ā.
It is obvious that A ⊂ Ā, since every a ∈ A is the limit of the constant sequence

(a). Finally, suppose C ⊃ A is closed. Then every convergent sequence in A is also
in C, so the limits of those convergent sequences are in C. Therefore C ⊃ Ā. �

Exercise 2.23. Suppose X is a metric space, and A ⊂ X. Show that Ā = A if
and only if A is closed. As a result we have ¯̄A = Ā.
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Exercise 2.24. Give an example of a metric space in which the closure of some
open ball is not the corresponding closed ball, i.e.

Br(x) 6= {y ∈ X : d(y, x) ≤ r},

for some r, x. But show that we always have Br(x) ⊂ {y ∈ X : d(y, x) ≤ r}.

Proposition 2.25. Suppose A is a bounded above (below) nonempty subset of R.
Then the supremum (infimum) of A belongs to Ā. In particular, a closed and
bounded nonempty subset of R contains its supremum and infimum.

Proof. Suppose s is the supremum of A. Then for every n ∈ N there is an ∈ A
such that s− 1

n < an ≤ s, since s− 1
n is not an upper bound of A. It is easy to see

that an → s. Thus we must have s ∈ Ā. The case of infimum is similar. �

Definition 2.26. SupposeX is a metric space, and A ⊂ X. A point x ∈ X is called
a limit point or an accumulation point of A ⊂ X, if every Br(x) intersects A
in a point other than x. If a point y ∈ A is not a limit point of A, we call it an
isolated point of A.

Example 2.27. Let A = {1, 1
2 ,

1
3 ,

1
4 , . . .}. Then 0 is a limit point of A. Also, every

point of A is an isolated point.

Theorem 2.28. Suppose X is a metric space, and A ⊂ X. A point a is a limit
point of A if and only if there exists a sequence of distinct points of A converging
to a.

Proof. If there exists a sequence of distinct points (an) in A that converges to a,
then every Br(a) contains an’s for n large enough. Hence Br(a) contains at least
one point of A other than a.

Now suppose a is a limit point of A. We want to build a sequence of distinct
points of A that converges to a. Let a1 be an arbitrary point of (A−{a})∩B1(a).
Suppose we have chosen a1, . . . , an, then let an+1 be a point of (A−{a})∩Brn+1(a),
where

rn+1 = min{ 1

n+ 1
, d(a1, a), . . . , d(an, a)}.

Now we have an → a, since d(an, a) < rn ≤ 1
n . It is also obvious that an’s are

distinct, because if am = an for some m > n then we have d(am, a) < rm ≤ d(an, a)
which is impossible. �

Remark. A consequence of the above theorem is that if a is a limit point of A
then any open ball around a contains infinitely many points of A.

Theorem 2.29. The closure of a set is the union of the set and its limit points.
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Proof. Let A be the set. Then A ⊂ Ā. Also by the above theorem, every limit
point of A is the limit of a sequence of points in A, so it belongs to Ā. Thus we
only need to show that every point of Ā is either an element of A or a limit point
of A. Let a ∈ Ā and suppose that a /∈ A. It is enough to show that a is a limit
point of A. We know that there is a sequence (an) in A that converges to a. Thus
every open ball around a contains some an. But an 6= a as a does not belong to A.
Hence every open ball around a contains some point of A other than a. �

Example 2.30. Let A = {1, 1
2 ,

1
3 ,

1
4 , . . .}. Then Ā = {0, 1, 1

2 ,
1
3 ,

1
4 , . . .} (why?).

Definition 2.31. A subset A of a metric space X is dense in X, if Ā = X.

Example 2.32. Q is dense in R. Because bnxcn → x for every x ∈ R.

Definition 2.33. Suppose X is a metric space, and A ⊂ X. The interior of A is

A◦ := {x ∈ A : ∃r > 0 such that Br(x) ⊂ A},

and the boundary of A is ∂A := Ā−A◦.

Remark. By definition we have A◦ ∩ ∂A = ∅, and Ā = A◦ ∪ ∂A. It is also easy to
show that Ā = A ∪ ∂A.

Exercise 2.34. Show that
(i) A◦ is the largest open set contained in A, i.e. it is open, is contained in A,

and contains any open subset of A.
(ii) A◦ = A if and only if A is open. Hence A◦◦ = A◦.
(iii) ∂A = Ā ∩Ac; hence ∂A is closed.
(iv) A is closed if and only if ∂A ⊂ A.
(v) A is open if and only if A ∩ ∂A = ∅.
(vi) ∂Ac = ∂A.

Exercise 2.35. Show that the closure of a set A is the set of points that any open
neighborhood of them intersects A. As a result, ∂A is the set of points that any
open neighborhood of them intersects both A,Ac.

Exercise 2.36. Show that
(i) If A ⊂ B then Ā ⊂ B, and A◦ ⊂ B◦.
(ii) (A ∪B) = Ā ∪B.
(iii) (A ∪B)◦ ⊃ A◦ ∪B◦.
(iv) ∂(A ∪B) ⊂ ∂A ∪ ∂B.
(v) (A ∩B) ⊂ Ā ∩B.
(vi) (A ∩B)◦ = A◦ ∩B◦.
(vii) Show that the equality does not necessarily hold in (iii), (iv), and (v).
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(viii) Is there any relation between ∂(A ∩B) and ∂A ∩ ∂B?

Exercise 2.37. Let (an) be a sequence in a metric space X. Show that the set of
all subsequential limits of (an), i.e. the limits of all subsequences of (an), is a
closed set. Note that this set of subsequential limits is not the same as {an}, since
it does not necessarily contain the an’s themselves. However, show that the limit
points of the set {an} are subsequential limits of the sequence (an).

Definition 2.38. Two metrics d1 and d2 onX are equivalent if there exist c, C > 0
such that

c d1(x, y) ≤ d2(x, y) ≤ C d1(x, y)

for all x, y ∈ X.

Remark. Note that the equivalence of metrics is an equivalence relation.

Theorem 2.39. Two equivalent metrics d1, d2 induce the same topology, i.e. their
open sets and closed sets are the same. In addition, if an → a with respect to d1,
then an → a with respect to d2 as well.

Proof. We use Br(x, di) to denote the open balls with respect to di. Suppose U
is an open set with respect to d1, i.e. for every x ∈ U there is r > 0 such that
Br(x, d1) ⊂ U . To show that U is open with respect to d2 it suffices to show that
Bs(x, d2) ⊂ Br(x, d1) ⊂ U for some s > 0. But we have Bcr(x, d2) ⊂ Br(x, d1),
because if d2(y, x) < cr then

d1(y, x) ≤ 1

c
d2(y, x) <

1

c
cr = r.

Thus the theorem is proved for open sets. The result for closed sets follows from
the duality between open sets and closed sets.

Finally, suppose an → a with respect to d1. Then for any ε > 0 there is
N ∈ N so that for n ≥ N we have d1(an, a) < ε

C . Hence for n ≥ N we have
d2(an, a) ≤ Cd1(an, a) < C ε

C = ε. Therefore an → a with respect to d2 as well. �

Exercise 2.40. Give an example of two metrics on a space that induce the same
topology, but are not equivalent.

2.2 Subspaces and Products

Definition 2.41. A subset A of a metric space X, is itself a metric space with the
induced (or inherited) metric d|A×A. We call A a subspace of X.

Theorem 2.42. Suppose Y is a subspace of X. Then V ⊂ Y is open in Y if and
only if there is an open subset U ⊂ X such that V = U ∩ Y . The same is true for
closed sets.
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Proof. Let z ∈ V . We use the notations Br(z,X) and Br(z, Y ) for the open balls
around z in X,Y respectively. Note that we have

Br(z, Y ) = {y ∈ Y : d(y, z) < r} = Br(z,X) ∩ Y.

Now, since V is open in Y , there is rz > 0 such that Brz(z, Y ) ⊂ V . Set

U :=
⋃
z∈V

Brz(z,X).

Then U is a union of open balls in X, hence it is open in X. In addition

U ∩ Y =
⋃
z∈V

[Brz(z,X) ∩ Y ] =
⋃
z∈V

Brz(z, Y ) = V.

Next suppose U is open in X. Then for any z ∈ U ∩ Y we have Br(z,X) ⊂ U ,
for some r > 0. Hence

Br(z, Y ) = Br(z,X) ∩ Y ⊂ U ∩ Y.

Thus U ∩ Y is open in Y . Finally, the result for closed sets follows by taking the
complement of the results for open sets. For example if C is closed in X, then Cc

is open in X. Therefore Cc ∩ Y is open in Y . Hence its complement in Y is closed
in Y . But its complement in Y is

Y − (Cc ∩ Y ) = Y ∩ (Cc ∩ Y )c = Y ∩ (C ∪ Y c) = Y ∩ C.

The other direction is similar. �

Example 2.43. The open and closed subsets of a subspace are not necessarily
open or closed in the larger space. For example, (0, 1) is an open subset of R, but
if we identify R with the x-axis of R2, (0, 1) is not open in R2.

Example 2.44. The closure of a set in a subspace is also not necessarily the same
as its closure in the larger space. For example when we consider (0, 1) as a subset
of the metric space X = (0, 1), it is closed, since any metric space is closed in itself.
Thus the closure of (0, 1) as a subset of X is (0, 1). But the closure of (0, 1) as a
subset of R is [0, 1].

Theorem 2.45. Suppose A is a subspace of X. Then
(i) Open sets in A are open in X when A is open in X.
(ii) Closed sets in A are closed in X when A is closed in X.

Proof. Open sets in A are of the form U ∩A where U is open in X. Hence if A
is open in X, U ∩A is also open in X. The proof is the same for closed sets. �
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Theorem 2.46. Suppose (X1, d1), . . . , (Xn, dn) are metric spaces. Then on the
product space

n∏
i=1

Xi := X1 × · · · ×Xn

there are three equivalent metrics

d(x, y) :=

[
n∑
i=1

di(xi, yi)
2

]1
2

,

dsum(x, y) :=

n∑
i=1

di(xi, yi),

dmax(x, y) := max
i≤n
{di(xi, yi)}.

Proof. All of these functions satisfy the first two conditions of a metric obviously.
Also it is easy to see that dsum satisfies the triangle inequality. For dmax we have

dmax(x, z) = max
i≤n
{di(xi, zi)} ≤ max

i≤n
{di(xi, yi) + di(yi, zi)}

≤ max
i≤n
{di(xi, yi)}+ max

i≤n
{di(yi, zi)} = dmax(x, y) + dmax(y, z).

Finally for d we have

d(x, z) =

[
n∑
i=1

di(xi, zi)
2

]1
2

≤

[
n∑
i=1

(
di(xi, yi) + di(yi, zi)

)2]12

≤

[
n∑
i=1

di(xi, yi)
2

]1
2

+

[
n∑
i=1

di(yi, zi)
2

]1
2

= d(x, y) + d(y, z).

Here we applied the triangle inequality for the standard norm on Rn. Thus it only
remains to show that these metrics are equivalent. Let ai := di(xi, yi). Then

max {ai} ≤
(∑

a2
i

) 1
2 ≤

∑
ai ≤ nmax {ai} ≤ n

(∑
a2
i

) 1
2 ≤ n

∑
ai.

The second inequality above follows from squaring its both sides. �

Theorem 2.47. A sequence (an)n∈N = ((an,1, . . . , an,k))n∈N in the product space
X1 × · · · ×Xk converges to a = (a1, . . . , ak) if and only if an,i → ai for each i.

Proof. We use the metric dmax. We have

di(an,i, ai) < ε for all i ⇐⇒ dmax(an, a) < ε.

From this the result follows easily. �
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Theorem 2.48. Suppose Ai is a subset of the metric space Xi for i = 1, . . . k. If
each Ai is open then

∏k
i=1Ai is an open subset of

∏k
i=1Xi, and if each Ai is closed

then
∏k
i=1Ai is a closed subset of

∏k
i=1Xi.

Proof. SupposeAi’s are closed. Let
(
(an,1, . . . , an,k)

)
n∈N be a sequence in

∏k
i=1Ai

converging to (a1, . . . , ak). Then we have an,i → ai, so we must have ai ∈ Ai. Thus

(a1, . . . , ak) ∈
k∏
i=1

Ai.

Now suppose Ai’s are open. We have

( k∏
i=1

Ai

)c
=
⋃
j≤k

(
X1 × · · · ×Xj−1 ×Acj ×Xj+1 × · · · ×Xk

)
.

Each of the sets X1 × · · · × Acj × · · · × Xk is a product of closed sets, hence it is
closed. Thus their union is closed too. Therefore

∏k
i=1Ai is open. �

Example 2.49. Not every open or closed set in a product space is a product of
open or closed sets. For example the open unit disk in R2 is not a product of two
open subsets of R. (Why?)

2.3 Continuous Functions

Definition 2.50. A function f : X → Y between two metric spaces is continuous
at a point a ∈ X if

∀ε > 0 ∃δ > 0 such that ∀x ∈ X
dX(x, a) < δ =⇒ dY (f(x), f(a)) < ε.

We say f is continuous if it is continuous at every point of its domain. A function
that is not continuous is called discontinuous.

Proposition 2.51. The constant functions are continuous. Also, the identity map
of any space

idX : X → X
x 7→ x

is continuous.

Theorem 2.52. A function f : X → Y is continuous at a ∈ X if and only if for
any sequence an → a we have f(an)→ f(a).
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Proof. Suppose f is continuous at a, and an → a. Then for n large enough we
have dX(an, a) < δ, hence dY (f(an), f(a)) < ε. Thus f(an)→ f(a).

For the converse, we prove the contrapositive. Therefore suppose f is not con-
tinuous at a. Then there is ε > 0 such that for all n ∈ N there is an ∈ X such
that

dX(an, a) <
1

n
, but dY (f(an), f(a)) ≥ ε.

This means an → a but f(an) 6→ f(a). �

Theorem 2.53. Suppose f : X → Y and g : Y → Z are continuous respectively at
x, f(x). Then g ◦ f : X → Z is continuous at x. As a result, the composition of
continuous functions is continuous.

Proof. If xn → x then f(xn)→ f(x), hence g(f(xn))→ g(f(x)). �

Definition 2.54. Let f : X → Y , and A ⊂ Y . Then the preimage or the inverse
image of A is

f−1(A) := {x ∈ X : f(x) ∈ A}.

Note that we do not require the map f to be invertible.

Theorem 2.55. Let f : X → Y be a function between two metric spaces. Then
the following assertions are equivalent.
(i) f is continuous.
(ii) For every convergent sequence xn → x we have f(xn)→ f(x).
(iii) For each open subset U of Y , the set f−1(U) is an open subset of X.
(iv) For each closed subset C of Y , the set f−1(C) is a closed subset of X.

Proof. We have seen that (i) and (ii) are equivalent. It is easy to see that (iii)
and (iv) are equivalent too, since

f−1(Ac) = {x ∈ X : f(x) ∈ Ac} = {x ∈ X : f(x) /∈ A} = (f−1(A))c.

Now we only need to invoke the duality of open sets and closed sets.
Hence it suffices to prove that (ii) implies (iv), and (iii) implies (i). Suppose C

is a closed subset of Y . Let xn be a sequence in f−1(C) that converges to x. It is
enough to show that x ∈ f−1(C). We know that f(xn)→ f(x). We also know that
f(xn) ∈ C. Hence f(x) ∈ C and therefore x ∈ f−1(C).

Now suppose (iii) holds. We want to show that f is continuous. Let x ∈ X be
an arbitrary point. Then for any given ε > 0, Bε(f(x)) is an open set in Y . Hence
f−1(Bε(f(x))) is open in X. But this set obviously contains x. Therefore there is
δ > 0 such that

Bδ(x) ⊂ f−1(Bε(f(x))).

This means that dX(y, x) < δ implies that dY (f(y), f(x)) < ε, as desired. �
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Remark. The image of an open set under a continuous function is not necessarily
open. For example x 7→ x2 takes (−1, 1) to [0, 1). The continuous image of a closed
set is not necessarily closed either. For example the continuous function x 7→ 1

x
from (0,∞) to R, takes [1,∞) to (0, 1].

Proposition 2.56. Continuity of a map f : X → Y depends only on the topology
of X,Y ; so it is unaffected if we change the metrics of X,Y with equivalent metrics.

Proof. By the last theorem, continuity can be expressed solely in terms of open
sets. On the other hand, equivalent metrics induce the same topology. �

Proposition 2.57. The projections

πi : X1 × · · · ×Xn → Xi

(x1, . . . , xn) 7→ xi

from a product space to any of its components are continuous.

Proof. We have
dmax(x, y) < ε =⇒ di(xi, yi) < ε. �

Theorem 2.58. For functions into product spaces we have
(i) The function

f = (f1, . . . , fn) : X −→ Y1 × · · · × Yn
x 7→ (f1(x), . . . , fn(x))

is continuous at a ∈ X if and only if each fi : X → Yi is continuous at a.
(ii) The function

f = f1 × · · · × fn : X1 × · · · ×Xn −→ Y1 × · · · × Yn
(x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn))

is continuous at a = (a1, . . . , an) ∈
∏
Xi if and only if each fi : Xi → Yi is

continuous at ai.

Proof. (i) Let dmax be the max metric on
∏
Yi. The result follows from

dmax(f(x), f(a)) < ε ⇐⇒ dYi(fi(x), fi(a)) < ε for all i.

(ii) Again, the result follows from

dmax(f(x), f(a)) < ε ⇐⇒ dYi(fi(xi), fi(ai)) < ε for all i.

Note that in this case we also need to use the fact that

d̃max(x,a) < δ ⇐⇒ dXi(xi, ai) < δ for all i,

where d̃max is the max metric on
∏
Xi. �
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Theorem 2.59. The addition, subtraction and multiplication from R × R to R
are continuous. Also, the inversion from R − {0} to R, and the division from
R× (R− {0}) to R are continuous.

Proof. First consider addition. We want to show that the map

R× R −→ R
(x, y) 7→ x+ y

is continuous at an arbitrary point (a, b). Let ε > 0 be given. We use the dmax

on R× R. So suppose dmax

(
(x, y), (a, b)

)
< ε

2 , or equivalently |x− a| , |y − b| <
ε
2 .

Then
|x+ y − (a+ b)| = |x− a+ y − b| ≤ |x− a|+ |y − b| < ε.

Next consider multiplication. Let ε > 0 be given. Suppose |x− a| , |y − b| < δ.
Then we have

|xy − ab| = |xy − ay + ay − ab| ≤ |y||x− a|+ |a||y − b|.

But we have |y| ≤ |y − b|+ |b| < δ + |b|. Hence

|xy − ab| ≤ |y||x− a|+ |a||y − b| < δ(δ + |b|+ |a|).

Thus for δ ≤ min{1, ε
1+|b|+|a|} we have |xy − ab| < δ(1 + |b|+ |a|) < ε.

Subtraction is a composition of continuous functions as follows

(x, y) 7→ (x, (−1)y) 7→ x+ ((−1)y) = x− y.

Note that y 7→ (−1)y is continuous, since it is the composition of y 7→ (−1, y) 7→
(−1)y.

Now consider inversion, which is the map from R− {0} to R that takes x to 1
x .

We want to show that it is continuous at an arbitrary point a 6= 0. Let ε > 0 be
given. Suppose |x− a| < δ. Then for δ < |a|

2 we have |x| > |a|
2 . Hence∣∣∣∣1x − 1

a

∣∣∣∣ =

∣∣∣∣a− xax

∣∣∣∣ < 2δ

|a|2
.

Thus for δ ≤ min{ |a|2 ,
ε|a|2

2 } we have | 1x −
1
a | < ε as desired.

Finally, note that division is a composition of continuous functions as follows

R× (R− {0}) −→ R× R −→ R

(x, y) 7−→ (x,
1

y
) 7−→ x

1

y
=
x

y
. �
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Theorem 2.60. Suppose f, g : X → R are continuous. Then f ± g, fg are contin-
uous. Also, f

g is continuous if g 6= 0.

Proof. All these functions can be written as a composition of continuous func-
tions. For example fg can be written as

x 7→ (f(x), g(x)) 7→ f(x)g(x) = (fg)(x). �

Theorem 2.61. The functions from Rn to Rm whose components are polynomials
in n-variables, are continuous. Also, the norm | | : Rn → R is continuous.

Proof. It is enough to show the continuity of each component, so we assume
m = 1. Each polynomial in n-variables is a sum of monomials, and each monomial
is of the form cxk11 · · ·xknn . Since the projections

(x1, . . . , xn) 7→ xi

are continuous, and the product of continuous functions are continuous, we can
show by an easy induction that the maps

(x1, . . . , xn) 7→ xkii

are continuous. Now as the constant functions are continuous, and the sum and
product of continuous functions are continuous, we obtain the continuity of our
polynomial.

For the norm, just note that for any two points x, y we have ||x|− |y|| ≤ |x−y|.
This implies that if two points are close, their norms are close too. �

Remark. The addition and multiplication of complex numbers are polynomial
functions from R2 to R2, so they are continuous. Therefore, by imitating the above
proof we can show that functions from Cn to Cm whose components are polynomials
in n-variables, are continuous. Also, the modulus of complex numbers is the same
as their norm as a vector in R2, thus | | : C→ R is continuous too.

Remark. The addition, scalar multiplication, and inner product of vectors in Eu-
clidean spaces are all continuous, since their components are polynomial functions.
Hence we can conclude that the addition, scalar multiplication, and inner product
of continuous functions into Euclidean spaces, are all continuous too.

Theorem 2.62. The metric d : X ×X → R is continuous.

Proof. First note that for all x, y, z ∈ X we have by the triangle inequality

d(x, y)− d(y, z) ≤ d(x, z).
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By switching x, z we get

|d(x, y)− d(y, z)| ≤ d(x, z).

Now if we use dsum on X ×X, we get

|d(x, y)− d(a, b)| ≤ |d(x, y)− d(y, a)|+ |d(y, a)− d(a, b)|
≤ d(x, a) + d(y, b) = dsum

(
(x, y), (a, b)

)
.

Thus if (x, y) is close to (a, b), then d(x, y) is close to d(a, b). �

Definition 2.63. A function f : X → Y between two metric spaces is uniformly
continuous if

∀ε > 0 ∃δ > 0 such that ∀x, y ∈ X
dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε.

Remark. The difference of uniform continuity with continuity is that for a given
ε we can choose a δ that works for all points of X.

Definition 2.64. A function f : X → Y between two metric spaces is Lipschitz
(continuous) if there exists L > 0 such that

dY (f(x), f(y)) ≤ LdX(x, y)

for all x, y ∈ X.

Proposition 2.65. A Lipschitz function is uniformly continuous.

Proof. Take δ < ε
L . �

Definition 2.66. A continuous bijective function whose inverse is also continuous
is called a homeomorphism. Two spaces are said to be homeomorphic if there
exists a homeomorphism between them.

Example 2.67. The inverse of an invertible continuous function is not necessarily
continuous. For example the function

f : θ 7→ (cos θ, sin θ),

from [0, 2π) to the unit circle S1, is a continuous bijection whose inverse is not
continuous. To see this note that an :=

(
cos(2π − 1

n), sin(2π − 1
n)
)
→ (1, 0) but

f−1(an) = 2π − 1

n
→ 2π 6= 0 = f−1

(
(1, 0)

)
.
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Homeomorphic spaces are topologically equivalent, i.e. from the viewpoint of
topology they are the same. In other words, homeomorphic spaces are topologi-
cally indistinguishable. They may well have other differences, but those differences
cannot be caught by continuous functions. For example a circle and a square in the
plane are homeomorphic, but they have many geometric differences. Nevertheless,
ignoring some differences and paying attention to only a few properties, is a useful
idea. It helps us to study many different objects at the same time. It also helps
us to understand the implications of those few properties, and to not confuse these
implications with the specific properties of each particular object.

Remark. It is easy to check that being homeomorphic is an equivalence relation.
This is one of the reasons that we require the inverse of a homeomorphism to be
continuous.

Example 2.68. The interval (0, 1) is homeomorphic to R. For example

x 7→ x

1 + |x|

is a homeomorphism from R onto (−1, 1), and x 7→ x+1
2 is a homeomorphism from

(−1, 1) onto (0, 1) (why?). Can you give a different homeomorphism between them?

Proposition 2.69. Suppose f : X → Y is a homeomorphism. Then f induces a
bijection between the topology of X and the topology of Y .

Proof. Since f−1 is continuous, f(U) is open for every open set U ⊂ X. It is
easy to see that the map U 7→ f(U) is a bijection between the topologies. �

2.4 Complete Metric Spaces

Definition 2.70. A sequence (an) in a metric space (X, d) is a Cauchy sequence
if

∀ε > 0 ∃N ∈ N such that ∀n,m ≥ N we have d(an, am) < ε.

Theorem 2.71. Convergent sequences are Cauchy.

Proof. Let an → a, then d(an, am) ≤ d(an, a) + d(a, am)→ 0 as m,n→∞. �

Remark. The converse is not true in general. For example the sequence ( bn
√

2c
n )

in Q is Cauchy, but it is not convergent. Here bxc is the integer part of x.
In fact, a Cauchy sequence that does not converge, indicates that the space has

a cavity. In other words, the points of a Cauchy sequence cluster but the space
lacks their limit.
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Definition 2.72. A complete metric space is a metric space in which all Cauchy
sequences are convergent.

Example 2.73. The above remark shows that Q is not a complete metric space.
Also the interval (0, 1) is not a complete metric space, since the sequence ( 1

n)∞n=1

in (0, 1) is Cauchy but it is not convergent in (0, 1).

Theorem 2.74. If a subsequence of a Cauchy sequence converges, then the whole
sequence converges to the same limit.

Proof. Let (an) be a Cauchy sequence such that ank → a. We want to show
that an → a. For a given positive ε, there is N1 ∈ N such that for k ≥ N1 we have
d(ank , a) < ε

2 . Also, there isN2 ∈ N such that for n,m ≥ N2 we have d(an, am) < ε
2 .

Keep in mind that nk ≥ k. Then for m ≥ max{N1, N2} we have

d(am, a) ≤ d(am, anm) + d(anm , a) < ε. �

Theorem 2.75. R is complete.

Proof. Let (an) be a Cauchy sequence in R. First note that {an : n ∈ N} is a
bounded subset of R. The reason is that there is N ∈ N such that for n ≥ N we
have |an − aN | < 1. Then it is obvious that for all n we have |an| ≤ R, where

R := |aN |+ max{1, |a1 − aN |, . . . , |aN−1 − aN |}.

Now, it is enough to show that (an) has a convergent subsequence (ank). Let n0 = 0.
Then suppose we have chosen an1 , . . . , anm−1 . Choose nm > nm−1 such that

anm > sup{an : n > nm−1} −
1

m
.

Let bm := sup{an : n > nm−1}. It is obvious that |bm| ≤ R for all m. Also note
that (bm) is a decreasing sequence, i.e. bm+1 ≤ bm. Then set

b := inf{bm : m ∈ N}.

We claim that anm −→ b as m→∞. To see this note that for a given ε > 0, b+ ε
is not a lower bound of {bm}, hence there is N such that bN < b + ε. Thus for
m ≥ max{N, 1

ε} we have

b− ε ≤ b− 1

m
≤ bm −

1

m
< anm ≤ bm ≤ bN < b+ ε.

Therefore |anm − b| < ε as desired. �

Remark. The completeness of a metric space depends on its metric and not just its
topology. For example (0, 1) and R are homeomorphic, but (0, 1) is not complete.
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Theorem 2.76. The product of finitely many complete metric spaces, equipped with
any of the metrics in Theorem 2.46, is complete. In particular Rn is complete.

Proof. Suppose (X1, d1), . . . , (Xk, dk) are complete metric spaces. We equip∏
Xi with dmax. The other cases can be proved similarly. Let

(an) =
(
(an,1, . . . , an,k)

)
n∈N be a Cauchy sequence in

∏
Xi. Then we know that for

any given ε > 0 we can take m,n to be large enough so that dmax(am, an) < ε. This
means that for m,n large enough we have di(am,i, an,i) < ε. Therefore (an,i) is a
Cauchy sequence in Xi. Hence (an,i) is convergent in Xi, and consequently (an) is
convergent in

∏
Xi. �

Theorem 2.77. Closed subsets of a complete metric space are complete.

Proof. Suppose A is a closed subset of the complete metric space X. Let (an) be
a Cauchy sequence in A. Then (an) is also a Cauchy sequence in X. Hence an → a.
But A is closed, so a ∈ A. Thus (an) is convergent in A. �

2.5 Connectedness

Definition 2.78. A separation of a metric space X is a pair of nonempty open
subsets A,B of X such that

X = A ∪B, and A ∩B = ∅.

A metric space X is disconnected if there exists a separation of X.
A metric space is connected if it is not disconnected, i.e. there does not exist

a separation of it. A nonempty subset of a space is connected if it is connected as
a metric space with the induced metric.

Notation. We use the notation A tB for A ∪B, when A ∩B = ∅.

Example 2.79. Q is disconnected. For example

{r ∈ Q : r <
√

2}
⊔
{r ∈ Q : r >

√
2}

is a separation of Q.

Theorem 2.80. A space X is connected if and only if the only subsets of X that
are both open and closed in X are ∅, X.

Proof. Any other closed and open subset A, has a nonempty open complement
Ac; and together they form a separation of X. �

Theorem 2.81. The continuous image of a connected set is connected.
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Proof. Suppose X is connected and f : X → Y is continuous. We want to show
that f(X) is connected. Let A be a nonempty open and closed subset of f(X).
It is enough to show that A = f(X). Now f−1(A) is both open and closed. It
is also nonempty, since A is nonempty and contains elements of the image of f .
Thus f−1(A) = X since X is connected. Hence we have A = f(f−1(A)) = f(X)
as desired. �

Remark. An immediate consequence of the above theorem is that a space which
is homeomorphic to a connected space, is connected.

Theorem 2.82. A nonempty subset of R is connected if and only if it is an interval,
or has only one element.

Proof. Subsets with only one element are obviously connected. So we assume
that the subset has more than one element. Now suppose I ⊂ R is an interval with
a separation U t V . Take a ∈ U and b ∈ V , and suppose a < b. Set

S = {x ∈ I : [a, x] ⊂ U, x < b},

and c = supS. As a ≤ c ≤ b and I is an interval, we have c ∈ I by Theorem 1.35.
If c ∈ U then we must have c < b. Thus I contains [c, c + ε] for some positive ε.
Since U is open in I, U also contains [c, c + ε] for some ε. Therefore U contains
[a, c+ ε]. But this contradicts the fact that c is an upper bound for S.

Thus we must have c ∈ V . Then a < c and as before, V contains [c − ε, c] for
some positive ε. But this implies that c − ε is an upper bound for S, which is in
contradiction with c being the supremum of S. Therefore I cannot be disconnected.

For the other direction, let I be a connected subset of R with more than one
element. Suppose to the contrary that I is not an interval. Hence by Theorem
1.35 there are distinct points a, b ∈ I, and a < c < b such that c /∈ I. But then
(I ∩ (−∞, c)) t (I ∩ (c,+∞)) is a separation of I, which is a contradiction. �

Example 2.83. S1 is connected, since it is the continuous image of R under the
map t 7→ (cos t, sin t) (see Theorem 6.59).

Intermediate Value Theorem. Suppose f : X → R is continuous and X is
connected. If a, b ∈ f(X) and a < c < b then c ∈ f(X).

Proof. If c /∈ f(X), then f−1((−∞, c)) t f−1((c,+∞)) is a separation of X. �

Exercise 2.84. Suppose I is an interval, and f : I → R is a continuous one-to-one
function. Show that f is either strictly increasing, or strictly decreasing.



CHAPTER 2. METRIC SPACES 76

Solution. Suppose a, b, c ∈ I, and a < b < c. Note that f(a), f(b), f(c) are
distinct real numbers, because f is one-to-one. First we show that f(b) must be
between f(a), f(c). Suppose to the contrary that this is not the case. Then f(b)
is either greater than both f(a), f(c), or is less than both of them. Suppose for
example f(a) < f(c) < f(b), the other cases are similar. But we know that [a, b]
is connected, so by the intermediate value theorem there is t ∈ [a, b] such that
f(t) = f(c), which contradicts the fact that f is one-to-one. Hence we get the
desired.

Now suppose we have f(a) < f(b). We will show that f is strictly increasing.
Let x ∈ I − {a, b}. If x > b then we have f(a) < f(b) < f(x), since f(b) must be
between f(a), f(x). Similarly, if x < a then f(x) < f(a) < f(b), and if a < x < b
then f(a) < f(x) < f(b). Now let x, y ∈ I, and suppose x < y. We have to show
that f(x) < f(y). If x = a then we have already shown that the desired result
holds. Similarly, we can deal with the cases x = b, y = a, and y = b.

So suppose x, y ∈ I − {a, b}. If x, y do not belong to the same interval among
I∩(−∞, a), I∩(a, b), and I∩(b,+∞), then we can easily deduce that f(x) < f(y),
by comparing them to f(a) or f(b). Now suppose that x, y belong to the same
interval among the above three intervals. Suppose for example x, y ∈ (a, b), the
other cases are similar. Then we must have f(a) < f(x) < f(y), since f(x) must
be between f(a), f(y). Thus we get the desired result. Similarly, the assumption
f(a) > f(b) implies that f is strictly decreasing. �

Definition 2.85. Let X be a metric space, and x, y ∈ X. A path from x to y, is a
continuous function f from an interval [a, b] to X such that f(a) = x and f(b) = y.
A metric space X is called path connected if for any two points x, y ∈ X there
exists a path from x to y. A nonempty subset A of a space X is path connected
if it is path connected as a metric space with the induced metric, in other words
between any two points of A there is a path inside A.

Remark. Note that by a linear change of variable, we can assume that the domain
of a path is any given closed interval.

Theorem 2.86. A path connected space is connected.

Proof. Suppose to the contrary that X is path connected, and there is a separa-
tion AtB of X. Let x ∈ A and y ∈ B. Then there is a path f : [a, b]→ X from x
to y. But it is easy to see that f−1(A)t f−1(B) is a separation of [a, b], which is a
contradiction. �

Example 2.87. Sn is path connected for n ≥ 1. To see this note that for any
x, y ∈ Sn, if y 6= −x then

t 7→ (1− t)x+ ty

|(1− t)x+ ty|
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is a path from x to y with domain t ∈ [0, 1]. When y = −x we have the path

t 7→ (1− 2t)x+ t(1− t)z
|(1− 2t)x+ t(1− t)z|

from x to −x with domain t ∈ [0, 1], where z is a nonzero vector orthogonal to x.

Example 2.88. S1 is not homeomorphic to an interval I in R. To see this, suppose
to the contrary that there is a homeomorphism f : S1 → I. Let c ∈ I be an interior
point, so that I − {c} is disconnected. Then

f : S1 − {f−1(c)} → I − {c}

is still continuous and onto. But S1 − {f−1(c)} is obviously path connected, hence
it is connected. Therefore its continuous image cannot be the disconnected set
I − {c}.

Exercise 2.89. Show that R is not homeomorphic to [0, 1). In general, find nec-
essary and sufficient conditions for two intervals to be homeomorphic.

Example 2.90. Similarly to the above example, we can see that S1 is not homeo-
morphic to S2, nor to a disk in R2. The reason is that removing any two points of
S1 disconnects it, while the same is not true for S2 or the disk. In fact, S2 or the
disk minus finitely many points are path connected. Can you prove this?

Remark. We cannot apply the above argument directly to show that S2 is not
homeomorphic to S3. Because removing finitely many points from S2 or S3 does
not make them disconnected. Intuitively, we have to remove a closed curve from
S2 to make it disconnected. And removing a closed curve does not disconnect S3

(To imagine this keep in mind that locally S3 looks like R3). But the problem with
this modified argument is that the continuous image of a curve is not necessarily
a curve. There are continuous functions that map a curve onto a two-dimensional
set, and removing a two-dimensional set can disconnect S3. However by using the
machinery of algebraic topology, we can make this idea precise and prove that S2, S3

are not homeomorphic.

Theorem 2.91. The union of a family of connected sets that have a point in com-
mon is connected.

Proof. Let X =
⋃
Xα, and suppose p ∈

⋂
Xα. Suppose that X has a nonempty

closed and open subset U . We either have p ∈ U or p ∈ U c. Suppose U contains p,
otherwise we can work with the nonempty closed and open subset U c. Then U ∩Xα

is nonempty for all α. Also as Xα ⊂ X, U ∩Xα is a closed and open subset of Xα.
Hence by connectedness of Xα, we have U ∩ Xα = Xα. Therefore U contains all
Xα’s and we have U = X. �
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Exercise 2.92. Give an example of two connected sets whose intersection is not
connected.

Theorem 2.93. Suppose A is a connected subset of X, and A ⊂ B ⊂ Ā. Then B
is also connected. In particular, the closure of a connected set is connected.

Proof. Suppose V is a nonempty closed and open subset of B. Then there is an
open set U ⊂ X such that V = U ∩B. Now

V ∩A = (U ∩B) ∩A = U ∩A

is a closed and open subset of A. Let us show that U ∩ A is nonempty. We know
that there is b ∈ U ∩ B. If b ∈ A we are done. Otherwise we have b ∈ Ā − A.
Therefore b is a limit point of A. Thus as U is an open set containing b, U must
intersect A. Hence by connectedness of A we get U ∩A = A.

Therefore V contains A. Since V is also closed in B, there is a closed subset C
of X such that V = C ∩ B. But then C contains A, and as C is closed we have
C ⊃ Ā. Consequently

V = C ∩B = B.

Thus B is connected. �

Example 2.94. Not every connected set is path connected. For example the
topologist’s sine curve

{(x, y) : y = sin
1

x
, x ∈ (0, 1]}

⋃
{(0, y) : y ∈ [−1, 1]}

is a connected subset of R2 which is not path connected. The proof can be found
in Example 11.93.

Theorem 2.95. The product of finitely many connected spaces is connected.

Proof. It is sufficient to prove the theorem for the product of two spaces. The
general result follows by induction. Suppose X,Y are connected. Suppose to the
contrary that X × Y has a separation A t B. Let f : X × Y → R be the function
that takes A to 0 and takes B to 1. It is easy to see that f is continuous. Now
let (x0, y0) ∈ A and (x1, y1) ∈ B. Consider (x0, y1). Suppose for example that
f((x0, y1)) = 0. Then the function

g : X −→ X × Y −→ R
x 7−→ (x, y1) 7−→ f((x, y1))

is continuos. Now g(x0) = 0 and g(x1) = 1. But g does not achieve any inter-
mediate value, which is in contradiction with the connectedness of X. The case of
f((x0, y1)) = 1 is similar. �
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2.6 Compactness

Definition 2.96. Suppose X is a set, and f : X → R is a function. We say f
has a (global) maximum at y ∈ X if f(y) ≥ f(x) for all x ∈ X. The number
f(y) is also called the maximum (value) of f . Similarly, we say f has a (global)
minimum at y ∈ X if f(y) ≤ f(x) for all x ∈ X. The number f(y) is also called
the minimum (value) of f . Finally, an extremum of f , is either a maximum of
f , or a minimum of f .

Suppose we want to minimize a function F : X → R, where X is a metric space.
X can simply be a subset of a Euclidean space, or it can be an infinite dimensional
space of states of some physical system. In order for F to have a minimum, we
need to assume that F is bounded below. Let

m := inf
x∈X

F (x).

Then by the definition of infimum, for every n there is xn ∈ X such that

m ≤ F (xn) ≤ m+
1

n
.

Now we hope that the sequence (xn) converges to some x∗ ∈ X. If F is continuous
(we actually need less than continuity, and this is important in infinite dimensions),
then we obviously have F (x∗) = m. However, the hard part of this approach is to
show that (xn) is convergent. Unfortunately, the sequence of “approximate minima”
(xn) is in general not convergent. For example, the function 1

4x
4 − 1

2x
2 on R has

two minima at x = ±1. And its minimizing sequence

xn = (−1)n +
1

n

is not convergent. But, as the above example suggests, we actually do not need
the convergence of the whole sequence (xn). For our purpose, it is enough to show
that a subsequence (xnk) is convergent. Then we can argue as before and conclude
that the limit of this subsequence is the minimizer. Thus we need to extract a
convergent subsequence from an arbitrary sequence in X. This is the property of
the space X that we want to study in this section.

Definition 2.97. A subset A of a metric space X is (sequentially) compact if
every sequence in A has a subsequence that converges in A.

Remark. Note that we consider the empty set ∅ to be compact. In all of the
following theorems, you should check that the claim holds for the empty compact
set trivially.
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Example 2.98. A finite subset of a metric space is compact. Because any sequence
in a finite set has a constant subsequence.

Theorem 2.99. Closed subsets of a compact space are compact.

Proof. Suppose X is compact, and A ⊂ X is closed. Let (an) be a sequence in
A. Then a subsequence ank → a, as X is compact. Since A is closed we must have
a ∈ A. �

Exercise 2.100. Show that
(i) The union of finitely many compact sets is compact.
(ii) The intersection of an arbitrary family of compact sets is compact.

Definition 2.101. A subset A of a metric space X is called bounded, if there is
x ∈ X such that A ⊂ Br(x) for some r > 0. A function into a metric space is called
a bounded function if its image is a bounded set. A subset or a function that is
not bounded, is called unbounded.

Remark. Note that the boundedness of a subset depends on the metric.

Remark. Note that the closure of a bounded set A is also bounded. Because if
A ⊂ Br(x) then Ā ⊂ Br(x) ⊂ Br+1(x).

Theorem 2.102. Compact subsets of a metric space are closed and bounded.

Proof. Suppose the sequence (an) is in the compact subset A, and an → a. Then
a subsequence (ani) must converge in A. But the limit of the subsequence must
also be a. Hence a ∈ A and A is closed.

Now suppose A is not bounded. Then we can choose a sequence in it that has
no convergent subsequence, as follows. Let a1 be an arbitrary point of A. Suppose
we have chosen a1, . . . , ak. Let ri := d(a1, ai), and r > ri + 1 for all i. Then by our
assumption Br(a1) does not contain A. Hence there is ak+1 ∈ A − Br(a1). Note
that we have

d(ak+1, ai) ≥ d(ak+1, a1)− d(a1, ai) > r − ri > 1.

Thus we have constructed a sequence (an) in A such that d(an, am) > 1 for n 6=
m. It is easy to see that (an) cannot have a convergent subsequence, which is in
contradiction with the compactness of A. �

Remark. The converse of the above theorem is not true in general. For example
N with the discrete metric is bounded and closed, but it has the sequence 1, 2, 3, . . .
with no convergent subsequence.

Theorem 2.103. The continuous image of a compact set is compact.
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Proof. Let f be a continuous map on the compact set A. Take a sequence (bn)
in f(A). Then for each n there is an ∈ A such that f(an) = bn. Now the sequence
(an) has a convergent subsequence (ani). Therefore (bni) = (f(ani)) is a convergent
subsequence of (bn). �

Remark. An immediate consequence of the above theorem is that a space which
is homeomorphic to a compact space, is compact.

Extreme Value Theorem. A continuous function from a nonempty compact set
into R is bounded, and achieves its maximum and minimum values.

Proof. Let f : X → R be continuous, and suppose X is compact. Then f(X)
is compact, hence it is bounded and closed. Every nonempty, closed and bounded
subset of R contains its finite supremum and infimum. Therefore the supremum
and the infimum of f(X) are achieved by f , i.e. there are x1, x2 ∈ X such that

f(x2) = sup{f(x) : x ∈ X}, f(x1) = inf{f(x) : x ∈ X}.

These are the maximum and the minimum of f respectively. �

Theorem 2.104. Closed bounded intervals in R are compact.

Proof. The proof is similar to the proof of the completeness of R. Let (an) be a
sequence in [a, b]. We will construct a convergent subsequence (ank). Let n0 = 0.
Then suppose we have chosen an1 , . . . , anm−1 . Choose nm > nm−1 such that

anm > sup{an : n > nm−1} −
1

m
.

Let bm := sup{an : n > nm−1}. It is obvious that bm ∈ [a, b] for all m. Also note
that (bm) is a decreasing sequence, i.e. bm+1 ≤ bm. Then set

b := inf{bm : m ∈ N}.

We claim that anm −→ b as m→∞. To see this note that for a given ε > 0, b+ ε
is not a lower bound of {bm}, hence there is N such that bN < b + ε. Thus for
m ≥ max{N, 1

ε} we have

b− ε ≤ b− 1

m
≤ bm −

1

m
< anm ≤ bm ≤ bN < b+ ε.

Therefore |anm − b| < ε as desired. �

Example 2.105. R is not homeomorphic to [0, 1], since R is not compact as it is
unbounded.
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Theorem 2.106. The product of finitely many compact spaces is compact.

Proof. It is enough to prove the theorem for the product of two spaces. The
general result follows by induction. Let (xn, yn) be a sequence in the product of
compact spaces X × Y . Then (xn) has a convergent subsequence xnk → x. Now
(ynk) has a convergent subsequence ynki → y. Thus we have

(xnki , ynki )→ (x, y). �

Example 2.107. The product of closed bounded intervals

[a1, b1]× · · · × [an, bn]

is compact in Rn.

Heine-Borel Theorem. A subset of Rn is compact if and only if it is closed and
bounded in the Euclidean metric.

Proof. Any bounded subset is contained in the product of some closed bounded
intervals, which is a compact set. Hence if the subset is closed it is compact. The
converse is proved in Theorem 2.102. �

Bolzano-Weierstrass Theorem. A bounded sequence in Rn has a convergent
subsequence.

Proof. Any bounded sequence is contained in the product of some closed bounded
intervals, which is a compact set. �

Theorem 2.108. A continuous bijection from a compact space into another metric
space is a homeomorphism.

Proof. Let f : X → Y be a continuous bijection, and suppose X is compact.
We have to show that f−1 is continuous. For any closed set C ⊂ X we have
(f−1)−1(C) = f(C). But C is compact, hence f(C) is compact too. Thus f(C) is
closed, and f−1 is continuous. �

Second Proof. Suppose to the contrary that f−1 is not continuous at y ∈ Y .
Then by using the definition of continuity we find ε > 0, so that for each n ∈ N we
can choose yn ∈ Y such that

dY (yn, y) <
1

n
and dX(f−1(yn), f−1(y)) ≥ ε. (∗)

Thus yn → y. Let xn := f−1(yn). Then (xn) has a convergent subsequence xni → x.
Hence we have yni = f(xni) → f(x). But we know that yni → y, so y = f(x) and
therefore x = f−1(y). Thus we get

f−1(yni) = xni −→ x = f−1(y).

However this is in contradiction with (∗). �
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Remark. The above theorem is not true when the domain is not compact. For
example the function

θ 7→ (cos θ, sin θ)

from [0, 2π) to S1, is a continuous bijection which is not a homeomorphism. In fact
there does not exist a homeomorphism between [0, 2π) and S1, as S1 is compact
while [0, 2π) is not.

Exercise 2.109. Show that for p ∈ Q the function x 7→ xp is continuous on its
domain.

Theorem 2.110. Compact metric spaces are complete.

Proof. A Cauchy sequence with a convergent subsequence is convergent. �

Exercise 2.111. Suppose A,B are disjoint subsets of a metric space. Also suppose
A is closed and B is compact. Show the distance between the points of A,B has a
positive lower bound, i.e. there is c > 0 such that d(a, b) ≥ c for every a ∈ A and
b ∈ B.

Solution. To prove this note that otherwise we would have sequences of points
aj ∈ A and bj ∈ B such that |aj − bj | → 0. Then by compactness of B we can
choose a subsequence ajk such that ajk → a ∈ B. As a consequence we have
bjk → a, because

|bjk − a| ≤ |bjk − ajk |+ |ajk − a| → 0.

Hence we get a ∈ A, since A is closed. But this means that A and B have a
nonempty intersection, contrary to our assumption. �

Definition 2.112. Suppose A is a bounded nonempty subset of a metric space X.
Then the diameter of A is

diam(A) := sup{d(x, y) : x, y ∈ A}.

We also set diam(∅) := 0.

Remark. A sequence of sets {An}∞n=1 is called decreasing if An+1 ⊂ An for all n.

Theorem 2.113. Let {An}∞n=1 be a decreasing sequence of nonempty compact
subsets of a metric space X. Then their intersection

⋂
n≥1An is compact and

nonempty.
Furthermore, if in addition we have diam(An)→ 0, then

⋂
n≥1An consists of a

single point.
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Proof. The intersection of An’s is closed since An’s are closed. Now,
⋂
n≥1An is

a closed subset of the compact set A1, hence it is compact. Thus we only need to
show that the intersection is nonempty. Let an be an element of An. Then (an)
is a sequence in the compact set A1. Hence it has a subsequence ank → a. But
ank ∈ Am if nk ≥ m. So a must belong to Am as Am is closed. Therefore a ∈

⋂
Am.

For the second part, suppose a, b ∈
⋂
An. Then a, b ∈ An for all n. Hence

d(a, b) ≤ diam(An)→ 0.

Therefore we must have a = b. �

Remark. The compactness assumption is essential in the above theorem. For
example, the intervals {(0, 1

n)}∞n=1 form a decreasing sequence of subsets of R, but
their intersection is empty. Even if we assume that the sets are closed, but not
compact, we can not deduce that their intersection is nonempty. For example, the
intervals {[n,∞)}∞n=1 form a decreasing sequence of closed subsets of R, but their
intersection is empty.

There is another formulation of compactness that is very useful and important.
Although at first, the importance of this formulation is not as evident as the se-
quential formulation of compactness. We will show that the two formulations of
compactness are equivalent for metric spaces.

Definition 2.114. An open covering of a subset A of a metric space X, is a
family U of open subsets of X such that⋃

U =
⋃
U∈U

U ⊃ A.

A subcovering V of U is a subfamily of U which is itself an open covering of A.

Definition 2.115. A subset A of a metric space X is compact if every open
covering of A has a finite subcovering.

Remark. Note that we do not say that A has a finite open covering. Rather, we
say that from any open covering of A we can choose finitely many open sets whose
union covers A.

Example 2.116. (0, 1) is not compact, since the open covering {( 1
n , 1)}∞n=1 has no

finite subcovering.

Theorem 2.117. A continuous function from a compact metric space into another
metric space is uniformly continuous.
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Proof. Let f : X → Y be continuous, and suppose X is compact. Suppose to
the contrary that f is not uniformly continuous. Then there is ε > 0 such that for
every δ > 0 there are x, y ∈ X so that dX(x, y) < δ but dY (f(x), f(y)) ≥ ε. Set
δ = 1

n , and let xn, yn be the corresponding points. Then (xn) has a convergent
subsequence xni → a, since X is compact. Now (yni) is also a sequence in the
compact space X. So it has a convergent subsequence ynij → b. Then xnij → a.
Also as nij ’s are distinct positive integers and cannot remain bounded we have

0 ≤ dX(xnij , ynij ) <
1

nij
−→
j→∞

0.

Thus due to the continuity of the metric we have dX(a, b) = lim dX(xnij , ynij ) = 0.
Hence a = b. On the other hand we must have f(xnij )→ f(a), and f(ynij )→ f(a),
since f is continuous. Therefore

dY (f(xnij ), f(ynij ))→ dY (f(a), f(a)) = 0.

But this contradicts the fact that dY (f(xnij ), f(ynij )) ≥ ε. �

Second Proof. Let f : X → Y be continuous, and suppose X is compact. We
denote the open balls of X by Br(x), and the open balls of Y by Br(y, Y ). Now
for a given ε > 0 and x ∈ X, there is δx(ε) > 0 such that

dX(y, x) < δx(ε) =⇒ dY (f(y), f(x)) < ε.

This is equivalent to
f(Bδx(ε)(x)) ⊂ Bε(f(x), Y ).

We need to show that we can choose δ independently of x. Consider the open
covering

{B 1
2
δx( ε

2
)(x) : x ∈ X}

of X. It has a finite subcovering

{B 1
2
δx1 ( ε

2
)(x1), . . . , B 1

2
δxk ( ε

2
)(xk)},

for some x1, . . . , xk ∈ X. Set δ := 1
2 mini≤k δxi(

ε
2). Then for any x there is an xi

such that x ∈ B 1
2
δxi (

ε
2

)(xi). Hence Bδ(x) ⊂ Bδxi (
ε
2

)(xi), and f(x) ∈ B ε
2
(f(xi), Y ).

Therefore we have

f(Bδ(x)) ⊂ f(Bδxi (
ε
2

)(xi)) ⊂ B ε
2
(f(xi), Y ) ⊂ Bε(f(x), Y ). �

Theorem 2.118. A compact subset of a metric space is sequentially compact.
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Proof. Let (an) be a sequence in the compact set A. Suppose to the contrary
that no subsequence of (an) converges to a point of A. Then for any x ∈ A there is
rx > 0 such that the set

{n : an ∈ Brx(x)}

is finite. Since otherwise there is a ∈ A such that for all m ∈ N the set {n :
an ∈ B 1

m
(a)} is infinite. Then for each m we can choose anm ∈ B 1

m
(a) such that

nm > nm−1. Now it is easy to see that the subsequence (anm) converges to a,
contrary to our assumption.

Thus for every x ∈ A there is rx > 0 so that {n : an ∈ Brx(x)} is a finite set.
Now the family

{Brx(x) : x ∈ A}

is an open covering of A. Hence it has a finite subcovering, namely

A ⊂ Brx1 (x1) ∪ · · · ∪Brxk (xk),

for some x1, . . . , xk ∈ A. Therefore

N = {n : an ∈ A} ⊂ {n : an ∈ Brxi (xi) i = 1, . . . , k}.

But the right hand side set is a finite set while N is infinite, which is a contradiction.
Consequently (an) must have a convergent subsequence in A, and therefore A is
sequentially compact. �

Definition 2.119. Let U be an open covering of a subset A of a metric space X.
A positive real number λ is called a Lebesgue number for U if for every a ∈ A
there exists U ∈ U such that Bλ(a) ⊂ U .

Remark. The point of this definition is that λ does not depend on a.

Example 2.120. If a set is noncompact, then an open covering need not have a
Lebesgue number even if it is finite. For example {(0, 1)} is an open covering of
(0, 1) that has no positive Lebesgue number.

Lebesgue Number Lemma. Every open covering of a sequentially compact subset
of a metric space has a Lebesgue number.

Proof. Suppose to the contrary that a sequentially compact set A has an open
covering U that has no Lebesgue number. Then for each positive integer n we can
find a point an ∈ A such that no element of U contains B 1

n
(an). Then a subsequence

(ank) converges to some a ∈ A. Now as U covers A, there is U ∈ U such that
a ∈ U . Also as U is open, there is r > 0 such that Br(a) ⊂ U . But for large enough
k we have ank ∈ B r

2
(a), and 1

nk
< r

2 . Thus we have B 1
nk

(ank) ⊂ U , which is a
contradiction. �
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Theorem 2.121. A sequentially compact subset of a metric space is compact.

Proof. Let A be a sequentially compact subset of the metric space X. Let U be
an open covering of A. Suppose to the contrary that U has no finite subcovering.
Let λ be a Lebesgue number for U . Let a1 ∈ A be an arbitrary point. Then there
is U1 ∈ U such that Bλ(a1) ⊂ U1. Since A 6⊂ U1 by our assumption, there is
a2 ∈ A−U1. Choose U2 ∈ U such that Bλ(a2) ⊂ U2. Again note that A 6⊂ U1∪U2.
We continue this way and we choose

an ∈ A− (U1 ∪ · · · ∪ Un−1),

and Un ∈ U such that Bλ(an) ⊂ Un.
Thus we have a sequence (an). Let (ank) be a subsequence converging to a ∈ A.

Then there is a large enough k such that ank ∈ Bλ(a). Therefore a ∈ Bλ(ank) ⊂
Unk . Hence there is r > 0 such that Br(a) ⊂ Unk . But then for large enough l we
must have

anl ∈ Br(a) ⊂ Unk .

This is a contradiction since for l > k we have anl /∈ Unk . �

Remark. Note our crucial use of the Lebesgue number in the above proof. If λ
was dependent on an, then from ank ∈ Bλ(a) we could not deduce a ∈ Unk .

2.7 The Cantor Set

Definition 2.122. Let C0 = [0, 1]. We construct the sets Cn inductively as follows.
To obtain Cn+1 we remove the open middle third of each interval of Cn. Thus we
have

C1 = [0,
1

3
] ∪ [

2

3
, 1] = C0 − (

1

3
,
2

3
)

C2 = [0,
1

9
] ∪ [

2

9
,
1

3
] ∪ [

2

3
,
7

9
] ∪ [

8

9
, 1] = C1 − {(

1

9
,
2

9
) ∪ (

7

9
,
8

9
)}

...

Each Cn is the disjoint union of 2n closed intervals of length 1
3n . Let

C =
⋂
n≥0

Cn.

Then C is called the standard Cantor set.

Definition 2.123. A subset A of a metric space is called totally disconnected
if every connected subset of A has at most one element.
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Example 2.124. Q is totally disconnected (why?), while [0, 1] ∪ [2, 3] is not.

Theorem 2.125. The Cantor set is nonempty, compact, totally disconnected, and
has no isolated point.

Proof. Each Cn is compact and nonempty, and they form a decreasing sequence of
sets. Thus their intersection, i.e. the Cantor set C, is also nonempty and compact.
In particular, note that the endpoints of every interval of each Cn is in C, since
those endpoints were not removed in any step.

Now let x ∈ C. Suppose r > 0 is given. We want to find a point in Br(x) ∩ C
other than x. Let n be large enough so that 1

3n < r. Then as x ∈ Cn, there is an
interval [a, b] ⊂ Cn such that x ∈ [a, b]. Suppose b 6= x. Then |b − x| ≤ |b − a| =
1

3n < r. Hence b ∈ Br(x). But b is an endpoint of an interval of Cn, therefore
b ∈ C. Thus x is a limit point of C.

Finally, suppose A ⊂ C is connected and contains two distinct points x, y. Let
n be large enough so that 1

3n < |y − x|. Then as x, y ∈ Cn, there are intervals
[a, b], [c, d] ⊂ Cn such that x ∈ [a, b] and y ∈ [c, d]. Note that x, y cannot belong to
the same interval of Cn, since the length of each interval in Cn is less than |y − x|.
Now suppose b < c. Let r ∈ (b, c) − C. Then A ∩ [0, r) and A ∩ (r, 1] form a
separation of A, which is a contradiction. �

Remark. Any metric space that has the four properties mentioned in the above
theorem, is actually homeomorphic to the Cantor set.

Theorem 2.126. The interior of the Cantor set is empty. In other words, the
Cantor set contains no nontrivial interval.

Proof. If x ∈ C◦, then (x − r, x + r) ⊂ C for some positive r. So C must
contain an interval. But intervals are connected, while the Cantor set is totally
disconnected. �

Exercise 2.127. Is 1
4 ∈ C? If yes, is it an endpoint of an interval of some Cn?

Theorem 2.128. The Cantor set is uncountable.

Proof. We construct a bijection between C and the set of all infinite sequences
consisting of 0’s and 2’s. The latter set has the cardinality of R. Let x ∈ C. We
will assign a sequence ω1ω2ω3 · · · of 0’s and 2’s, to x. We know that x belongs to
each Cn. Consider n = 1. If x belongs to the left interval of C1, i.e. [0, 1

3 ], we set
ω1 = 0. If x belongs to the right interval of C1, i.e. [2

3 , 1], we set ω1 = 2. Now
suppose we have determined ω1 · · ·ωn. Let [a, b] be one of the 2n intervals of Cn
that contains x. When we construct Cn+1, we remove the open middle third of [a, b]
and we obtain two intervals [a, c1] and [c2, b]. If x belongs to the left subinterval of
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[a, b], i.e. [a, c1], we set ωn+1 = 0. If x belongs to the right subinterval of [a, b], i.e.
[c2, b], we set ωn+1 = 2.

It is easy to see that this assignment is one-to-one. Consider two points x, y ∈ C
with x < y. Note that x, y cannot be in the same interval of Cn for all n, since the
length of those intervals goes to zero. Let n be the largest integer for which x, y
belong to the same interval of Cn. Then ωn+1(x) = 0 while ωn+1(y) = 2.

Finally, we need to show that this assignment is onto. Suppose we have a
sequence ω1ω2ω3 · · · of 0’s and 2’s. Let [a1, b1] be the left or the right interval of C1

according to whether ω1 = 0 or ω1 = 2. Inductively, let [an+1, bn+1] be the left or
the right subinterval of [an, bn] according to whether ωn+1 = 0 or ωn+1 = 2. Note
that [an, bn] is one of the 2n intervals of Cn. Now we have a decreasing sequence of
nonempty compact sets [an, bn], whose diameter, which is 1

3n , goes to zero. Thus
their intersection is a single point, i.e.

⋂
n≥0[an, bn] = {x}. It is easy to see that

the sequence assigned to x is ω1ω2ω3 · · · . �

Remark. We can show that in the above proof we have x =
∑

n≥1
ωn
3n . In other

words, (0.ω1ω2ω3 · · · )3 is a representation of x in base 3. To see this we can easily
prove by induction that an =

∑n
k=1

ωk
3k
. Then as x ∈ [an, bn] and bn − an = 1

3n we
obtain 0 ≤ x−

∑n
k=1

ωk
3k
≤ 1

3n . Now let n→∞ and get the desired.

Remark. Note that a point x is an endpoint of an interval of one of the Cn’s, if and
only if its associated sequence ω1ω2ω3 · · · is constant 0 or constant 2 eventually.

Definition 2.129. A subset A of R has measure zero if for every ε > 0 there
exist countably many intervals (ai, bi) such that A ⊂

⋃
i≥1(ai, bi), and∑

i≥1

bi − ai < ε.

Theorem 2.130. The Cantor set has measure zero.

Proof. Suppose ε > 0 is given. Let n be large enough so that 2n

3n <
ε
2 . Let [ai, bi]

for i = 1, . . . , 2n be the intervals of Cn. Then we have

C ⊂
⋃

(ai −
ε

2n+2
, bi +

ε

2n+2
),

and
∑

[bi + ε
2n+2 − (ai − ε

2n+2 )] = 2n( 1
3n + ε

2n+1 ) < ε. �

2.8 Fundamental Theorem of Algebra

Proposition 2.131. Every complex number has an nth root for any n ∈ N.
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Proof. Let z be a complex number, and suppose z = a + ib where a, b ∈ R. If
z = 0 then 0n = 0. So we assume that z 6= 0. Then we have z = r(cos θ + i sin θ),
where r =

√
a2 + b2 and θ is the unique number in the interval [0, 2π) such that

cos θ = a
r and sin θ = b

r . As shown in Chapter 6 we have

(cosα+ i sinα)n = cos(nα) + i sin(nα).

Hence we have ( n
√
r(cos θ

n + i sin θ
n))n = z. �

Second Proof. We present another proof of this theorem that avoids using
trigonometric functions. As before we can assume that z = a + ib 6= 0, where
a, b ∈ R. We are looking for w ∈ C that satisfies wn = z. First suppose n = 2, and
w = c+ id for some c, d ∈ R. Then we have

c2 − d2 = a, 2cd = b.

If we multiply the first equation with c2 and use the second equation, we obtain
c4 − ac2 − 1

4b
2 = 0. Therefore we get (using a similar equation for d)

c = ±
√

1

2
(a+

√
a2 + b2), d = ±

√
1

2
(−a+

√
a2 + b2).

(The signs of c, d are the same when b ≥ 0, and are different otherwise.) Hence
every complex number has two square roots. By induction on k ∈ N we can show
that every complex number has a 2kth root.
Now suppose n is odd. If u satisfies un = z

|z| then w = n
√
|z|u is an nth root of z.

Hence we can assume that |z| = 1. For s ∈ [0, 2] let ws := 1− s+ i
√

2s− s2 (note
that 2s − s2 ≥ 0 for 0 ≤ s ≤ 2). Then as s goes from 0 to 2, ws moves from 1 to
−1 along the upper half of the unit circle in the complex plane. Let

r := sup{t ∈ [0, 2] : |wns − 1| ≤ |z − 1| for all s ∈ [0, t]}.

Note that t = 0 always belongs to the set, so the supremum exists. Now we claim
that wr or w̄r is an nth root of z. First let us show that |wnr − 1| = |z − 1|.
Due to the continuity we have |wnr − 1| ≤ |z − 1|. Suppose to the contrary that
|wnr − 1| < |z − 1|. But r < 2, since n is odd and we have

|wn2 − 1| = |(−1)n − 1| = 2 ≥ 1 + |z| ≥ |1− z|.

Then again continuity implies that for all small ε we have |wnr+ε−1| < |z−1|, which
contradicts the fact that r is the supremum. Thus we must have |wnr − 1| = |z− 1|.
On the other hand we have |wr| = 1, which implies |wnr | = 1 = |z|.
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We claim that these two equalities imply that wnr = z or w̄nr = z, as desired.
Suppose wnr = c+ id for some c, d ∈ R. Then we have{

c2 + d2 = a2 + b2 = 1,

(c− 1)2 + d2 = (a− 1)2 + b2.

By subtracting these two equations we obtain 2c− 1 = 2a− 1, so c = a. Hence

b = ±
√

1− a2 = ±
√

1− c2 = ±d.

Therefore either wnr = z or w̄nr = wnr = z, and hence z has an nth root. Therefore
every complex number has an nth root when n is odd.

Finally suppose n is an arbitrary positive integer. Then n = 2km where m is
odd. Let u be a complex number that satisfies um = z. Then let w be such that
w2k = u. Hence we have wn = (w2k)m = um = z. �

Fundamental Theorem of Algebra. Every nonconstant polynomial with complex
coefficients has a root in complex numbers.

Proof. (Argand, 1806) Let the polynomial be

p(z) := anz
n + · · ·+ a1z + a0,

with n ≥ 1, and an 6= 0. First note that |p(z)| → +∞ as |z| → +∞. The reason is
that

|p(z)| = |z|n |an +
an−1

z
+ · · ·+ a0

zn
| → +∞× |an| = +∞.

Thus there is R > 0 such that |p(z)| > |p(0)| when |z| > R. Hence the continuous
function |p(z)| assumes its global minimum on the compact set {|z| ≤ R}. Suppose
the minimum occurs at z0, so that

|p(z0)| ≤ |p(z)| for all z ∈ C.

Our goal is to show that p(z0) = 0. Suppose to the contrary that |p(z0)| > 0.
We will find another point z̃0 ∈ C such that |p(z̃0)| < |p(z0)|, and arrive at a
contradiction. Let

q(w) :=
1

p(z0)
p(w + z0) =

an
p(z0)

(w + z0)n + · · ·+ a1

p(z0)
(w + z0) +

a0

p(z0)
.

Note that by binomial expansion, q is a polynomial in w of degree n. Also q(0) = 1.
Thus we have

q(w) = 1 + bkw
k + · · ·+ bnw

n,
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where k is the smallest positive integer for which bk 6= 0. The idea is that as w → 0
the dominant term is wk, and we can make bkwk a negative real number. Let us
make this idea precise.

Let w0 be a kth root of − 1
bk
, that we know exists in C. (This is our crucial use

of complex numbers in this proof.) Then for t ∈ R we have

q(tw0) = 1 + bkt
kwk0 + bk+1t

k+1wk+1
0 + · · ·+ bnt

nwn0

= 1− tk + tk(tbk+1w
k+1
0 + · · ·+ tn−kbnw

n
0 ).

Now note that the expression in the parentheses goes to 0 as t → 0. Let t0 be a
small enough positive number so that the absolute value of the expression in the
parentheses is less than 1

2 . Also assume that t0 < 1. Then we have

|q(t0w0)| ≤ |1− tk0|+
1

2
|tk0| = 1− 1

2
tk0 < 1.

Hence we have
|p(t0w0 + z0)| < |p(z0)|.

This contradiction proves that p(z0) = 0 as desired. �

Theorem 2.132. Let p be a polynomial with complex coefficients that has degree
n ≥ 1. Then there are (not necessarily distinct) complex numbers λ1, . . . , λn, and
c ∈ C− {0}, such that

p(z) = c(z − λ1) · · · (z − λn).

Proof. The proof is by induction on n. For n = 1 the claim holds trivially. Now
suppose it also holds for polynomials of degree n− 1. Then we know that p has a
complex root λ1. Hence there is a polynomial q of degree n− 1 such that

p(z) = (z − λ1)q(z).

Now by the induction hypothesis q has a factorization

q(z) = c(z − λ2) · · · (z − λn).

Thus we get the desired factorization for p. Finally note that if c = 0 then p = 0,
which contradicts the fact that deg p ≥ 1. �

Theorem 2.133. Suppose p : R→ R is a polynomial with odd degree. Then p has
a root in R.



CHAPTER 2. METRIC SPACES 93

Proof. Let
p(x) = anx

n + · · ·+ a0,

where ai ∈ R and an 6= 0. Suppose an > 0, the other case is similar. Then we have

lim
x→+∞

p(x) = lim
x→+∞

xn
(
an +

an−1

x
+ · · ·+ a0

xn
)

= +∞(an + 0 + · · ·+ 0) = +∞.

This means that for large enough x, p(x) is a large positive number. Similarly,
using the fact that p has odd degree, we get limx→−∞ p(x) = −∞. Hence p(x) is
negative for large negative x. Therefore by the intermediate value theorem p(a) = 0
for some a, since we know that p is a continuous function. �



Chapter 3

Limits, Sequences, and Series

3.1 Limits

Definition 3.1. Suppose X,Y are metric spaces, and A ⊂ X. Let a ∈ X be a
limit point of A, and let b ∈ Y . Then given a function f : A→ Y , we say the limit
of f as x approaches a is b, and we write lim

x→a
f(x) = b, if

∀ε > 0 ∃δ > 0 such that ∀x ∈ A
0 < dX(x, a) < δ =⇒ dY (f(x), b) < ε.

Remark. Note that f need not be defined at a.
Notation.
(i) The symbol x→ a can be read “as x approaches a”.
(ii) In this section, we assume thatX,Y, Z are metric spaces containing the points

a, b, c respectively. We also assume that A ⊂ X.

Theorem 3.2. Suppose f : A → Y , and a is a limit point of A. Then we have
limx→a f(x) = b if and only if the function g : A ∪ {a} → Y , defined by

g(x) :=

{
f(x) x 6= a

b x = a,

is continuous at a.

Proof. This is a trivial consequence of the definition of limit and the definition
of continuity. �

Theorem 3.3. Suppose f : A → Y , and a ∈ A is a limit point of A. Then the
function f : A→ Y is continuous at the point a if and only if

lim
x→a

f(x) = f(a).

94
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Proof. This follows immediately from the previous theorem by setting g = f . �

Remark. The above two theorems enable us to deduce most of the theorems in
this section, from the corresponding results about continuous functions.

Definition 3.4. Suppose X,Y are metric spaces, A ⊂ X, and f : A → Y . Then
we define infinite limits and limits at infinity as follows.
(i) Suppose Y = Rm, and a ∈ X is a limit point of A. We say lim

x→a
f(x) =∞ if

∀M > 0 ∃δ > 0 such that ∀x ∈ A
0 < dX(x, a) < δ =⇒ |f(x)| > M.

(ii) Suppose b ∈ Y , X = Rn, and A is unbounded. We say lim
x→∞

f(x) = b if

∀ε > 0 ∃N > 0 such that ∀x ∈ A
|x| > N =⇒ dY (f(x), b) < ε.

(iii) Suppose Y = Rm, X = Rn, and A is unbounded. We say lim
x→∞

f(x) =∞ if

∀M > 0 ∃N > 0 such that ∀x ∈ A
|x| > N =⇒ |f(x)| > M.

Remark. For convenience, we say∞ is a limit point of A ⊂ Rn, if A is unbounded.
Note that this happens if and only if A has elements with arbitrarily large norms.

Proposition 3.5. Let R̂n be Rn ∪ {∞}, where ∞ is an object different from all
elements of Rn. Let

d̂(x, y) :=

∣∣∣∣ 1

1 + |x|2
− 1

1 + |y|2

∣∣∣∣+

∣∣∣∣ x

1 + |x|2
− y

1 + |y|2

∣∣∣∣,
d̂(x,∞) = d̂(∞, x) :=

1 + |x|
1 + |x|2

, d̂(∞,∞) := 0,

for x, y ∈ Rn. Then d̂ is a metric on R̂n.

Remark. ∞ is called infinity. In contrast, the elements of Rn are called finite.

Proof. First note that the denominators in the definition of d̂ are all nonzero,
so d̂ is defined at every two points. It is also obvious that d̂ is nonnegative and
symmetric, and d̂(z, z) = 0 for all z ∈ R̂n. Now note that d̂(x,∞) > 0 for all
x ∈ Rn. Suppose d̂(x, y) = 0 for some x, y ∈ Rn. Then the two terms in the
definition of d̂(x, y) are both zero. Hence |x| = |y|, and therefore x = y. Thus d̂ is
positive definite too.
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It only remains to show that d̂ satisfies the triangle inequality. For x, y, z ∈ Rn,
we can add and subtract 1

1+|z|2 , and
z

1+|z|2 , in appropriate places, to get

d̂(x, y) ≤ d̂(x, z) + d̂(z, y).

Now when z =∞ we have

d̂(x, y) ≤ d̂(x,∞) + d̂(∞, y),

since |X − Y | ≤ |X|+ |Y | for X,Y in a Euclidean space. When one of the x, y, for
example x, is ∞, we have

d̂(z, y) ≥ 1

1 + |y|2
− 1

1 + |z|2
+

|y|
1 + |y|2

− |z|
1 + |z|2

= d̂(∞, y)− d̂(∞, z),

since |X−Y | ≥ |Y |− |X| for X,Y in a Euclidean space. Finally, when at least two
of the x, y, z are ∞, the triangle inequality holds trivially. �

Remark. R̂n is actually a compact metric space. It is called the one-point com-
pactification of Rn. Also, the metric d̂ is induced by the the so-called stereographic
projection from the sphere Sn onto Rn.

Theorem 3.6. Suppose X,Y are metric spaces, A ⊂ X, and f : A→ Y .
(i) Suppose Y = Rm, and a ∈ X is a limit point of A. Let the function g : A→
R̂m be equal to f at every point. Then we have:
limx→a f(x) = ∞ if and only if limx→a g(x) = ∞ as a function between two
metric spaces.

(ii) Suppose b ∈ Y , X = Rn, and A is unbounded. Let Â be the subset of R̂n that
is equal to A. Let the function ĝ : Â→ Y be equal to f at every point. Then
we have:
limx→∞ f(x) = b if and only if limx→∞ ĝ(x) = b as a function between two
metric spaces.

(iii) Suppose Y = Rm, X = Rn, and A is unbounded. Let Â be the subset of R̂n
that is equal to A. Let the function f̂ : Â→ R̂m be equal to f at every point.
Then we have:
limx→∞ f(x) =∞ if and only if limx→∞ f̂(x) =∞ as a function between two
metric spaces.

Proof. We will only prove (iii). The other two cases are similar. Note that for
all x ∈ A = Â we have f(x) = f̂(x), so we will denote these values simply by f(x).



CHAPTER 3. LIMITS, SEQUENCES, AND SERIES 97

First suppose A is unbounded, and we have limx→∞ f(x) =∞. Then ∞ is a limit
point of Â. Because if ak ∈ A satisfies |ak| > k, then we have

d̂(ak,∞) =
1 + |ak|
1 + |ak|2

≤ 1

|ak|2
+

1

|ak|
<

1

k2
+

1

k
≤ 2

k
−→
k→∞

0.

Now for a given ε > 0, we want to find δ > 0, such that for all x ∈ Â = A with
0 < d̂(x,∞) < δ we have d̂(f(x),∞) < ε. Suppose ε < 1. We know that there is
N > 0, such that for all x ∈ A with |x| > N we have y := |f(x)| > 2

ε . Note that
y > 1, so y + 1 < 2y. Then we have

1 + y2

1 + y
>
y2

2y
=
y

2
>

1

ε
=⇒ d̂(f(x),∞) =

1 + y

1 + y2
< ε.

On the other hand, we can assume that N > 1. Then we have

1 + |x|2

1 + |x|
>
|x|2

2|x|
=
|x|
2
>
N

2
=⇒ 0 < d̂(x,∞) <

2

N
.

Hence we can take δ to be 2
N .

Conversely, suppose∞ is a limit point of Â, and limx→∞ f̂(x) =∞ as a function
between two metric spaces. First note that if ak ∈ Â satisfies d̂(ak,∞) < 1

k , then
we have

1 + |ak|2 ≥
1 + |ak|2

1 + |ak|
> k =⇒ |ak| >

√
k − 1.

Then for k = L2 + 1 we have |ak| > L. Hence A is unbounded. Now for a given
M > 0, we want to find N > 0, such that for all x ∈ A with |x| > N we have
|f(x)| > M . We know that there is δ > 0, such that for all x ∈ Â = A with
0 < d̂(x,∞) < δ we have d̂(f(x),∞) < 1

1+M2 . Then we have

1 + |f(x)|2 ≥ 1 + |f(x)|2

1 + |f(x)|
> 1 +M2 =⇒ |f(x)| > M.

As before, we can show that if |x| > N > max{1, 2
δ}, then 0 < d̂(x,∞) < 2

N < δ.
So we get the desired. �

Remark. The significance of the above theorem is that it allows us to deal with
finite limits, limits at infinity, and infinite limits, simultaneously. In particular,
in all of the following theorems a can be ∞ too.

Theorem 3.7. Suppose f : A → Y , and a is a limit point of A. If limx→a f(x)
exists, it is unique.
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Proof. Suppose to the contrary that there are two limits b1, b2. Then for x ∈ A
near a we must have

dY (f(x), b1) <
1

2
dY (b1, b2), dY (f(x), b2) <

1

2
dY (b1, b2).

But this is in contradiction with the triangle inequality for dY . Note that there is
at least one x ∈ A close enough to a, so that f(x) is close enough to limx→a f(x).
Because a is a limit point of A. �

Definition 3.8. Suppose X,Y are metric spaces, A ⊂ X, and f : A → Y . Also
suppose a is a limit point of A.
(i) When X = R and a ∈ R, we use the notations

lim
x→a+

f(x), lim
x→a−

f(x),

to denote the limits (if they exist) as x → a of the functions f |A∩(a,∞), and
f |A∩(−∞,a), respectively. We call these limits the right-hand limit, and the
left-hand limit, respectively. We also refer to these limits as one-sided
limits.

(ii) When X = R and a =∞, i.e. for limits at infinity, we use the notations

lim
x→+∞

f(x), lim
x→−∞

f(x),

to denote the limits at infinity (if they exist) of the functions f |A∩(0,∞), and
f |A∩(−∞,0), respectively.

(iii) Finally suppose Y = R, and limx→a f(x) =∞. Then we say

lim
x→a

f(x) = +∞, or lim
x→a

f(x) = −∞,

if f is respectively positive, or negative, on A∩U where U is a neighborhood
of a. Note that here we can also let a be ∞. In addition, we can also replace
x→ a with x→ a±, or x→ ±∞.

Remark. We can easily see that limx→a f(x) = +∞ if and only if for everyM > 0,
we can take x to be close enough to a so that f(x) > M . Similarly, limx→a f(x) =
−∞ if and only if for every M > 0, we can take x to be close enough to a so that
f(x) < −M .

Exercise 3.9. Consider the set of extended real numbers, R ∪ {±∞}. Let

d̃(x, y) :=

∣∣∣∣ x

1 + |x|
− y

1 + |y|

∣∣∣∣, d̃(+∞,−∞) := 2,

d̃(x,+∞) := 1− x

1 + |x|
, d̃(x,−∞) := 1 +

x

1 + |x|
,

for x, y ∈ R.
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(i) Show that d̃ is a metric on R ∪ {±∞}.
(ii) Show that a function f into R has limit ±∞, if and only if when we consider

f as a function into R ∪ {±∞}, it has the limit ±∞, as a function between
two metric spaces.

(iii) Show that a function g defined on a subset of R has limit as x→ ±∞, if and
only if when we consider g as a function defined on a subset of R∪ {±∞}, it
has the same limit as x→ ±∞, as a function between two metric spaces.

Definition 3.10. We say a sequence (an) in Rm diverges to infinity, and we
write lim an =∞, or an →∞, if as a sequence in R̂m, (an) converges to ∞.

Suppose m = 1 and an → ∞. We say an → +∞, if there is N ∈ N such that
for n ≥ N we have an > 0. We also say an → −∞, if there is N ∈ N such that for
n ≥ N we have an < 0.

Proposition 3.11. Suppose A ⊂ R, and f : A→ Y . Also suppose a ∈ R is a limit
point of both A ∩ (−∞, a) and A ∩ (a,∞). Then

lim
x→a

f(x) = b ⇐⇒ lim
x→a−

f(x) = b = lim
x→a+

f(x).

Proof. First note that a is obviously a limit point of A too. Suppose that both
one-sided limits equal b. Then for a given ε > 0 there are δ1, δ2 > 0 such that for
x ∈ A we have

0 < |x− a| < δ1, x < a =⇒ dY (f(x), b) < ε,

0 < |x− a| < δ2, x > a =⇒ dY (f(x), b) < ε. (∗)

Hence for δ = min{δ1, δ2} and x ∈ A we have

0 < |x− a| < δ =⇒ dY (f(x), b) < ε. (∗∗)

Thus limx→a f(x) = b. Conversely, if for a given ε > 0 there is δ > 0 such that
(∗∗) holds for all x ∈ A, then for δ1, δ2 = δ both implications of (∗) also hold for
all x ∈ A. Therefore both one-sided limits exist and are equal to b. �

Theorem 3.12. Suppose f : A → Y , and a is a limit point of A. Then we have
limx→a f(x) = b if and only if for any sequence {an} ⊂ A−{a}, where an → a, we
have f(an)→ b. Here, a, b can be ∞ or ±∞ too.

Proof. Suppose lim
x→a

f(x) = b. We know that

g(x) :=

{
f(x) x 6= a

b x = a,
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is continuous at a. Hence f(an) = g(an)→ g(a) = b. Note that it is crucial that the
sequence does not intersect {a}, since if f(a) 6= b then f(an) can have a constant
subsequence that does not converge to b.

On the other hand, suppose f(an)→ b for any sequence {an} ⊂ A−{a}, where
an → a. It is enough to show that g is continuous at a. Suppose (cn) is a sequence
in A ∪ {a} that converges to a. Then we have

g(cn) =

{
f(cn) cn 6= a,

b cn = a.

Now for large enough n, f(cn) is close to b when cn 6= a. Also b is close to b when
cn = a. Thus g(cn)→ b.

For the infinite limits, the only case that needs special consideration is when
b = ±∞. Because all the other types of infinite limits and limits at infinity, can
be considered as limits of functions between two metric spaces. Suppose that for
example b = +∞, the other case is similar. Then limx→a f(x) =∞, and f(x) > 0
on A ∩ U where U is a neighborhood of a. Let {an} ⊂ A − {a} be a sequence
such that an → a. Then by the previous part we know that f(an) → ∞. Also,
f(an) > 0 for large n, since an ∈ U∩A for large enough n. Conversely, suppose that
f(an) → ∞ and f(an) > 0 for large enough n, for any sequence {an} ⊂ A − {a}
such that an → a. Then we know that limx→a f(x) =∞. So we only need to show
that f > 0 on a neighborhood of a in A. If this does not happen, then there is
an ∈ B 1

n
(a) ∩ A such that f(an) < 0. But then we would have an → a, which is a

contradiction. �

Remark. In the above theorem, the assumption {an} ⊂ A− {a} is essential. For
example let

F (x) :=

{
0 x 6= 0

1 x = 0.

Then limx→0 F (x) = 0. But for the constant sequence an = 0 we have F (an) =
F (0) = 1 6→ 0.

Theorem 3.13. Suppose f : A→ Y , and a is a limit point of A. Then limx→a f(x)
is in the closure of the image of f .

Proof. Since a is a limit point of A, there is a sequence (an) of distinct points
of A that converges to a. Thus an belongs to A− {a} for large enough n, since at
most one them can be equal to a. Then by Theorem 3.12, limx→a f(x) is the limit
of the sequence (f(an)). Hence it belongs to f(A). �

Theorem 3.14. Suppose f : A → Y , and a is a limit point of A. Let b =
limx→a f(x), and suppose b ∈ U , where U ⊂ Y is an open set. Then there is
an open set V containing a, such that f(x) ∈ U when x ∈ A ∩ V .
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Proof. In the definition of limit, let ε be small enough so that Bε(b) ⊂ U , and
consider the corresponding δ. Then V = Bδ(a) has the desired property. �

Remark. The most useful case of the above theorem is when the range is R, and U
is the set of positive or negative numbers. Then we conclude that f is respectively
positive or negative, on the intersection of A and an open neighborhood of a.

Theorem 3.15. Suppose Y1, . . . , Yk are metric spaces, and fi : A → Yi. Also
suppose a is a limit point of A. Let

f = (f1, . . . , fk) : A→ Y1 × · · · × Yk.

Then limx→a f(x) = (b1, . . . , bk) if and only if limx→a fi(x) = bi for each i.

Proof. Apply Theorem 3.2, and the corresponding result for continuous func-
tions. �

Theorem 3.16. Suppose f : A → Y , and a is a limit point of A. Let b =
limx→a f(x), and suppose V ⊂ Y is a neighborhood of b. Also suppose F : V → Z
is continuous at b. Then we have

lim
x→a

F (f(x)) = F
(

lim
x→a

f(x)
)
.

Proof. We know that

g(x) :=

{
f(x) x 6= a

b x = a

is continuous at a. Then F ◦ g is continuous at a, i.e.

F (g(x)) =

{
F (f(x)) x 6= a

F (b) x = a

is continuous at a. Hence
lim
x→a

F (f(x)) = F (b). �

Theorem 3.17. Suppose f : A → Y , and a is a limit point of A. Let b =
limx→a f(x), and suppose for B ⊂ Y we have

f(A− {a}) ⊂ B − {b}.

Also suppose F : B → Z, and limy→b F (y) = c. Then limx→a F (f(x)) = c. Here,
a, b, c can be ∞ or ±∞ too.
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Proof. Let (an) be a sequence in A−{a} such that an → a. Then f(an)→ b by
Theorem 3.12, and f(an) ∈ B − {b} by assumption. Hence again by Theorem 3.12
we have F (f(an))→ c, and consequently limx→a F (f(x)) = c. �

Remark. In the above theorem, the assumption f(A−{a}) ⊂ B−{b} is essential.
For example limx→0 x sin( 1

x) = 0, and for

F (y) :=

{
y y 6= 0

1 y = 0

we have limy→0 F (y) = 0. But limx→0 F (x sin( 1
x)) does not exist, since for n ∈ N

we have

F
( 1

nπ
sin(nπ)

)
= F (0) = 1,

F
( 2

(2n+ 1)π
sin
((2n+ 1)π

2

))
=

2

(2n+ 1)π
→ 0.

Remark. The above theorem allows us to change the variable when we compute a
limit. A particular interesting case is when f : (0, 1)→ (1,+∞) maps x to y = 1

x .
Then for F : (1,+∞)→ R we have

lim
y→+∞

F (y) = c ⇐⇒ lim
x→0+

F
(1

x

)
= c.

For the ⇐= implication we have to use f−1 : (1,+∞) → (0, 1) that maps y to
x = 1

y .

Theorem 3.18. Let a be a limit point of A, and let c1, c2 ∈ R. Suppose F,G :
A→ Rm and h : A→ R have finite limits at a. Then

(i) lim
x→a

(
c1F (x) + c2G(x)

)
= c1 lim

x→a
F (x) + c2 lim

x→a
G(x).

(ii) lim
x→a

(
h(x)F (x)

)
=
(

lim
x→a

h(x)
)(

lim
x→a

F (x)
)
.

(iii) If limx→a h(x) 6= 0 then h is nonzero on a neighborhood of a, and we have

lim
x→a

1

h(x)
=

1

lim
x→a

h(x)
.

Proof. Apply Theorem 3.2, and the corresponding results for continuous func-
tions. Note that if the limit of the real-valued function h is positive, or negative,
then h is respectively positive, or negative, on a neighborhood of a. �
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Theorem 3.19. Let a be a limit point of A. Suppose one of the two functions
F : A → Rm and h : A → R is bounded, and the other one has limit 0 as x → a.
Then limx→a h(x)F (x) = 0.

Proof. For x close enough to a, one of the |F (x)| or |h(x)| is less than some
constant M > 0, and the other one can be made less than ε

M , for any given ε > 0.
Hence |h(x)F (x)| < ε. �

Theorem 3.20. Suppose f : A→ Rm, and a is a limit point of A. Then we have

(i) lim
x→a

f(x) = 0 ⇐⇒ lim
x→a
|f(x)| = 0.

(ii) lim
x→a

f(x) =∞ ⇐⇒ lim
x→a
|f(x)| = +∞.

Proof. Both claims can be proved easily from the definition. For (i) we can use
|f(x)− 0| = |f(x)| =

∣∣|f(x)| − 0
∣∣. And for (ii) we can use |f(x)| =

∣∣|f(x)|
∣∣. �

Theorem 3.21. For the function 1
|x| : Rn − {0} → R we have

lim
x→∞

1

|x|
= 0, lim

x→0

1

|x|
= +∞.

And for the function 1
x : R− {0} → R we have

lim
x→−∞

1

x
= lim

x→+∞

1

x
= 0, lim

x→0+

1

x
= +∞, lim

x→0−

1

x
= −∞.

Proof. Just note that for N > 0 we have 0 < |x| < 1
N if and only if 1

|x| > N .
The case of 1

x is similar. �

Theorem 3.22. Let a be a limit point of A. Suppose f, g, h : A→ R, and we have
f ≤ g ≤ h on U ∩A, where U is a neighborhood of a.
(i) If f, g have finite limits at a, then we have

lim
x→a

f(x) ≤ lim
x→a

g(x).

(ii) (Squeeze Theorem) Let b ∈ R be a finite number. Then

lim
x→a

f(x) = b = lim
x→a

h(x) =⇒ lim
x→a

g(x) = b.

(iii) limx→a f(x) = +∞ implies limx→a g(x) = +∞.
(iv) limx→a h(x) = −∞ implies limx→a g(x) = −∞.
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Proof. (i) We know that g−f ≥ 0. Since [0,∞) is closed, it contains the closure
of the image of g − f . Hence we have

lim
x→a

g(x)− lim
x→a

f(x) = lim
x→a

(
g(x)− f(x)

)
∈ [0,∞).

(ii) Suppose ε > 0 is given. Then for x close enough to a we have

−ε < f(x)− b ≤ g(x)− b ≤ h(x)− b < ε.

(iii) Let M > 0 be given. Then for x close enough to a we have g(x) ≥ f(x) >
M .

(iv) Suppose M > 0 is a given positive number. Then for x close enough to a
we have g(x) ≤ h(x) < −M . �

Theorem 3.23. Let a be a limit point of A. Suppose f, g : A→ R.
(i) We have

lim
x→a

f(x) = +∞ ⇐⇒ lim
x→a

(−f(x)) = −∞.

(ii) If limx→a f(x) = +∞, and limx→a g(x) is either a finite number or +∞, then

lim
x→a

(
f(x) + g(x)

)
= +∞.

(iii) If limx→a f(x) = +∞, and limx→a g(x) is either a positive finite number or
+∞, then

lim
x→a

(
f(x)g(x)

)
= +∞.

(iv) If limx→a f(x) =∞ then f is nonzero on a neighborhood of a, and we have

lim
x→a

1

f(x)
= 0.

(v) If limx→a f(x) = 0, and f is nonzero on a neighborhood of a, then we have

lim
x→a

1

f(x)
=∞.

Proof. (i) Just note that for M > 0 we have f(x) > M if and only if −f(x) <
−M .

(ii) Note that on a neighborhood of a, g is bounded below. Since otherwise we
would get a sequence an → a such that an 6= a, and g(an) → −∞. But this is in
contradiction with our assumption due to the Theorem 3.12. So g > −C for some
C > 0. Thus f(x) + g(x) > M if f(x) > M + C.

(iii) Note that on a neighborhood of a, g > c for some c > 0. This is an easy
consequence of the definition of limit. Hence we have f(x)g(x) > M if f(x) > M

c .
(iv) Note that as an easy consequence of the definition of limit, f is nonzero on

a neighborhood of a. Now we have | 1
f(x) | < ε if |f(x)| > 1

ε .
(v) We have |f(x)| > M if | 1

f(x) | <
1
M . �
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Remark. In the above theorem, if we combine part (i) with parts (ii) and (iii), we
obtain
(i) If limx→a f(x) = −∞, and limx→a g(x) is either a finite number or −∞, then

lim
x→a

(
f(x) + g(x)

)
= −∞.

(ii) If limx→a f(x) = +∞, and limx→a g(x) is either a negative finite number or
−∞, then

lim
x→a

(
f(x)g(x)

)
= −∞.

(iii) If limx→a f(x) = −∞, and limx→a g(x) is either a positive finite number or
+∞, then

lim
x→a

(
f(x)g(x)

)
= −∞.

(iv) If limx→a f(x) = −∞, and limx→a g(x) is either a negative finite number or
−∞, then

lim
x→a

(
f(x)g(x)

)
= +∞.

In addition we have
(v) If limx→a f(x) = 0, and f is nonzero on a neighborhood of a, and limx→a g(x)

is either a nonzero finite number or ∞, then

lim
x→a

g(x)

f(x)
=∞.

Because limx→a
1
|f(x)| = +∞, and limx→a |g(x)| is either a positive finite num-

ber or +∞, hence limx→a
∣∣ g(x)
f(x)

∣∣ = +∞.
(vi) If limx→a f(x) =∞, and limx→a g(x) is a finite number, then

lim
x→a

g(x)

f(x)
= lim

x→a

1

f(x)
· lim
x→a

g(x) = 0 · lim
x→a

g(x) = 0.

Thus we can compute the limit of all combinations of functions with finite or infinite
limits, except for the famous indeterminate forms

0

0
,
∞
∞
, 0 · ∞, ∞−∞.

3.2 Sequences

Proposition 3.24. Let N̂ be N ∪ {∞}, where ∞ is an object different from all
elements of N. Let

d̂(m,n) :=

∣∣∣∣ 1

m
− 1

n

∣∣∣∣, d̂(m,∞) = d̂(∞,m) :=
1

m
, d̂(∞,∞) := 0,

for m,n ∈ N. Then d̂ is a metric on N̂.
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Remark. ∞ is called infinity. In contrast, the elements of N are called finite.

Proof. It is obvious that d̂ is symmetric and positive definite. So we only have
to show that d̂ satisfies the triangle inequality. For m,n, k ∈ N we have

d̂(m,n) =

∣∣∣∣ 1

m
− 1

n

∣∣∣∣ ≤ ∣∣∣∣ 1

m
− 1

k

∣∣∣∣+

∣∣∣∣1k − 1

n

∣∣∣∣ = d̂(m, k) + d̂(k, n).

Now when k =∞ we have

d̂(m,n) =

∣∣∣∣ 1

m
− 1

n

∣∣∣∣ ≤ 1

m
+

1

n
= d̂(m,∞) + d̂(∞,m).

When one of the m,n, for example m, is ∞, we have

d̂(∞, n)− d̂(∞, k) =
1

n
− 1

k
≤
∣∣∣∣1k − 1

n

∣∣∣∣ = d̂(k, n).

Finally, when at least two of them,n, k are∞, the triangle inequality holds trivially.
�

Theorem 3.25. Let (an) be a sequence in a metric space X. Let f : N → X be
the function that defines the sequence, i.e. f(n) = an. Then lim an = a if and only
if limn→∞ f(n) = a as a function between two metric spaces, when we regard N as
a subset of N̂.

Proof. First note that∞ is a limit point of N ⊂ N̂, since limn =∞. Now suppose
lim an = a. Then for any ε > 0 there is N ∈ N, such that for all n ≥ N we have
dX(an, a) < ε. We want to show that limn→∞ f(n) = a, i.e. for any given ε > 0 we
want to find δ > 0, such that if d̂(n,∞) < δ then dX(f(n), a) = dX(an, a) < ε. But

d̂(n,∞) =
1

n
< δ ⇐⇒ n >

1

δ
.

So it suffices to have 1
δ ≥ N , or equivalently δ ≤ 1

N . Conversely suppose that
limn→∞ f(n) = a. This time we want to find N . It is obvious from the above that
it suffices to take N > 1

δ . �

Remark. The above theorem enables us to apply all the results about limits of
functions, to the limits of sequences.

Theorem 3.26. Suppose (an), (bn) are convergent sequences in Rm, and (cn) is a
convergent sequence in R. Then
(i) lim(an + bn) = lim an + lim bn.
(ii) lim cnan = lim cn lim an.
(iii) If lim cn 6= 0 then cn 6= 0 for large n, and we have lim 1

cn
= 1

lim cn
.
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Proof. This is an obvious consequence of the corresponding result about limits
of functions. For part (iii) note that any neighborhood of ∞ ∈ N̂, contains an
open ball around ∞, and open balls around ∞ are of the form {n > N} for some
N ∈ N. �

Remark. Remember that we say a sequence (an) in Rm diverges to infinity,
and we write lim an =∞, or an →∞, if as a sequence in R̂m, (an) converges to∞.

Also when m = 1 and an →∞, we say an → +∞, if there is N ∈ N such that
for n ≥ N we have an > 0. Similarly, when m = 1 and an →∞, we say an → −∞,
if there is N ∈ N such that for n ≥ N we have an < 0.

By using the fact that sequences that diverge to infinity are special cases of
functions that have infinite limit, we obtain the following result for a sequence (an)
in Rm.
(i) lim an =∞ if and only if

∀M > 0 ∃N ∈ N such that ∀n ≥ N we have |an| > M.

Also, when m = 1 we have
(ii) lim an = +∞ if and only if

∀M > 0 ∃N ∈ N such that ∀n ≥ N we have an > M.

(iii) lim an = −∞ if and only if

∀M > 0 ∃N ∈ N such that ∀n ≥ N we have an < −M.

Theorem 3.27. Let (an), (bn), and (cn) be sequences in R. Suppose that there is
N ∈ N such that for n ≥ N we have an ≤ bn ≤ cn.
(i) If (an), (bn) converge, then lim an ≤ lim bn.
(ii) (Squeeze Theorem) Suppose (an), (cn) are convergent, and

lim an = b = lim cn

for some b ∈ R. Then (bn) is also convergent, and we have lim bn = b.
(iii) lim an = +∞ implies lim bn = +∞.
(iv) lim cn = −∞ implies lim bn = −∞.

Proof. This is just a special case of Theorem 3.22. Note that any neighborhood
of ∞ ∈ N̂, contains an open ball around ∞, and open balls around ∞ are of the
form {n > N − 1} for some N ∈ N. �

Theorem 3.28. An increasing sequence in R is convergent if and only if it is
bounded above, and in this case the limit of the sequence is its supremum. Similarly,
a decreasing sequence in R is convergent if and only if it is bounded below, and in
this case the limit of the sequence is its infimum.
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Proof. First note that if a sequence converges, its terms are eventually in a
neighborhood of its limit, therefore it is bounded. Now for the converse, let (an)
be a bounded above increasing sequence in R. Let a := sup{an}. For any ε > 0
we know that a− ε is not an upper bound of {an}. Therefore there is N such that
a− ε < aN . Hence by monotonicity, for all n ≥ N we have

a− ε < aN ≤ an ≤ a < a+ ε.

Thus an → a. The case of decreasing sequences is similar. �

Theorem 3.29. An unbounded increasing sequence in R diverges to +∞, which is
also its supremum. And, an unbounded decreasing sequence in R diverges to −∞,
which is also its infimum.

Proof. Let (an) be an unbounded increasing sequence. For any M > 0, we know
that M is not an upper bound of {an}. Therefore there is N such that M < aN .
Hence by monotonicity, for all n ≥ N we have M < aN ≤ an. Thus an → +∞.
Note that we also have sup{an} = +∞, since {an} is not bounded above. The case
of decreasing sequences is similar. �

Theorem 3.30. For r ∈ R we have

lim
n→∞

rn =

{
0 |r| < 1,

∞ |r| > 1.

Proof. If |r| > 1, then b := |r| − 1 > 0. By an easy induction we can show that
for n > 1 we have

|r|n = (1 + b)n > 1 + nb.

Therefore |rn| = |r|n > M , for n > M−1
b . Therefore rn →∞.

If 0 < |r| < 1, then 1
|r| > 1. Thus 1

|r|n → ∞. Therefore for any given ε > 0,
there is N ∈ N such that for n ≥ N we have 1

|r|n > 1
ε . So for n ≥ N we have

|rn| = |r|n < ε. Hence rn → 0. �

Theorem 3.31. For rational p > 0, and n ∈ N, we have limn→∞
1
np = 0.

Proof. Suppose p = m
k . Then we have np = ( k

√
n)m. Hence it suffices to show

that
lim
n→∞

1
k
√
n

= 0,

for k ∈ N. Take N > (1
ε )
k by the Archimedean property of real numbers. Then for

n ≥ N we have 0 < 1
k√n < ε, since the root function is strictly increasing. �
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Theorem 3.32. For r > 0 we have limn→∞ n
√
r = 1. Also for n ∈ N we have

limn→∞ n
√
n = 1.

Proof. When r > 1 we have n
√
r > n

√
1 = 1. Let b := n

√
r − 1 > 0. By binomial

theorem for n > 1 we have

r = ( n
√
r)n = (1 + b)n > nb = n( n

√
r − 1).

Therefore 0 < n
√
r−1 < r

n . Hence we get the desired result by the squeeze theorem.
When 0 < r < 1, we have 1

r > 1. Thus

n
√
r =

1

n

√
1
r

−→
n→∞

1

1
= 1.

For the second limit let c := n
√
n− 1 > 0. Then by binomial theorem for n > 1

we have

n = ( n
√
n)n = (1 + c)n >

n(n− 1)

2
c2 =

n(n− 1)

2
( n
√
n− 1)2.

Hence we get 0 < n
√
n− 1 <

√
2

n−1 . Thus we get the desired result by the squeeze
theorem. �

3.3 Lim sup and Lim inf

Definition 3.33. Suppose (an) is a sequence in R. If (an) is bounded above we
define

lim sup an := lim
n→∞

sup
k≥n

ak,

and if it is not bounded above we define lim sup an := +∞. Similarly

lim inf an := lim
n→∞

inf
k≥n

ak,

when (an) is bounded below, otherwise lim inf an := −∞.

Remark. Note that we require the boundedness in the definition, in order to make
sure that the supremums and infimums are finite numbers. Also note that the
sequences supk≥n ak, and infk≥n ak, are respectively decreasing, and increasing.
Therefore by Theorems 3.28, and 3.29, the above limits exist, and we have

lim sup an = inf
n≥1

sup
k≥n

ak, lim inf an = sup
n≥1

inf
k≥n

ak.

Furthermore, it is obvious that we always have

lim inf an ≤ lim sup an.
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Theorem 3.34. For a sequence (an) in R, lim an = a if and only if

lim sup an = a = lim inf an.

Here a can be ±∞ too.

Proof. Let cn = supk≥n ak and bn = infk≥n ak. Then bn ≤ an ≤ cn for all n.
Therefore if lim sup an = a = lim inf an then both (bn), (cn) converge to a, and so
does (an). Note that for infinite limits we only need one of the inequalities.

Now assume lim an = a and a is finite. Then for a given ε > 0 there is N ∈ N
such that for n ≥ N we have a− ε

2 < an < a+ ε
2 . Therefore we have

a− ε < a− ε

2
≤ bn ≤ cn ≤ a+

ε

2
< a+ ε,

for n ≥ N . Hence bn, cn → a, as desired.
If a = +∞, then lim sup an is +∞ by definition. For lim inf an note that for

large enough n we have an > M + 1, which implies bn ≥ M + 1 > M . Thus
lim inf an is also +∞, since M was arbitrary. The case of a = −∞ is similar. �

Theorem 3.35. Suppose (an) is a sequence in R. Then it has subsequences con-
verging to lim sup an, and to lim inf an. Furthermore, if a subsequence ani → a we
have

lim inf an ≤ a ≤ lim sup an.

Proof. First suppose (an) is bounded above. Let us find a subsequence amj →
lim sup an. Suppose we have chosen am1 , . . . , amk . Then we choose amk+1

with
mk+1 > mk, so that (

sup
l>mk

al
)
− 1

k + 1
< amk+1

≤
(

sup
l>mk

al
)
.

Because (supl>mk al) −
1

k+1 is not an upper bound for the set {an : n > mk}.
Therefore by the squeeze theorem, (amj ) converges to lim sup an, since supl>mk al
converges to lim sup an as k →∞. Note that when lim sup an = −∞, we only need
one of the inequalities.

Next suppose (an) is not bounded above, so that lim sup an = +∞. Then for
any n ∈ N there is amn such that amn > n. We can also choose amn in a way
that mn+1 > mn. Because {ak}k>mn cannot be bounded above, since otherwise
{ak}k≥1 would have been bounded above. Hence (amn) is a subsequence of (an)
that converges to +∞, as desired. The case of lim inf an is similar.

Now suppose ani → a. If one of the lim sup an or lim inf an is infinite, then the
required inequality holds trivially. So suppose (an) is bounded. Then we have

inf
k≥ni

ak ≤ ani ≤ sup
k≥ni

ak.
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This implies the desired inequality, noting that the subsequences of a convergent
sequence converge to the same limit as the original sequence. �

Remark. Let (an) be a sequence in R. We know that the set of all subsequential
limits of (an), i.e. the limits of all subsequences of (an), is a closed set. By the
above theorem the supremum of this closed set is lim sup an, and its infimum is
lim inf an.

3.4 Series

Definition 3.36. Suppose (an) is a sequence in Rm. The series
∑∞

n=1 an is the
sequence of partial sums Sk =

∑k
n=1 an. If (Sk) converges, or diverges to infinity,

we denote its limit by the same notation
∑∞

n=1 an.

Remark. We may also denote a series or its limit by
∑

n≥1 an.

Remark. Note that a series in C is just a series in R2. So, all of the following
theorems also apply to series in C, except those theorems that are only valid for
series in R.

Theorem 3.37. Suppose
∑∞

n=1 an is a series in Rm. If
∑∞

n=1 an converges, then
we have lim an = 0.

Proof. Let S be the limit of the series, and let Sn be the nth partial sum of the
series. Then an = Sn − Sn−1 → S − S = 0 as n→∞. �

Example 3.38. For r ∈ R with |r| < 1 we have
∞∑
n=0

rn =
1

1− r
.

Since
∑k

n=0 r
n = 1−rk+1

1−r → 1
1−r . This series is called the geometric series.

Example 3.39. The harmonic series
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · ·

diverges to infinity. To see this note that

2j+1∑
n=2j+1

1

n
≥

2j+1∑
n=2j+1

1

2j+1
=

2j

2j+1
=

1

2
=⇒

2k∑
n=1

1

n
≥ 1 +

k

2
−→
k→∞

∞.

Finally note that the sequence of partial sums of the harmonic series is increasing,
since the terms of the series are positive. So the divergence of the above subsequence
of partial sums implies the divergence of the whole sequence of partial sums.
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Exercise 3.40. Show that
∑∞

n=1
1
np is convergent if and only if p > 1.

Theorem 3.41. A series of nonnegative real numbers is convergent if and only if
its sequence of partial sums is bounded above.

Proof. Just note that the sequence of partial sums is an increasing sequence in
R. �

Theorem 3.42. Suppose
∑∞

n=1 an,
∑∞

n=1 bn are convergent series in Rm, and c ∈
R. Then

∑∞
n=1(an + cbn) is also convergent and we have

∞∑
n=1

(an + cbn) =

∞∑
n=1

an + c

∞∑
n=1

bn.

Proof. The partial sums satisfy
∑k

n=1(an + cbn) =
∑k

n=1 an + c
∑k

n=1 bn. Now
let k →∞. �

Remark. The following theorem is the Cauchy criterion for the convergence of
series.

Theorem 3.43. Suppose
∑∞

n=1 an is a series in Rm. Then
∑∞

n=1 an is convergent
if and only if

∀ε > 0 ∃N ∈ N such that ∀m ≥ n ≥ N we have

∣∣∣∣∣
m∑
k=n

ak

∣∣∣∣∣ < ε.

Proof. Let (Sn) be the sequence of partial sums. We know that the sequence of
partial sums is convergent if and only if it is Cauchy. Now note that Sm − Sn =∑m

k=n ak, when m ≥ n. �

Definition 3.44. Suppose
∑∞

n=1 an is a series in Rm. We say
∑∞

n=1 an is ab-
solutely convergent if

∑∞
n=1 |an| converges. A convergent series which is not

absolutely convergent, is conditionally convergent.

Comparison Test. Suppose (an) is a sequence in Rm, and (bn) is a sequence in
R. Also suppose that for some n0 ∈ N we have |an| ≤ bn for all n ≥ n0. Then if∑∞

n=1 bn converges,
∑∞

n=1 an converges too. Equivalently, if
∑∞

n=1 an diverges then∑∞
n=1 bn diverges too.

Proof. For given ε > 0 there is N ≥ n0 such that for m ≥ n ≥ N we have∣∣∣∣∣
m∑
k=n

ak

∣∣∣∣∣ ≤
m∑
k=n

|ak| ≤
m∑
k=n

bk =

∣∣∣∣∣
m∑
k=n

bk

∣∣∣∣∣ < ε.

Therefore
∑∞

n=1 an converges due to the Cauchy criterion for series. The last claim
of the theorem is just the contrapositive of the first claim. �
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Theorem 3.45. An absolutely convergent series is convergent.

Proof. Suppose
∑∞

n=1 an is an absolutely convergent series in Rm. Let bn := |an|.
Then the result follows by applying the comparison test, noting that |an| ≤ bn. �

Limit Comparison Test. Suppose (an), (bn) are sequences of positive real num-
bers, and for some c ∈ (0,∞) we have lim an

bn
= c. Then

∑∞
n=1 an converges if and

only if
∑∞

n=1 bn converges.

Proof. For sufficiently large n we have 0 < c
2 <

an
bn

< 3c
2 . Thus an < 3c

2 bn and
bn <

2
can. Now we get the result by applying the comparison test twice. �

Root Test. Suppose
∑∞

n=1 an is a series in Rm and

r := lim sup n
√
|an|.

(i) If r < 1, the series converges absolutely.
(ii) If 1 < r ≤ +∞, the series diverges.

Proof. (i) Note that r ≥ 0. Let s ∈ (r, 1), so that r < s < 1. Then we have
supn≥m

n
√
|an| < s for some large enough m, since the sequence of supremums

converges to r. Therefore for n ≥ m we have n
√
|an| < s, and thus |an| < sn. But∑

n≥1 s
n is a convergent geometric series. Hence by applying the comparison test

we get the desired result.
(ii) We claim that n

√
|an| > 1 for infinitely many n. Because otherwise for

large n we would have n
√
|an| ≤ 1, which implies that supn≥m

n
√
|an| ≤ 1 for all

large values of m. Hence we must have r ≤ 1, which is a contradiction. Thus for
infinitely many n we have n

√
|an| > 1, and therefore for those n we have |an| > 1.

Hence an 6→ 0. So the series diverges. �

Ratio Test. Suppose
∑∞

n=1 an is a series in Rm and |an| 6= 0 for all n. Let

r := lim sup
|an+1|
|an|

, s := lim inf
|an+1|
|an|

.

(i) If r < 1, the series converges absolutely.
(ii) If 1 < s ≤ +∞, the series diverges.

Proof. (i) Note that r ≥ s ≥ 0. Let t ∈ (r, 1), so that r < t < 1. Then
supn≥m

|an+1|
|an| < t for some large enough m, since the sequence of supremums con-

verges to r. Therefore for n ≥ m we have |an+1|
|an| < t, or |an+1| < t|an|. Thus by an

easy induction we obtain that

|an| < |am|tn−m =
|am|
tm

tn,
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for n ≥ m. But the series ∑
n≥1

|am|
tm

tn =
|am|
tm

∑
n≥1

tn

is convergent. Thus by applying the comparison test we get the desired result.
(ii) Let t ∈ (s, 1), so that s > t > 1. Then s ≥ infn≥m

|an+1|
|an| > t > 1 for some

large enough m, since the sequence of infimums converges to s. Therefore |an+1|
|an| > t

for n ≥ m. Hence as before we have |an| > tn−m|am|, for n ≥ m. But we have

tn−m|am| −→
n→∞

∞.

Therefore an 6→ 0. So the series diverges. �

Example 3.46. The ratio test and the root test cannot determine the convergence
or divergence of the series

∑∞
n=1

1
np for p > 0. Because we have

1
(n+1)p

1
np

=
( n

n+ 1

)p −→
n→∞

1p = 1,

n

√
1

np
=

1

( n
√
n)p

−→
n→∞

1

1p
= 1.

Exercise 3.47. Give an example of a series for which the ratio test is inconclusive,
but the root test implies its convergence. Can you find a series for which the root
test is inconclusive, but the ratio test is not?

Alternating Series Test. Suppose (an) is a decreasing sequence of positive real
numbers that converges to 0. Then the series

∑∞
n=1(−1)nan converges.

Proof. Let Sk :=
∑k

n=1(−1)nan. Then for k ≥ 1 we have

S2k+2 − S2k = a2k+2 − a2k+1 ≤ 0,

S2k+1 − S2k−1 = −a2k+1 + a2k ≥ 0,

S2k − S1 = a2k + (−a2k−1 + a2k−2) + · · ·+ (−a3 + a2) ≥ 0,

S2k−1 = −a2k−1 + (a2k−2 − a2k−3) + · · ·+ (a2 − a1) ≤ 0.

Thus (S2k) is a decreasing sequence bounded below by S1. Hence it is convergent.
Similarly, (S2k−1) is an increasing sequence bounded above by 0. Hence it is con-
vergent too. But we have S2k−S2k+1 = a2k → 0. Therefore the limits of (S2k) and
(S2k−1) are the same. This implies that (Sk) is convergent, as desired. �

Example 3.48. The series
∑∞

n=1
(−1)n

n converges conditionally by the above the-
orem.
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Definition 3.49. The series
∑∞

n=1 bn is called a rearrangement of the series∑∞
n=1 an, if there exists a bijective map σ : N→ N such that bn = aσ(n).

Theorem 3.50. Suppose
∑∞

n=1 an is an absolutely convergent series in R. Let∑∞
n=1 bn be a rearrangement of

∑∞
n=1 an. Then

∑∞
n=1 bn is also absolutely conver-

gent, and we have
∞∑
n=1

bn =

∞∑
n=1

an.

Proof. Note that
∑∞

n=1 an is also a rearrangement of
∑∞

n=1 bn. Because if bn =
aσ(n) for some bijective map σ, then an = bσ−1(n). First, let us show that

∑∞
n=1 bn

is absolutely convergent. We have
k∑

n=1

|bn| =
k∑

n=1

|aσ(n)| ≤
m∑
n=1

|an| ≤
∞∑
n=1

|an| < +∞,

where m = maxn≤k σ(n). Therefore the sequence of partial sums of
∑∞

n=1 |bn| is
bounded. Hence it is convergent, and we have

∞∑
n=1

|bn| ≤
∞∑
n=1

|an|.

Since
∑∞

n=1 an is also a rearrangement of
∑∞

n=1 bn, we can switch the roles of∑∞
n=1 an and

∑∞
n=1 bn, and repeat the above argument, to get

∞∑
n=1

|bn| =
∞∑
n=1

|an|.

Next we show that the two series have the same value. Note that
∞∑
n=1

∣∣|an|+ an
∣∣ ≤ 2

∞∑
n=1

|an| < +∞,

so
∑∞

n=1(|an| + an) is absolutely convergent. Also note that
∑∞

n=1(|bn| + bn) is a
rearrangement of the series

∑∞
n=1(|an|+ an) via the map σ. Thus we have

∞∑
n=1

(|bn|+ bn) =
∞∑
n=1

∣∣|bn|+ bn
∣∣ =

∞∑
n=1

∣∣|an|+ an
∣∣ =

∞∑
n=1

(|an|+ an),

since |r|+ r ≥ 0 for any real number r. Hence we have
∞∑
n=1

an =
∞∑
n=1

(|an|+ an − |an|) =
∞∑
n=1

(|an|+ an)−
∞∑
n=1

|an|

=

∞∑
n=1

(|bn|+ bn)−
∞∑
n=1

|bn| =
∞∑
n=1

bn. �



Chapter 4

Differentiation

4.1 Rules of Differentiation

Definition 4.1. Suppose I ⊂ R is open and f : I → R. Then we say f is
differentiable at a point x ∈ I if

f ′(x) := lim
h→0

f(x+ h)− f(x)

h

exists. f ′(x) is called the derivative of f at x.

Remark. This is equivalent to the existence of a ∈ R such that for small h we have

f(x+ h) = f(x) + ah+R(h), where lim
h→0

R(h)

|h|
= 0.

Theorem 4.2. The derivative of a constant function exists and equals zero every-
where. For n ∈ N, the functions f(x) = xn from R to R are differentiable with
f ′(x) = nxn−1. Also g(x) = 1

x from R− {0} to R is differentiable and g′(x) = −1
x2

.

Proof. We have

1

h
[(x+ h)n − xn]

=
1

h
(x+ h− x)[(x+ h)n−1 + (x+ h)n−2x+ · · ·+ xn−1] −→

h→0
nxn−1.

Also
1

h

( 1

x+ h
− 1

x

)
=

−1

x(x+ h)
−→
h→0

−1

x2
.

�
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Theorem 4.3. Suppose f is differentiable at x, then it is continuous at x too.

Proof. lim
y→x

[f(y)− f(x)] = lim
y→x

[f(y)−f(x)
y−x (y − x)] = f ′(x)× 0 = 0. �

Definition 4.4. We denote by f ′ or f (1) the function whose value is f ′(x), and
is defined on the set where f is differentiable. We also define the kth derivative
inductively as

f (k) := (f (k−1))′,

when it exists. We also set the zeroth derivative of f to be f (0) := f .
We say f is of class Ck if f (k) exists and is continuous on the domain of f . A

function is called infinitely differentiable or smooth or of class C∞ if it has
derivatives of all orders at every point of its domain. Finally, note that a function
is of class C0 if it is continuous on its domain.

Remark. It is obvious that Ck+1 functions are also Ck, since differentiability im-
plies continuity. Thus we have C0 ⊃ C1 ⊃ · · · ⊃ C∞.
Remark. Note that the (k+1)th derivative of a function f equals the kth derivative
of its derivative f ′. This can be proved by an easy induction on k. Consequently,
a function f is Ck+1 if and only if f ′ is Ck.

Example 4.5. The function f(x) = xn|x| is of class Cn but not of class Cn+1

(why?).

Theorem 4.6. Suppose I ⊂ R is an open set containing a point x, and f, g : I → R
are differentiable at x. Let c1, c2 ∈ R. Then c1f + c2g is differentiable at x, and we
have

(c1f + c2g)′(x) = c1f
′(x) + c2g

′(x).

Proof. We have

lim
h→0

(c1f + c2g)(x+ h)− (c1f + c2g)(x)

h
= c1 lim

h→0

f(x+ h)− f(x)

h

+ c2 lim
h→0

g(x+ h)− g(x)

h
. �

Example 4.7. The derivative of a polynomial p(x) = a0 + a1x+ · · ·+ anx
n is the

polynomial
p′(x) = a1 + 2a2x+ · · ·+ nanx

n−1.

Note that if an 6= 0 then nan 6= 0, so

deg p′ = deg p− 1.

Thus p(n) is a polynomial of degree 0, i.e. it is a constant polynomial; and therefore
p(m) ≡ 0 for all m ≥ n + 1. Hence in particular, we see that polynomials are C∞

functions.
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Exercise 4.8. Show that for a polynomial p(x) = a0 + a1x+ · · ·+ anx
n we have

ak =
p(k)(0)

k!
.

This gives another proof that the coefficients of a polynomial (and hence its degree)
are uniquely determined by the polynomial.

Leibniz Rule. Suppose I ⊂ R is an open set containing a point x, and f, g : I → R
are differentiable at x. Then fg is differentiable at x, and we have

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).

Proof. We have

1

h
[(fg)(x+ h)− (fg)(x)]

=
1

h
[f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)]

= f(x+ h)
1

h
[g(x+ h)− g(x)] +

1

h
[f(x+ h)− f(x)]g(x)

−→
h→0

f(x)g′(x) + f ′(x)g(x). �

Chain Rule. Suppose I ⊂ R is an open set containing a point a, and f : I → R
are differentiable at a. Also suppose J is a neighborhood of f(a), and g : J → R is
differentiable at f(a). Then g ◦ f is differentiable at a, and we have

(g ◦ f)′(a) = f ′(a)g′(f(a)).

Proof. We have

g(f(x))− g(f(a))

x− a
=
f(x)− f(a)

x− a
×

{
g(f(x))−g(f(a))
f(x)−f(a) f(x) 6= f(a)

g′(f(a)) f(x) = f(a)
.

Let h(x) be the function on the right hand side above which is defined by two
formulas. We only need to show that

lim
x→a

h(x) = g′(f(a)).

Suppose ε > 0 is given. Then there is δ > 0 so that 0 < |y− f(a)| < δ implies that∣∣∣g(y)− g(f(a))

y − f(a)
− g′(f(a))

∣∣∣ < ε.

Let δ̃ be small enough so that |x− a| < δ̃ implies that |f(x)− f(a)| < δ. Then for
|x − a| < δ̃ we will either have f(x) = f(a) in which case h(x) = g′(f(a)), or we
have 0 < |f(x)− f(a)| < δ which implies |h(x)− g′(f(a))| < ε. Hence in both cases
we have |h(x)− g′(f(a))| < ε as desired. �
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Theorem 4.9. Suppose I ⊂ R is an open set containing a point x, and f, g : I → R
are differentiable at x. If g 6= 0 on I, then f

g is differentiable at x, and we have

(f
g

)′
(x) =

g(x)f ′(x)− g′(x)f(x)

(g(x))2
.

Proof. For x 6= 0 set ι(x) = 1
x . Then if we apply the chain rule to obtain the

derivative of the function ι(g) = 1
g , we get

(
1

g
)′ = (ι(g))′ = g′ι′(g) =

−g′

g2
.

Then we can compute the derivative of fg by using the Leibniz rule. �

Exercise 4.10. Suppose f1, . . . , fm and g1, . . . , gn are nonzero differentiable func-
tions. Show that( f1 · · · fn

g1 · · · gm
)′

=
f1 · · · fn
g1 · · · gm

(f ′1
f1

+ · · ·+ f ′n
fn
− g′1
g1
− · · · − g′m

gm

)
.

Theorem 4.11. Suppose I ⊂ R is open, and f, g : I → R are Ck functions for
some 1 ≤ k ≤ ∞. Let J be an open set containing f(I), and suppose F : J → R is
a Ck function. Also let c1, c2 ∈ R. Then
(i) c1f + c2g, fg, and F ◦ f are Ck functions.
(ii) If g 6= 0 on I, then f

g is a Ck function.

Proof. In the following whenever we divide by g, we assume that it is nonzero.
We know that

(c1f + c2g)′ = c1f
′ + c2g

′,

(fg)′ = f ′g + fg′, (∗)
(F ◦ f)′ = (F ′ ◦ f)f ′,

(f/g)′ = (f ′g − fg′)/g2.

For 1 ≤ k < ∞, the proof is by induction on k. When k = 1 we know that f, g, F
and their derivatives, are continuous. Therefore c1f + c2g, fg, F ◦ f , and f/g have
continuous derivatives by (∗). Because the sum, the product, the inverse (when the
function is nonzero), and the composition of continuous functions are continuous.
Note that constant functions are continuous too.

Now suppose the theorem is true for some k < ∞. Then we have to prove the
theorem for k + 1. Let f, g, F be Ck+1 functions. Then we know that f, g, F and
their derivatives are Ck functions. Hence by the induction hypothesis we know that
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the derivatives of c1f + c2g, fg, F ◦ f , and f/g are Ck functions. Because by (∗),
their derivatives are the linear combination of one or two terms, and those terms are
Ck functions. (Note that those terms themselves are either Ck functions, or they
are the product of two Ck functions, or they are the product of a Ck function and
a function which is the composition of two Ck functions, or they are the product of
two Ck functions divided by the product of two nonzero Ck functions.) Therefore
c1f + c2g, fg, F ◦ f , and f/g are Ck+1 functions.

Finally if the functions f, g, F are C∞ functions, then they are Ck functions for
all k <∞. Therefore c1f + c2g, fg, F ◦ f , and f/g are Ck functions for all k <∞.
Hence they are also C∞ functions. �

Theorem 4.12. Suppose I, J are open intervals, and f : I → J is an invertible
function. Also suppose f has a nonzero derivative at a ∈ I, and f−1 is continuous
at f(a). Then f−1 is differentiable at f(a), and we have

(f−1)′(f(a)) =
1

f ′(a)
.

Proof. Let b = f(a), and x = f−1(b + h), where h is small enough so that
b+ h ∈ J . Then we have

f−1(b+ h)− f−1(b)

h
=
f−1(b+ h)− a
b+ h− b

=
x− a

f(x)− f(a)
=

1

f(x)− f(a)

x− a

.

When h is small, x = f−1(b+h) is close to f−1(b) = a, since f−1 is continuous at b =
f(a). Hence the above fraction is close to 1

f ′(a) , and therefore f−1 is differentiable
at b with the desired derivative. �

Exercise 4.13. Show that for p ∈ Q the function x 7→ xp is differentiable on
(0,∞), and we have (xp)′ = pxp−1.

Exercise 4.14. Consider the function f : (−1, 1)→ (−1, 1) defined by

f(x) =


1

log(2n+1−2n0) x = 1
logn , n ≥ 2n0,

1
log(2n) x = 1− 1

2n , n ≥ n0,

1− 1
n x = 1− 1

2n+1−2n0
, n ≥ 2n0,

x otherwise,

where n0 is a large enough constant. Show that f is an invertible function, and
f ′(0) = 1, but f−1 is not continuous at f(0). Hence f−1 cannot be differentiable
at f(0) either.
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4.2 Extrema of Single Variable Functions

Proposition 4.15. Suppose f is a function into R defined on a neighborhood of
a ∈ R. If f ′(a) > 0 then

f(a− h) < f(a) < f(a+ h)

for small h > 0. When f ′(a) < 0 the inequalities are reversed.

Proof. Suppose f ′(a) > 0, the other case is similar. For small h > 0, we know
that 1

±h
(
f(a± h)− f(a)

)
is close to f ′(a). Therefore this fraction is also positive.

Hence its numerator and denominator must have the same sign. Thus we get the
desired inequalities. �

Remark. Note that unlike the case of functions whose derivative has a sign on an
interval (which we consider below), in the above proposition we are not claiming
that f is monotone. The above proposition only says that if f ′(a) is nonzero, then
we can compare the values of f around a with f(a). As an exercise you can show
that the function

f(x) =

{
x+ 2x2 sin 1

x x 6= 0

x x = 0

satisfies f ′(0) = 1, but it is not monotone on any interval containing 0.

Definition 4.16. Suppose X is a metric space, and f : X → R is a function. We
say f has a local maximum at y ∈ X if f(y) ≥ f(x) for all x in a neighborhood
of y. Similarly, we say f has a local minimum at y ∈ X if f(y) ≤ f(x) for all x
in a neighborhood of y. A local extremum of f , is either a local maximum of f ,
or a local minimum of f .

Theorem 4.17. Suppose f is a function into R defined on a neighborhood of a ∈ R,
and it is differentiable at a. If f has a local maximum or minimum at a, then
f ′(a) = 0.

Proof. Suppose to the contrary that f ′(a) 6= 0. Let us assume that f ′(a) < 0,
the other case is similar. Then by the last proposition, for all small h > 0 we have

f(a− h) > f(a) > f(a+ h).

Thus f cannot have a local maximum, nor a local minimum, at a. �

Mean Value Theorem. Suppose f : [a, b] → R is continuous, and it is differen-
tiable on (a, b). Then there is c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).
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Remark. The special case of the mean value theorem in which f(b) = f(a), and we
conclude the existence of c such that f ′(c) = 0, is known as the Rolle’s theorem.
Note that the general case actually follows from this special case, as we have proved
below.

Proof. Let

g(x) = f(x)− f(a)− (x− a)
f(b)− f(a)

b− a
.

Then g(a) = g(b) = 0, g is continuous on [a, b], and it is differentiable on (a, b).
If g = 0 everywhere then g′ = 0 everywhere. Otherwise, as g is continuous on a
compact set, either its maximum is positive or its minimum is negative. Hence g has
a positive maximum or a negative minimum in (a, b), i.e. it has a local extremum. In
any case there is c ∈ (a, b) such that g′(c) = 0. Therefore f ′(c)− f(b)−f(a)

b−a = 0. �

Theorem 4.18. Suppose f is differentiable on an open interval with |f ′| ≤ M .
Then for any a, b in the interval we have

|f(b)− f(a)| ≤M |b− a|.

In particular, if f ′ = 0 on the interval, f is constant.

Proof. By the mean value theorem, for some c between a, b we have

|f(b)− f(a)| = |f ′(c)(b− a)| ≤M |b− a|.

Now if f ′ ≡ 0 then M = 0. Hence for any a, b we have f(b) = f(a). �

Theorem 4.19. If f : (a, b)→ R has positive derivative on (a, b), then f is strictly
increasing. And if f has negative derivative on (a, b), then f is strictly decreasing.

Proof. Suppose f ′ > 0. If x > y, then there is some c between x, y such that
f(x)− f(y) = f ′(c)(x− y) > 0. The other case is similar. �

Theorem 4.20. Suppose f : (a, b)→ R is continuous, and c ∈ (a, b).
(i) If f ′ > 0 on (a, c) and f ′ < 0 on (c, b), then f(c) is the maximum of f .
(ii) If f ′ < 0 on (a, c) and f ′ > 0 on (c, b), then f(c) is the minimum of f .

Proof. Suppose f ′ < 0 on (c, b). If x ∈ (c, b), then there is y ∈ (c, x) such that
f(x)− f(c) = f ′(y)(x− c) < 0. The other cases are similar. �

Theorem 4.21. Suppose f is a differentiable function from a neighborhood of c ∈ R
into R, and f ′(c) = 0.
(i) If f ′′(c) > 0 then f has a local minimum at c.
(ii) If f ′′(c) < 0 then f has a local maximum at c.
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Proof. If f ′′(c) > 0, then there is l > 0 such that f ′(c−h) < f ′(c) = 0 < f ′(c+h)
for all 0 < h < l. So the hypothesis of the previous theorem is satisfied on the
interval (c− l, c+ l). The other case is similar. �

Darboux’s Theorem. Suppose f is differentiable on an interval. Then its deriva-
tive has the intermediate value property.

Proof. Suppose a < b, and f ′(a) < r < f ′(b). Then for small enough h > 0 we
have

f(a+ h)− f(a)

h
< r,

f(b− h)− f(b)

−h
> r.

Consider the function φ(x) := f(x+h)−f(x)
h . Now φ is continuous, since f is contin-

uous. Hence there is c ∈ (a, b− h) such that φ(c) = r. This means that

f(c+ h)− f(c)

c+ h− c
= r.

Therefore, by the mean value theorem there is c̃ ∈ (c, c+h) such that f ′(c̃) = r. �

Second Proof. Let g(x) := f(x) − rx. Then g′(a) < 0 and g′(b) > 0. Now g
is continuous on [a, b], and attains its minimum there. But for small positive ε we
have g(a) > g(a + ε) and g(b − ε) < g(b). Therefore g attains its minimum at a
point c ∈ (a, b). Thus g′(c) = f ′(c)− r = 0. �

Remark. By the above theorem, the derivative of a differentiable function cannot
have jump discontinuities. But the derivative can be discontinuous. For example,
let

f(x) =

{
x2 sin 1

x x 6= 0

0 x = 0
.

Then f ′(x) =

{
2x sin 1

x − cos 1
x x 6= 0

0 x = 0
is not continuous at x = 0.

Inverse Function Theorem in Dimension One. Suppose f : (a, b) → R is a
differentiable function, and its derivative is nonzero everywhere. Then f is invert-
ible, and f−1 is differentiable. If in addition f is Ck for some 1 ≤ k ≤ ∞, then
f−1 is also Ck.

Proof. Note that f is continuous, since it is differentiable. Also note that f ′ is
either positive everywhere, or negative everywhere; since otherwise f ′ would have
vanished at some point by Darboux’s theorem. Hence f is strictly monotone; thus
it is one-to-one. Let I = f((a, b)) be the image of f . Then I is an interval by
the intermediate value theorem. Now let y ∈ I. We know that y = f(x) for
some x ∈ (a, b). Suppose ε is small enough so that x ± ε ∈ (a, b). Then by the
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intermediate value theorem and strict monotonicity of f , the set f((x − ε, x + ε))
is an open interval with endpoints f(x± ε), which contains y. Hence I is an open
interval.

Consider f−1 : I → (a, b). We want to show that f−1 is continuous at y. So for a
given ε > 0 we want to find δ > 0 such that if |w−y| < δ then |f−1(w)−f−1(y)| < ε.
Let

δ < |y − f(x± ε)|.

Then if |w − y| < δ we have w ∈ f((x− ε, x+ ε)), since we have seen that the set
f((x−ε, x+ε)) is an open interval with endpoints f(x±ε). Hence there is a unique
z ∈ (x− ε, x+ ε) such that f(z) = w. Therefore we have

|f−1(w)− f−1(y)| = |z − x| < ε,

as desired. Thus f−1 is continuous at y. Therefore by Theorem 4.12, f−1 is
differentiable at y, and we have

(f−1)′(y) =
1

f ′(f−1(y))
.

So f−1 is differentiable on I.
The proof of the last statement of the theorem is by induction on k, when

k < ∞. If f is C1, then as f ′, f−1 are continuous and f ′ 6= 0, (f−1)′ must be
continuous too. Thus f−1 is also C1. Now suppose the claim is true for some k.
Then if f is Ck+1, it is also Ck. Hence f−1 is Ck by the induction hypothesis. Then
f ′ ◦ f−1 is Ck too, since f ′ is also Ck. Thus (f−1)′ is also Ck, since f ′ ◦ f−1 6= 0.
Therefore f−1 is Ck+1. Finally if f is C∞, then it is Ck for all k < ∞. Therefore
f−1 is also Ck for all k <∞. Hence f−1 is C∞ too. �

Remark. In the above theorem, it is essential to assume that f ′(x) 6= 0 for all
x. For example f(x) = x3 is a C∞ and invertible function on R, but its inverse
f−1(x) = 3

√
x is not differentiable at x = 0.

Remark. As we have seen in the above proof, the strict monotonicity and con-
tinuity of f on an interval are sufficient to imply that f is invertible, and f−1 is
continuous. We have also seen in Exercise 2.84 that continuous one-to-one maps
from an interval into R are strictly monotone. Thus a continuous and one-to-one
function f : (a, b) → R is invertible, and f−1 is continuous (on the image of f).
However, this is not true if the codomain of f is not R. For example, as we have
shown in Example 2.67, the function

θ 7→ (cos θ, sin θ),
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from [0, 2π) to the unit circle S1, is a continuous bijection whose inverse is not
continuous. We can also consider this as a function from the interval [0, 2π) into
R2. As another example, you can show that the function

θ 7→ (| cos θ| sin 2θ, sin θ sin 2θ),

from (0, π) into R2, is a continuous one-to-one function whose inverse is not con-
tinuous. (Hint: consider sequences approaching 0, π.)

4.3 L’Hôpital’s Rules

Theorem 4.22. Suppose f, g : [a, b]→ R are continuous, and they are differentiable
on (a, b). Then there is c ∈ (a, b) such that

(f(b)− f(a))g′(c) = f ′(c)(g(b)− g(a)).

Proof. The result follows by applying the mean value theorem to the function

p(x) := (f(b)− f(a))[g(x)− g(a)]− [f(x)− f(a)](g(b)− g(a)).

Just note that this function satisfies the conditions of the mean value theorem. �

Remark. The point of the above theorem is that f ′, g′ are evaluated at the same
point.

L’Hôpital’s Rule. Suppose f, g are real-valued functions defined on an open in-
terval I; and I either contains the point a, or has a as an endpoint, where a can be
±∞ too. Suppose g, g′ are nonzero on I − {a}. Also suppose

lim
x→a

f(x) = lim
x→a

g(x) = 0, lim
x→a

f ′(x)

g′(x)
= b,

where b can be ∞ or ±∞ too. Then we have

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= b.

Proof. Suppose ε > 0 is given. Let x ∈ I, and let t be between x, a. Note that
by the mean value theorem we have g(x) 6= g(t), since g′ 6= 0. We know that
f(t), g(t)→ 0 as t→ a. So for each given x we can find t such that∣∣∣∣f(x)

g(x)
− f(x)− f(t)

g(x)− g(t)

∣∣∣∣ < ε.
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Note that here we have used the continuity of the division. Therefore by the
previous theorem, for some z between x, t we have∣∣∣∣f(x)

g(x)
− f ′(z)

g′(z)

∣∣∣∣ < ε.

Note that z is also between x, a. First suppose b is finite. Now when x is close
enough to a, then z is also close enough to a, so that∣∣∣∣f ′(z)g′(z)

− b
∣∣∣∣ < ε, and therefore

∣∣∣∣f(x)

g(x)
− b
∣∣∣∣ < 2ε.

Thus the limit of fg is b. Next suppose b = +∞. Let M > 0 be given. Then when
x is close enough to a, z is also close enough to a, so that

f ′(z)

g′(z)
> M, and therefore

f(x)

g(x)
> M − ε.

Hence the limit of f
g is +∞ too, since M is arbitrary. The cases of b = −∞ and

b =∞ are similar. �

Second Proof. When a is finite, we can redefine f, g to be zero at a. Then f, g
become continuous at a. Now for some z between x, a we have

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(z)

g′(z)
.

When x is close to a, z is also close to a, and the result follows as before. �

L’Hôpital’s Rule. Suppose f, g are real-valued functions defined on an open in-
terval I; and I either contains the point a, or has a as an endpoint, where a can be
±∞ too. Suppose g, g′ are nonzero on I − {a}. Also suppose

lim
x→a

g(x) =∞, lim
x→a

f ′(x)

g′(x)
= b,

where b can be ∞ or ±∞ too. Then we have

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= b.

Proof. Let t ∈ I, and let x be between t, a. Note that by the mean value theorem
we have g(x) 6= g(t), since g′ 6= 0. Then for some z between t, x we have

f ′(z)

g′(z)
=
f(x)− f(t)

g(x)− g(t)
=

f(x)
g(x) −

f(t)
g(x)

1− g(t)
g(x)

.
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Therefore

f(x)

g(x)
=
f ′(z)

g′(z)

(
1− g(t)

g(x)

)
+
f(t)

g(x)

=
f ′(z)

g′(z)
− f ′(z)

g′(z)

g(t)

g(x)
+
f(t)

g(x)
. (∗)

First suppose b is finite. Suppose ε > 0 is given. When t is close enough to a, then
z is also close enough to a, so that∣∣∣∣f ′(z)g′(z)

− b
∣∣∣∣ < ε.

Now fix t, and let x be close enough to a so that∣∣∣∣ g(t)

g(x)

∣∣∣∣ < ε,

∣∣∣∣ f(t)

g(x)

∣∣∣∣ < ε.

Then we have ∣∣∣∣f ′(z)g′(z)

g(t)

g(x)

∣∣∣∣ < ε(|b|+ ε).

Note that this bound is independent of z. Finally we have∣∣∣∣f(x)

g(x)
− b
∣∣∣∣ < 2ε+ ε(|b|+ ε),

which can be made as small as we want.
Next suppose b =∞. Let x be close enough to a so that

1− g(t)

g(x)
>

1

2
,

∣∣∣∣ f(t)

g(x)

∣∣∣∣ < 1.

Then from (∗) we get ∣∣∣∣f(x)

g(x)

∣∣∣∣ > 1

2

∣∣∣∣f ′(z)g′(z)

∣∣∣∣− 1.

Let M > 0 be given. Then when x is close enough to a, z is also close enough to
a, so that ∣∣∣∣f ′(z)g′(z)

∣∣∣∣ > M, and therefore
∣∣∣∣f(x)

g(x)

∣∣∣∣ > 1

2
M − 1.

Hence the limit of f
g is ∞. Finally note that when

∣∣f ′(z)
g′(z)

∣∣ is large, f(x)
g(x) and f ′(z)

g′(z)
have the same sign. Hence the case of b = ±∞ follows too. �
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4.4 Taylor Polynomials

Definition 4.23. Suppose f is a real-valued function on an open interval I and it
is n times differentiable at a ∈ I. The nth order Taylor polynomial of f at a is

P (h) :=
n∑
k=0

f (k)(a)

k!
hk,

and the nth order Taylor remainder is R(h) := f(a+ h)− P (h).

Remark. Note that P,R are n times differentiable at 0, and P (k)(0) = f (k)(a),
R(k)(0) = 0 for k ≤ n.

Theorem 4.24. Suppose f is a real-valued function on an open interval I, and it
is n times differentiable at a ∈ I. Let R be the nth order Taylor remainder of f at
a, then

lim
h→0

R(h)

hn
= 0.

If in addition f has n+ 1 derivatives around a, then we have the Lagrange form
for the remainder, i.e.

R(h) =
fn+1(θ)

(n+ 1)!
hn+1,

for some θ between a and a+ h.

Proof. Remember that R is n times differentiable at h = 0, and R(i)(0) = 0 for
0 ≤ i ≤ n. By the mean value theorem we have

R(h) = R(h)−R(0) = (h− 0)R′(h1)

= hh1R
′′(h2) = · · · = hh1 · · ·hn−2R

(n−1)(hn−1),

for some 0 < |hn−1| < · · · < |h1| < |h|. Therefore∣∣∣∣R(h)

hn

∣∣∣∣ < ∣∣∣∣ R(h)

hh1 · · ·hn−1

∣∣∣∣ =

∣∣∣∣∣R(n−1)(hn−1)

hn−1

∣∣∣∣∣ .
But when h is small, hn−1 is also small. Thus the last fraction is close toR(n)(0) = 0.

For the second part let g(x) = R(h)xn+1 − hn+1R(x). Then g(i)(0) = 0 for i =
1, . . . , n, and also g(h) = 0. Therefore g′(h1) = 0 for some h1 with 0 < |h1| < |h|.
This implies that g′′(h2) = 0 for some h2 with 0 < |h2| < |h1| < |h|. Continuing
this way we get g(n)(hn) = 0 for some hn with 0 < |hn| < |h|. Then

(n+ 1)!R(h)− hn+1f (n+1)(a+ hn+1) = g(n+1)(hn+1) = 0,

for some hn+1. Note that P (n+1) = 0 as P is a polynomial of degree n. Now let
θ = a+ hn+1. �
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Remark. It is easy to see that P is the only polynomial of degree at most n for
which we have

lim
h→0

f(a+ h)− P (h)

hn
= 0.

Because if there were two such polynomials P1, P2, we would have

lim
h→0

P1(h)− P2(h)

hn
= 0.

Now degP1,degP2 ≤ n. So if P1 − P2 6= 0 then

(P1 − P2)(h) = anh
n + an−1h

n−1 · · ·+ amh
m,

where m ≤ n and am 6= 0. But we have

am = lim
h→0

(P1 − P2)(h)

hm
= lim

h→0
hn−m

(P1 − P2)(h)

hn
= 0,

which is a contradiction. Hence P1 = P2.

4.5 Convex Functions of One Variable

Definition 4.25. A real-valued function f on an interval I is a convex function
if for all points a, b ∈ I we have

f((1− t)a+ tb) ≤ (1− t)f(a) + tf(b)

for all 0 ≤ t ≤ 1. A function f is concave if −f is convex.

Theorem 4.26. Convex and concave functions are locally Lipschitz continuous in
the interior of their domains, i.e. every point in the interior of their domains has
a neighborhood on which they are Lipschitz.

Proof. Suppose f is convex, the case of concave functions is similar. Let a be a
point in the domain of f , and suppose b > a. For a point a < c < b we have

f(c) = f(a+
c− a
b− a

(b− a)) ≤ c− a
b− a

f(b) +
b− c
b− a

f(a).

Therefore
mac :=

f(c)− f(a)

c− a
≤ f(b)− f(a)

b− a
=: mab.

Note that mac is the slope of the line joining (a, f(a)) and (c, f(c)). Similarly we
have mab ≤ mcb. Now let a be an interior point. Then mda ≤ mdx ≤ max ≤ mab

for d < a < x < b. Therefore ∣∣∣∣f(x)− f(a)

x− a

∣∣∣∣ ≤ L,
where L = max{mda,mab}. The case of x < a is similar. �
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Theorem 4.27. A continuous function with increasing derivative is convex, and a
continuous function with decreasing derivative is concave. In particular, a contin-
uous function with positive second derivative is convex, and a continuous function
with negative second derivative is concave.

Proof. Let g(t) = −f((1 − t)a + tb) + (1 − t)f(a) + tf(b). Then f is convex if
and only if g ≥ 0. We have

g′(t) = −(b− a)f ′(a+ t(b− a))− f(a) + f(b).

As g(0) = g(1) = 0, there is c such that g′(c) = 0. But we must have g′ ≥ 0 on
(0, c) and g′ ≤ 0 on (c, 1), since f ′ is increasing. Therefore g ≥ g(0) = 0 on (0, c],
and g ≥ g(1) = 0 on [c, 1). The other case is similar. �

Theorem 4.28. The graph of a convex function lies above any tangent line to it,
and the graph of a concave function lies below any tangent line to it.

Proof. Suppose f is convex. Let a be a point at which f is differentiable, and
let b > a be another point in the domain of f . For a point a < c < b we know that

f(c)− f(a)

c− a
≤ f(b)− f(a)

b− a
.

Hence we have

f ′(a) = lim
c→a+

f(c)− f(a)

c− a
≤ lim

c→a+
f(b)− f(a)

b− a
=
f(b)− f(a)

b− a
.

Therefore f(a) + f ′(a)(b− a) ≤ f(b). The other cases are similar. �



Chapter 5

Integration

5.1 The Riemann Integral

Definition 5.1. A partition P of an interval [a, b] ⊂ R is a finite set of points
{a0, . . . , an} such that

a = a0 < a1 < · · · < an = b.

The intervals [ai−1, ai] are called the subintervals of the partition P . The mesh
of the partition P is

‖P‖ := max
i≤n
|ai − ai−1|.

A tagged partition is a partition P with a sequence T = (x1, . . . , xn) of tags

xi ∈ [ai−1, ai].

We say a partition Q is a refinement of a partition P if P ⊂ Q. The common
refinement of two partitions P1, P2 is P1 ∪ P2.

Remark. It is easy to see that for a refinement Q of P we have ‖Q‖ ≤ ‖P‖.

Definition 5.2. Let f : [a, b]→ R. The Riemann sum of f corresponding to the
tagged partition P = {a0, . . . , an}, T = (x1, . . . , xn) is

R(f, P, T ) :=

n∑
i=1

f(xi)(ai − ai−1).

Definition 5.3. Let f : [a, b]→ R. We say f is Riemann integrable (on [a, b]),
if there exists I ∈ R so that ∀ε > 0 ∃δ > 0 such that for all tagged partitions P, T
with ‖P‖ < δ we have

|I −R(f, P, T )| < ε.

131
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Note that by the next theorem I is unique. We call I the Riemann integral of f
(over [a, b]) and denote it by ∫ b

a
f(x)dx.

In this notation, the function f is also referred to as the integrand.

Theorem 5.4. The integral of an integrable function is unique.

Proof. Suppose there are two numbers I, J satisfying the above definition. Then
for each ε > 0 there is a tagged partition P, T such that

|I − J | ≤ |I −R(f, P, T )|+ |J −R(f, P, T )| < ε+ ε = 2ε.

Hence we must have I − J = 0. �

Remark. Intuitively, the integral of a nonnegative function is the area of the region
below its graph. But to make this idea precise, and to prove it rigorously, we have
to use more advanced tools. For example, we can do this by using the notion
of multiple Riemann integrals. See Theorem 8.47. A different approach, which
provides a deeper understanding, is studied in measure theory.

Theorem 5.5. A Riemann integrable function is bounded.

Proof. Suppose to the contrary that f is an unbounded Riemann integrable func-
tion on [a, b]. Then there is δ > 0 such that for all tagged partitions P, T with
‖P‖ < δ we have

|I −R(f, P, T )| < 1. (∗)

Let P = {ai}, T = (xi) be a tagged partition with ‖P‖ < δ. Since f is unbounded,
it is unbounded on at least one of the subintervals [aj−1, aj ]. Let x′i = xi for i 6= j.
Then we can find x′j ∈ [aj−1, aj ] such that for T ′ = (x′i) we have

|R(f, P, T ′)−R(f, P, T )| = |f(x′j)− f(xj)|(aj − aj−1) > 2.

But this contradicts (∗). �

Theorem 5.6. Let f, g : [a, b]→ R be Riemann integrable, and c, c1, c2 ∈ R. Then
we have
(i) The constant function c is Riemann integrable and

∫ b
a c dx = (b− a)c.

(ii) c1f + c2g is Riemann integrable and∫ b

a
[c1f(x) + c2g(x)]dx = c1

∫ b

a
f(x)dx+ c2

∫ b

a
g(x)dx.
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(iii) If f ≤ g then ∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx.

(iv) If |f | ≤M then ∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ ≤M(b− a).

Proof. (i) The Riemann sums of a constant function are all (b− a)c, hence they
converge to this number.

(ii) First note that for any tagged partition P, T we have

R(c1f + c2g, P, T ) = c1R(f, P, T ) + c2R(g, P, T ).

Now let I, J be the integrals of f, g respectively. Let δ be small enough so that for
all tagged partitions P, T with ‖P‖ < δ we have

|I −R(f, P, T )| < ε

2|c1|+ 2
, |J −R(g, P, T )| < ε

2|c2|+ 2
.

Then

|c1I + c2J −R(c1f + c2g, P, T )|
= |c1I + c2J − c1R(f, P, T )− c2R(g, P, T )|
≤ |c1||I −R(f, P, T )|+ |c2||J −R(g, P, T )| < ε.

(iii) First note that for all tagged partitions P, T we have

R(f, P, T ) ≤ R(g, P, T ).

Now let I, J be the integrals of f, g respectively. Suppose to the contrary that
J < I. Let δ be small enough so that for all tagged partitions P, T with ‖P‖ < δ
we have

|I −R(f, P, T )| < I − J
2

, |J −R(g, P, T )| < I − J
2

.

Then we must have R(f, P, T ) > R(g, P, T ), which is a contradiction.
(iv) We have −M ≤ f ≤M . Now the result follows from parts (i) and (iii). �

Example 5.7. The characteristic function of Q, i.e.

χQ(x) :=

{
1 x ∈ Q,
0 x /∈ Q,

is not Riemann integrable on any interval [a, b]. Because for any partition P we can
choose a sequence T of rational tags and a sequence T ′ of irrational tags, so that

R(χQ, P, T ) = b− a, R(χQ, P, T
′) = 0.

This function is also known as the Dirichlet function.
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5.2 Integrable Functions

Definition 5.8. A subset A of R has measure zero if for every ε > 0 there exist
countably many intervals (ai, bi) such that A ⊂

⋃
i≥1(ai, bi), and∑

i≥1

bi − ai < ε.

This series is called the total length of the family {(ai, bi)}i≥1.
We say a property holds almost everywhere, abbreviated a.e., if it holds for

all points outside a set of measure zero.

Remark. Remember that a countable set is either finite or countably infinite.
Remark. An obvious consequence of the definition is that if A has measure zero
and B ⊂ A, then B has measure zero too.

Example 5.9. It is easy to see that every finite subset of R has measure zero.
Also, we have seen that the Cantor set has measure zero.

Theorem 5.10. Let {Ak} be a countable family of sets that have measure zero.
Then

⋃
k Ak has measure zero. In particular, every countable subset of R has mea-

sure zero.

Proof. Let ε > 0 be given. Then we can cover Ak with a countable family of
intervals {(ak,i, bk,i)}i≥1 such that∑

i≥1

bk,i − ak,i <
ε

2k
.

Then {(ak,i, bk,i)}i,k≥1 is a countable family of intervals that covers
⋃
k Ak, and∑

i,k≥1

bk,i − ak,i <
∑
k≥1

ε

2k
≤ ε. �

Remark. If we want to be completely rigorous in the above proof, we have to
arrange the family of intervals {(ak,i, bk,i)}i,k≥1 into a sequence. Note that different
arrangements does not change the total length of the family, since the length of
each interval is positive and therefore the series of the total length is absolutely
convergent. Now suppose we have arranged the family as the sequence {(aj , bj)}j≥1.
Then for any N ∈ N there is M ∈ N such that

{(aj , bj)}1≤j≤N ⊂ {(ak,i, bk,i)}1≤i,k≤M .

Then we have ∑
j≤N

bj − aj ≤
∑
k≤M

∑
i≤M

bk,i − ak,i <
∑
k≤M

ε

2k
< ε.

Now by taking the limit as N →∞ we get
∑

j≥1 bj − aj ≤ ε as desired.
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Example 5.11. Q has measure zero, since it is countable.

Definition 5.12. Let I be a subset of R, and let f : I → R. We define the
oscillation of f at a point x ∈ I as

oscxf := lim
r→0

sup{ |f(z)− f(y)| : z, y ∈ (x− r, x+ r) ∩ I}.

Remark. Note that the supremums in the above expression decrease as r → 0,
hence the limit exists.

Remark. The oscillation at a point is a measure of the size of the discontinuity
at that point. In particular, we can easily show that oscxf = 0 if and only if f is
continuous at x.

Riemann-Lebesgue Theorem. A function f : [a, b] → R is Riemann integrable
if and only if it is bounded and its set of discontinuities has measure zero.

Proof. Let D be the set of discontinuities of f . Suppose D has measure zero.
Also suppose that |f | ≤ M for some M > 0. We want to show that f is Riemann
integrable. The idea is to show that the Riemann sums of f satisfy a Cauchy
criterion. Let ε > 0 be given. Then there are countably many open intervals
(αk, βk) such that

D ⊂
⋃

(αk, βk),
∑

βk − αk < ε.

Now, f is continuous at each point of K := [a, b]−
⋃

(αk, βk). So for every x ∈ K
there is an open interval Ix containing x such that |f(x) − f(y)| < ε whenever
y ∈ Ix ∩ [a, b]. Then the collection

U := {(αk, βk)}k≥1 ∪ {Ix}x∈K

is an open covering of the compact set [a, b]. Thus it has a Lebesgue number δ > 0,
i.e. for every z ∈ [a, b] there is U ∈ U such that (z − δ, z + δ) ⊂ U .

Let P = {ai}, T = (xi) be a tagged partition, with ‖P‖ < δ. Let Q = {bj} be
a refinement of P , and let S = (yj) be a choice of tags for Q. Then we have

R(f, P, T ) =
∑

f(xi)(ai − ai−1) =
∑

f(xj)(bj − bj−1),

where xj := xi if (bj−1, bj) ⊂ (ai−1, ai). Let

J := {j : (bj−1, bj) ⊂ (ai−1, ai) ⊂ Ix for some x ∈ K}.

Then if j ∈ J we have xj , yj ∈ Ix for some x ∈ K, and therefore |f(xj)−f(yj)| < 2ε.
Now note that for any i and any z ∈ (ai−1, ai) we have

(ai−1, ai) ⊂ (z − δ, z + δ) ⊂ U
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for some U ∈ U . Hence if j /∈ J we must have

(bj−1, bj) ⊂ (ai−1, ai) ⊂ (αk, βk)

for some k. Thus ∑
j /∈J

(bj − bj−1) ≤
∑

(βk − αk) < ε.

Note that k can be the same for several distinct j1, j2, . . . , i.e. we might have
(bjl−1, bjl) ⊂ (αk0 , βk0) for some k0, and l = 1, 2, . . . . But this does not affect the
inequality, since

∑
l(bjl − bjl−1

) ≤ βk0 − αk0 , and we do not need to add βk0 − αk0
several times in the right hand side. Hence we have

|R(f, P, T )−R(f,Q, S)| ≤
∑
|f(xj)− f(yj)|(bj − bj−1)

=
∑
j∈J
|f(xj)− f(yj)|(bj − bj−1)

+
∑
j /∈J

|f(xj)− f(yj)|(bj − bj−1)

< 2ε
∑
j∈J

(bj − bj−1) + 2M
∑
j /∈J

(bj − bj−1)

< 2ε(b− a) + 2Mε =: Cε.

Now let P, P ′ be two partitions with mesh less than δ. Let Q be the common
refinement of P, P ′. Let T, T ′, S be choices of tags for P, P ′, Q respectively. Then
by the above inequality we get

|R(f, P, T )−R(f, P ′, T ′)| ≤ |R(f, P, T )−R(f,Q, S)|
+ |R(f, P ′, T ′)−R(f,Q, S)| < 2Cε.

This is the Cauchy criterion that we were looking for.
Finally let Pn be the partition that divides [a, b] into n equal subintervals. Let

Tn be the sequence of the right endpoints of these subintervals. Then for any ε > 0
we can take n to be large enough so that ‖Pn‖ = b−a

n < δ. Hence we have

|R(f, Pm, Tm)−R(f, Pn, Tn)| < 2Cε,

form ≥ n. Therefore the sequence R(f, Pn, Tn) is Cauchy in R. Thus it converges to
some number I. Now let n be large enough so that ‖Pn‖ < δ and |I−R(f, Pn, Tn)| <
Cε. Then for an arbitrary tagged partition P, T with mesh less than δ, we have

|I −R(f, P, T )| ≤ |I −R(f, Pn, Tn)|+ |R(f, Pn, Tn)−R(f, P, T )| < 3Cε.

As ε is arbitrary we get the desired result. �
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Proof of the Converse. Next suppose f is Riemann integrable and its integral
is I. Then we know that f is bounded. Let D be the set of discontinuities of f .
We have D =

⋃
k≥1Dk where

Dk := {x ∈ [a, b] : oscxf ≥
1

k
}.

In order to show that D has measure zero, it suffices to show that each Dk has
measure zero. Now for any given ε > 0 we can find δ > 0 such that for any tagged
partition P = {aj}, T = (xj) with ‖P‖ < δ we have

|R(f, P, T )− I| < ε.

Let S = (yj) be another sequence of tags for P . Then we have∣∣∣∑(
f(xj)− f(yj)

)
(aj − aj−1)

∣∣∣ = |R(f, P, T )−R(f, P, S)| < 2ε.

Consider some fixed k. Let J := {j : (aj−1, aj) ∩ Dk 6= ∅}. Note that
{(aj−1, aj)}j∈J is a finite family of open intervals that covers Dk, except for pos-
sibly finitely many points of Dk ∩ {aj}. But we can cover those finite points by
finitely many open intervals with total length less than ε. Thus we only need to
show that the total length of {(aj−1, aj)}j∈J is small. Now for j ∈ J we can choose
xj , yj ∈ (aj−1, aj) such that

f(xj)− f(yj) ≥
1

2k
.

The reason is that there is z ∈ Dk ∩ (aj−1, aj), and since osczf ≥ 1
k , we can find

points x, y near z inside its open neighborhood (aj−1, aj) such that |f(x)− f(y)| is
as close to 1

k as we want. Then for j /∈ J we choose xj = yj ∈ (aj−1, aj), so that
f(xj)− f(yj) = 0. Thus we have

1

2k

∑
j∈J

(aj − aj−1) ≤
∑
j∈J

(
f(xj)− f(yj)

)
(aj − aj−1)

=
∑(

f(xj)− f(yj)
)
(aj − aj−1) < 2ε.

Hence
∑

j∈J(aj − aj−1) < 4kε. Therefore Dk has measure zero as desired. �

Remark. An interesting consequence of the Riemann-Lebesgue theorem is that
the interval [a, b] does not have measure zero, which is itself a nontrivial fact.
The reason is that the characteristic function of Q restricted to [a, b] is a bounded
function whose set of discontinuities is all of [a, b], and it is not Riemann integrable.
Therefore if the interval had measure zero we would have a contradiction. From
this we can easily conclude that the open interval (a, b) does not have measure zero
either (how?).
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Remark. Another interesting result is that by the above remark the intervals in R,
and hence R itself, are uncountable. Since otherwise they would have zero measure.
Note that this proof of the uncountability of R avoids any use of Cantor’s diagonal
argument.

Example 5.13. Consider the function

f(x) =


1 when x = 0,
1
q when x = p

q ∈ Q,
where p ∈ Z and q ∈ N have no common divisor,

0 when x /∈ Q.

Note that any nonzero rational number x can be written uniquely as p
q , where p, q

are as above. So f is well defined. We will show that f is continuous at every
x /∈ Q, and it is discontinuous at every x ∈ Q. Therefore f is Riemann integrable.
To prove this, first suppose x ∈ Q. Then there is a sequence of irrational numbers
xn converging to x. But f(xn) = 0, so f(xn)→ 0 6= f(x). Hence f is discontinuous
at x.

Next suppose x /∈ Q, and xn → x. We have to show that f(xn) → 0 = f(x),
in order to conclude that f is continuous at x. Let ε > 0 be given. Let p ∈ Z
and q ∈ N. We claim that there are at most finitely many p

q ∈ Q ∩ (x − 1, x + 1)

such that p, q have no common divisor, and 0 < q < 1
ε . The reason is that we have

|pq − x| < 1. Hence |p| < 1
ε (|x| + 1). Thus there are finitely many choices for p, q,

and the claim follows. Let N be large enough so that for n ≥ N , xn is closer to
x than any of these finitely many rational numbers. Also, we can take N to be
large enough so that for n ≥ N we have xn 6= 0. This is possible since x 6= 0. Now
for n ≥ N we must have |f(xn)| < ε. Since if xn /∈ Q then f(xn) = 0. And if
xn ∈ Q then we have xn = p

q where p, q have no common divisor, and q > 1
ε . Thus

f(xn) = 1
q < ε. Finally, as ε was arbitrary, we get f(xn)→ 0 as desired.

Theorem 5.14. Continuous functions are Riemann integrable.

Proof. A continuous function on an interval [a, b] is bounded, and its set of
discontinuities is empty. �

Exercise 5.15. Show that the set of discontinuities of a monotone function is
countable, and conclude that monotone functions are Riemann integrable.

Theorem 5.16. The product of Riemann integrable functions is Riemann inte-
grable.

Proof. Let Z(f) denote the set of discontinuities of a function f . Now suppose
f, g are Riemann integrable. Then Z(f) and Z(g) have measure zero. But

Z(fg) ⊂ Z(f) ∪ Z(g),
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since fg is continuous at the points where both f, g are continuous. Thus Z(fg) has
measure zero too. Also, fg is bounded as f, g are bounded. Hence fg is Riemann
integrable. �

Theorem 5.17. Suppose f : [a, b]→ [c, d] is Riemann integrable and φ : [c, d]→ R
is continuous. Then φ ◦ f is Riemann integrable.

Proof. First note that φ ◦ f is bounded, since φ is continuous. Let Z(f) denote
the set of discontinuities of f . Then Z(f) has measure zero. As φ is continuous we
have Z(φ◦f) ⊂ Z(f), since φ◦f is continuous at the points where f is continuous.
Thus Z(φ ◦ f) has measure zero too. Hence φ ◦ f is Riemann integrable. �

Theorem 5.18. Suppose f : [a, b]→ R is Riemann integrable. Then |f | is Riemann
integrable and we have ∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)|dx.

Proof. Since | | is a continuous function, |f | is Riemann integrable. The inequal-
ity follows from the monotonicity of the integral and −|f | ≤ f ≤ |f |. �

Exercise 5.19. Suppose f, g are integrable, and |g| ≥ m for some m > 0. Show
that f

g is Riemann integrable.

Theorem 5.20. Suppose f : [a, b]→ R is Riemann integrable and ψ : [c, d]→ [a, b]
is a bijection such that ψ−1 : [a, b]→ [c, d] is Lipschitz, i.e.

|ψ−1(x)− ψ−1(y)| ≤ K|x− y|

for all x, y ∈ [a, b] and some K > 0. Then f ◦ ψ is Riemann integrable.
In particular, if ψ : [c, d]→ [a, b] is a continuous bijection which is differentiable

on (c, d) and |ψ′| > κ for some κ > 0, then f ◦ ψ is Riemann integrable.

Proof. First note that f ◦ ψ is bounded, since f is bounded. Next note that
as ψ−1 is continuous and [a, b] is compact, ψ = (ψ−1)−1 is continuous. So ψ,ψ−1

are homeomorphisms. Hence by the intermediate value theorem ψ,ψ−1 are strictly
monotone, as shown in Exercise 2.84. Now let Z(f) be the set of discontinuities of
f , and let Z(f ◦ ψ) be the set of discontinuities of f ◦ ψ. Then we have

Z(f ◦ ψ) ⊂ ψ−1(Z(f)),

since f ◦ ψ is continuous at a point x if f is continuous at ψ(x). (Actually, the
above two sets are equal due to the continuity of ψ−1, but we do not use this
fact). We want to show that Z(f ◦ ψ) has measure zero. It suffices to show that
ψ−1(Z(f)) has measure zero. Since finite sets have measure zero, we can assume
that c, d /∈ ψ−1(Z(f)).
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Suppose ε > 0 is given. Let {(ai, bi)}i≥1 be a countable family of intervals that
covers Z(f), with

∑
i≥1 bi − ai < ε. We can assume that each (ai, bi) is inside

(a, b). To simplify the notation, we assume that ψ−1 is strictly increasing. Then
{(ψ−1(ai), ψ

−1(bi))}i≥1 is a countable family of intervals covering ψ−1(Z(f)), whose
total length is ∑

i≥1

[ψ−1(bi)− ψ−1(ai)] ≤ K
∑
i≥1

bi − ai < Kε.

For the second statement of the theorem, note that ψ−1 is continuous since ψ is
continuous on the compact set [c, d]. Thus as we said before, ψ is strictly monotone.
Hence ψ({c, d}) = {a, b}, and ψ((c, d)) = (a, b). Then ψ−1 is differentiable on (a, b)
with |(ψ−1)′| < 1

κ . Therefore by the mean value theorem we have

|ψ−1(x)− ψ−1(y)| ≤ 1

κ
|x− y|

for all x, y ∈ [a, b]. �

Theorem 5.21. Suppose f : [a, b]→ R is Riemann integrable and ψ is a C1 func-
tion (not necessarily one-to-one) on an open interval containing [c, d]. If ψ([c, d]) ⊂
[a, b], and the set of critical points of ψ in [c, d] i.e.

C := {x ∈ [c, d] : ψ′(x) = 0}

has measure zero, then f ◦ ψ is Riemann integrable.

Proof. It is enough to show that f ◦ ψ is bounded and its set of discontinuities
has measure zero. Since f is integrable and therefore bounded, f ◦ ψ is bounded
too. Let D ⊂ [c, d] be the set of discontinuities of f ◦ψ, and Z ⊂ [a, b] be the set of
discontinuities of f . As ψ is continuous we have D ⊂ B := ψ−1(Z). So it suffices
to show that B has measure zero.

Now note that the set of critical points of ψ in [c, d] is a closed set, since ψ′

is continuous. By our assumption C has measure zero. Let In be the open set
{x ∈ (c, d) : |ψ′(x)| > 1

n}. Then similarly to the proof of the previous theorem we
can show that B∩In has measure zero. Note that In is the union of countably many
disjoint intervals, and the restriction of ψ to each of these intervals is one-to-one.
Now we have

B = (B ∩ {c, d})
⋃

(B ∩ C)
⋃ ⋃

n≥1

(B ∩ In).

Hence B is the union of countably many sets with measure zero, so B has measure
zero too. �
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Remark. The composition of two Riemann integrable functions is not in general
Riemann integrable. Even if f is Riemann integrable and ψ is a C1 bijection, f ◦ψ
is not necessarily Riemann integrable. Hence in the above two theorems we either
imposed a lower bound on |ψ′|, or required the set of critical points of ψ to have
measure zero. Interestingly, it can be shown that when ψ is a C1 bijection whose
set of critical points is not of measure zero, then there is a Riemann integrable
function f such that f ◦ ψ is not Riemann integrable.

Theorem 5.22. Suppose f : [a, b]→ R is Riemann integrable. Then the restriction
of f to any subinterval of [a, b] is Riemann integrable.

Proof. The restriction of f to any subinterval is obviously bounded. Let Z(f)
denote the set of discontinuities of f . Then Z(f) has measure zero. Suppose [c, d]
is a subinterval of [a, b]. Since Z(f |[c,d]) ⊂ Z(f), Z(f |[c,d]) has measure zero too.
Thus f |[c,d] is Riemann integrable. �

5.3 Properties of the Integral

Notation. When b > a we use the convention∫ a

b
f(x)dx := −

∫ b

a
f(x)dx,

and when b = a we set
∫ a
a f(x)dx := 0.

Theorem 5.23. Suppose f : [a, c]→ R is Riemann integrable, and b ∈ (a, c). Then
we have ∫ c

a
f(x)dx =

∫ b

a
f(x)dx+

∫ c

b
f(x)dx.

Proof. We know that f is Riemann integrable over [a, b] and [b, c]. Let P, P ′ be
partitions of [a, b] , [b, c] with mesh less than δ. Then Q = P ∪ P ′ is a partition
of [a, c] with mesh less than δ. Suppose T, T ′ are choices of tags for P, P ′, then
S = T ∪ T ′ is a choice of tags for Q. Let Iyz be the integral of f over the interval
[y, z]. Then for δ small enough we have

|Iac −R(f,Q, S)| < ε, |Iab −R(f, P, T )| < ε, |Ibc −R(f, P ′, T ′)| < ε.

Now note that
R(f,Q, S) = R(f, P, T ) +R(f, P ′, T ′).

Therefore |Iac− Iab− Ibc| < 3ε. Since ε is arbitrary we must have Iac = Iab + Ibc as
desired. �
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Remark. It is easy to see that in the above theorem we can allow a, b, c to have
any order other than a < b < c. We can also allow some of them to be equal. For
example when a < c < b we have∫ c

a
f(x)dx =

∫ b

a
f(x)dx−

∫ b

c
f(x)dx =

∫ b

a
f(x)dx+

∫ c

b
f(x)dx.

Remark. As a consequence of the above theorem, we can easily show by induction
that if P = {a0, . . . , an} is a partition of [a, c] then we have∫ c

a
f(x)dx =

n∑
j=1

∫ aj

aj−1

f(x)dx.

Fundamental Theorem of Calculus I. Suppose f : [a, b] → R is Riemann
integrable. Then

F (x) =

∫ x

a
f(t)dt

is continuous on [a, b]. Also F is differentiable at every x ∈ (a, b) where f is
continuous, with derivative F ′(x) = f(x).

Remark. The function F (x) =
∫ x
a f(t)dt is called the indefinite integral of f .

Proof. We know that |f | ≤M for some M > 0. Then we have

|F (x+ h)− F (x)| =
∣∣∣∣∫ x+h

x
f(t)dt

∣∣∣∣ ≤M |h| −→h→0
0.

Hence F is continuous.
Now note that we have

1

h
[F (x+ h)− F (x)] =

1

h

∫ x+h

x
f(t)dt.

To show that F is differentiable, it is enough to prove that the right hand side of
the above equation converges to f(x) as h → 0. Consider the constant function
g = f(x). Then∣∣∣∣1h

∫ x+h

x
f(t)dt− f(x)

∣∣∣∣ =

∣∣∣∣1h
∫ x+h

x
f(t)dt− 1

h

∫ x+h

x
g(t)dt

∣∣∣∣
=

1

|h|

∣∣∣∣∫ x+h

x

(
f(t)− f(x)

)
dt

∣∣∣∣
≤ sup
|t−x|≤|h|

|f(t)− f(x)| −→
h→0

0,

due to the continuity of f at x. �
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Remark. The above theorem implies that a continuous function f has an an-
tiderivative, i.e. there is a differentiable function F such that F ′ = f on the
interior of the domain of f .

Fundamental Theorem of Calculus II. Suppose f is defined on an open interval
containing [a, b], and is differentiable at every point of [a, b]. If f ′ is Riemann
integrable over [a, b], then ∫ b

a
f ′(x)dx = f(b)− f(a).

Notation. We sometimes write f(x)
∣∣b
a
instead of f(b)− f(a).

Proof. Let I =
∫ b
a f
′(x)dx, and let Pn be the partition that divides [a, b] into n

equal subintervals. Then by the mean value theorem, for some xi ∈ (ai−1, ai) we
have ∣∣I − (f(b)− f(a)

)∣∣ =
∣∣∣I −∑(

f(ai)− f(ai−1)
)∣∣∣

=
∣∣∣I −∑ f ′(xi)(ai − ai−1)

∣∣∣ =
∣∣I −R(f ′, Pn, Tn)

∣∣.
Where Tn = (xi). As n → ∞, R(f ′, Pn, Tn) → I. Thus we must have I =
f(b)− f(a). �

Example 5.24. There exists an increasing continuous function F : [0, 1] → R,
called the Cantor function, whose derivative vanishes almost everywhere but it
is not constant. The construction of F uses the Cantor set C. Let x ∈ C. We
know that x =

∑
n≥1

ωn
3n where each ωn is either 0 or 2. Here (0.ω1ω2ω3 · · · )3 is a

representation of x in base 3. We define

F (x) =
∑
n≥1

ωn/2

2n
.

In other words, we change each 2 in the expansion of x to 1 and let F (x) be the
number whose expansion in base 2 is the new sequence, i.e.

F (x) =
(
0.
ω1

2

ω2

2

ω3

2
. . .
)

2
.

For example 1
4 can be represented in base 3 as (0.020202 . . . )3. So the representation

of F (1
4) in base 2 is (0.010101 . . . )2, i.e. F (1

4) = 1
3 . Similarly we can see that

F (0) = 0 and F (1) = 1.
If x ∈ [0, 1]−C then it belongs to one of the intervals (c1, c2) that we removed

during the construction of C. Then we have F (c1) = F (c2). To see this we can
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show by induction that if (c1, c2) is removed during the nth step of construction of
C then the representation of c1, c2 in base 3 is of the form

c1 = (0.ω1 · · ·ωn−11)3 = (0.ω1 · · ·ωn−10222 . . . )3, c2 = (0.ω1 · · ·ωn−12)3,

where each ωi is either 0 or 2. This is clear for the only interval removed during the
first step of construction i.e. (1

3 ,
2
3). For the induction step note that the endpoints

of the closest intervals removed during the (n+1)th step of construction of C which
are respectively on the left and right hand side of (c1, c2) are

c1 −
2

3n+1
= (0.ω1 · · ·ωn−101)3, c1 −

1

3n+1
= (0.ω1 · · ·ωn−102)3,

c2 +
1

3n+1
= (0.ω1 · · ·ωn−121)3, c2 +

2

3n+1
= (0.ω1 · · ·ωn−122)3.

Therefore by using this representation we get

F (c1) =
(
0.
ω1

2
· · · ωn−1

2
0111 . . .

)
2

=
(
0.
ω1

2
· · · ωn−1

2
1
)

2
= F (c2).

Now for x ∈ (c1, c2) we define F (x) to be the same as F (c1) = F (c2). Thus F is
constant on the interval (c1, c2). This is true for every interval that we removed
during the construction of C, i.e. F is constant over each such interval. As a result
F ′(x) = 0 for any x ∈ [0, 1]−C, because x belongs to one of the removed intervals.
Therefore F ′ vanishes almost everywhere, since C has measure zero.

It only remains to show that F is continuous and increasing. Assume that for
x, y ∈ [0, 1] we have 0 < y − x < 3−n. If x, y /∈ C then either x, y belong to the
same interval removed during the construction of C in which case F (x) = F (y),
or they belong to two different intervals. In the latter case, and in the case that x
and/or y belong to C, we have F (y) = F (c) and F (x) = F (c̃), where x ≤ c̃ < c ≤ y
and c, c̃ ∈ C. But then we have 0 < c − c̃ < 3−n, so the representation of c, c̃
in base 3 using only 0, 2 agree on at least the first n terms. In addition if their
representations agree on the first m ≥ n terms, then the (m + 1)th digit in the
representation of c is greater than the (m + 1)th digit in the representation of c̃.
Thus the representation of F (c), F (c̃) in base 2 agree on the first m terms too, and
the (m+ 1)th digit in the representation of F (c) is greater than the (m+ 1)th digit
in the representation of F (c̃). Hence

0 ≤ F (y)− F (x) ≤ 2−n.

Note that by our construction F is increasing, but not strictly increasing. There
are continuous functions that are strictly increasing and their derivatives vanish
almost everywhere. But their construction requires more advanced tools. �
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Integration by Parts. Suppose f, g are differentiable on an open interval con-
taining [a, b], and f ′, g′ are Riemann integrable on [a, b]. Then∫ b

a
f(x)g′(x)dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′(x)g(x)dx.

Proof. Note that f, g are continuous, hence they are Riemann integrable. Also
note that fg′ and f ′g are Riemann integrable. Now we can apply the fundamental
theorem of calculus to F = fg, noting that F ′ = f ′g + fg′. �

Remark. It is trivial that we can allow b ≤ a in the above two theorems. We can
also allow d ≤ c in the following theorem.

Change of Variable. Suppose g has a continuous derivative on an open interval
containing [c, d]. Also suppose that g′ is nonzero on (c, d). Let I be the closed
interval with endpoints g(c), g(d). Then for a Riemann integrable function f : I →
R we have ∫ g(d)

g(c)
f(x)dx =

∫ d

c
f(g(t))g′(t)dt.

Remark. In Calculus courses this theorem is also referred to as integration by
substitution.

Proof. First we assume that g′ is nonzero on an open interval containing [c, d].
Let a = g(c) and b = g(d). As g′ is continuous and nonzero, it is either positive or
negative. First suppose g′ > 0. Note that g is continuous and strictly increasing,
thus g : [c, d]→ [a, b] is a bijection by the intermediate value theorem. Now as g′ is
continuous and positive on the compact set [c, d], there are positive constants K,κ
such that

0 < κ ≤ g′ ≤ K on [c, d].

Thus f(g)g′ is Riemann integrable on [c, d].
Let Pn = {ci} be the partition that divides [c, d] into n equal subintervals. Then

there are xi ∈ (ci−1, ci) such that

g(ci)− g(ci−1) = g′(xi)(ci − ci−1).

Now let ai := g(ci). As g is strictly increasing, Qn := {ai} is a partition of [a, b].
We also have

‖Qn‖ ≤ K‖Pn‖.
Set yi := g(xi). Then Tn = (xi) and Sn = (yi) are choices of tags for Pn, Qn
respectively. Hence we have

R(f,Qn, Sn) =
∑

f(yi)(ai − ai−1)

=
∑

f(g(xi))g
′(xi)(ci − ci−1) = R(f(g)g′, Pn, Tn).
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As n → ∞, ‖Pn‖ → 0 and ‖Qn‖ → 0. Thus the Riemann sums converge to the
corresponding integrals, and we get the desired result.

Next suppose g′ < 0. Then g : [c, d] → [b, a] is a continuous strictly decreasing
bijection. We also have

0 < κ ≤ |g′| ≤ K on [c, d],

for some positive constants K,κ. Furthermore, g′f(g) is Riemann integrable on
[c, d]. We can repeat the above proof, but this time we define ai := g(cn−i) and
yi := g(xn−i+1). Then as g is strictly decreasing, Qn := {ai} is a partition of [b, a].
Therefore

−R(f,Qn, Sn) = −
n∑
i=1

f(yi)(ai − ai−1)

= −
n∑
i=1

f(g(xn−i+1))
(
g(cn−i)− g(cn−i+1)

)
= −

n∑
j=1

f(g(xj))
(
g(cj−1)− g(cj)

)
(j := n− i+ 1)

=

n∑
i=1

f(g(xj))g
′(xj)(cj − cj−1) = R(f(g)g′, Pn, Tn).

Hence in the limit n→∞ we obtain∫ g(d)

g(c)
f(x)dx = −

∫ a

b
f(x)dx =

∫ d

c
f(g(t))g′(t)dt.

Now consider the general case in which we only assume that g′ is nonzero on
(c, d). Let ε > 0 be small. Then g has a continuous nonzero derivative on an open
interval containing [c+ ε, d− ε]. Hence we have∫ g(d−ε)

g(c+ε)
f(x)dx =

∫ d−ε

c+ε
f(g(t))g′(t)dt. (∗)

Suppose M > 0 is an upper bound for |f |. Then we have∣∣∣∣∣
∫ g(d)

g(c)
f(x)dx−

∫ g(d−ε)

g(c+ε)
f(x)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ g(d)

g(d−ε)
f(x)dx+

∫ g(c+ε)

g(c)
f(x)dx

∣∣∣∣∣
≤
∫ g(d)

g(d−ε)
|f(x)|dx+

∫ g(c+ε)

g(c)
|f(x)|dx

≤M
(
|g(d)− g(d− ε)|+ |g(c+ ε)− g(c)|

)
.
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Hence as ε→ 0 we have
∫ g(d−ε)
g(c+ε) f(x)dx→

∫ g(d)
g(c) f(x)dx, since g is continuous. Sim-

ilarly we can show that
∫ d−ε
c+ε f(g(t))g′(t)dt→

∫ d
c f(g(t))g′(t)dt, since g′ is bounded

too. Thus we get the desired result if we let ε→ 0 in (∗). �

Remark. In the above theorem if f is continuous on an open interval containing
the image of g, then we only need to assume that g is differentiable and g′ is
Riemann integrable. Because if F is an antiderivative of f , then for G = F ◦ g we
have G′ = (F ′ ◦ g)g′ = (f ◦ g)g′. Thus the fundamental theorem of calculus implies∫ d

c
f(g(t))g′(t)dt = G(d)−G(c) = F (g(d))− F (g(c)) =

∫ g(d)

g(c)
f(x)dx.

The hypothesis of continuity of f can be further weakened to mere Riemann integra-
bility of f , but the proof is more involved. Interestingly, in this more general case,
(f ◦ g)g′ is Riemann integrable while f ◦ g is not necessarily Riemann integrable.

Exercise 5.25. Suppose f, g are Riemann integrable functions on [a, b], and f = g
a.e. Show that ∫ b

a
f(x)dx =

∫ b

a
g(x)dx.

Hint: Since intervals do not have measure zero, for every partition of [a, b] we can
choose tags at which f, g are equal.

Remark. The assumption of Riemann integrability of both f, g is critical in the
above exercise, since for example the characteristic function of Q is a.e. zero but it
is not Riemann integrable.

Exercise 5.26. Show that if f is continuous on [a, b], then there is c ∈ [a, b] such
that

f(c) =
1

b− a

∫ b

a
f(x)dx.

This is the mean value theorem for integrals.

Improper Integrals

Definition 5.27. Suppose f : [a, b) → R is integrable on any closed subinterval
[a, c]. Then the improper Riemann integral of f is∫ b

a
f(x)dx := lim

c→b−

∫ c

a
f(x)dx

if the limit exists. Here b can be +∞ too. We can similarly define the improper
integral when f : (a, b] → R, where here a can be −∞ too. We say an improper
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integral is convergent if its corresponding limit exists and is finite. Finally for
f : R→ R we define∫ ∞

−∞
f(x)dx :=

∫ 0

−∞
f(x)dx+

∫ ∞
0

f(x)dx

if the two improper integrals on the right hand side converge.

Integral Test. Suppose f : [1,∞)→ R is a decreasing nonnegative function. Then
the series

∑∞
n=1 f(n) is convergent if and only if

∫∞
1 f(x)dx is convergent.

Proof. We have f(k + 1) ≤
∫ k+1
k f(x)dx ≤ f(k). Thus

m+1∑
k=n+1

f(k) ≤
∫ m+1

n
f(x)dx ≤

m∑
k=n

f(k),

∫ m+1

n
f(x)dx ≤

m∑
k=n

f(k) ≤
∫ m

n−1
f(x)dx.

Now if the improper integral is finite, then
∫m
n f(x)dx → 0 as m,n → ∞. Hence

the sequence of the partial sums is Cauchy, and the series is convergent.
Conversely if the series is convergent, then

∑m
k=n f(k) → 0 as m,n → ∞.

Therefore the sequence

an :=

∫ n

1
f(x)dx

is Cauchy. Thus an → a. Then we must have
∫∞

1 f(x)dx = a, since∫ n

1
f(x)dx ≤

∫ c

1
f(x)dx ≤

∫ n+1

1
f(x)dx

if n ≤ c < n+ 1. �

Example 5.28. The series
∑∞

n=1
1
np is convergent if and only if p > 1. Because

when p 6= 1 we have∫ ∞
1

1

xp
dx = lim

c→∞

( 1

1− p
c1−p − 1

1− p
)

=

{
1
p−1 p > 1,

∞ p < 1.

And when p = 1 we have∫ ∞
1

1

x
dx = lim

c→∞
(log c− log 1) =∞.
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5.4 The Darboux Integral

Definition 5.29. Let f : [a, b] → R be a bounded function. The lower sum
and upper sum of f with respect to the partition P = {a0, . . . , an} of [a, b] are
respectively

L(f, P ) :=
n∑
i=1

mi(ai − ai−1), U(f, P ) :=
n∑
i=1

Mi(ai − ai−1),

where

mi = inf{f(x) : ai−1 ≤ x ≤ ai}, Mi = sup{f(x) : ai−1 ≤ x ≤ ai}.

Remark. It is obvious that for any choice of tags T we have

L(f, P ) ≤ R(f, P, T ) ≤ U(f, P ).

Also note that L(f, P ) and U(f, P ) are not necessarily Riemann sums for some
choice of tags, because f does not necessarily achieve its infimum or supremum
over the subintervals [ai−1, ai].

Definition 5.30. Let f : [a, b] → R be a bounded function. The lower integral
and upper integral of f are respectively∫ b

a
f(x)dx := sup

P
L(f, P ),

∫ b

a
f(x)dx := inf

P
U(f, P ).

Here, P ranges over all partitions of [a, b]. We say f is Darboux integrable (on
[a, b]) if ∫ b

a
f(x)dx =

∫ b

a
f(x)dx,

and in this case we denote this common value by
∫ b
a f(x)dx and call it theDarboux

integral of f (over [a, b]).

Proposition 5.31. Suppose P is a partition of [a, b], and Q is a refinement of P .
Then for any bounded function f : [a, b]→ R we have

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Proof. Suppose P = {a0, . . . , an}. It suffices to prove the claim when Q =
P∪{c}. The general case then follows by an easy induction. Suppose aj−1 < c < aj .
Let

m := inf{f(x) : c ≤ x ≤ aj}, m′ := inf{f(x) : aj−1 ≤ x ≤ c}.
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Then we have m,m′ ≥ mj = inf{f(x) : aj−1 ≤ x ≤ aj}. Hence

L(f,Q)− L(f, P ) = m(aj − c) +m′(c− aj−1)−mj(aj − aj−1)

≥ mj(aj − c) +mj(c− aj−1)−mj(aj − aj−1) = 0.

The case of upper sums is similar. �

Remark. Suppose P1, P2 are two partitions of [a, b], and Q = P1 ∪ P2 is their
common refinement. Then the above proposition implies that

L(f, P1) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P2).

Thus any lower sum is less than or equal to any upper sum. As a result for any
bounded function f we have ∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx.

Theorem 5.32. A bounded function f : [a, b] → R is Darboux integrable if and
only if for all ε > 0 there exists a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Proof. Suppose f is Darboux integrable. So we have
∫ b
a f(x)dx =

∫ b
a f(x)dx. Let

ε > 0 be given. Since the upper integral is the infimum of the upper sums and the
lower integral is the supremum of the lower sums, there are partitions P1, P2 such
that

U(f, P1)−
∫ b

a
f(x)dx <

ε

2
,

∫ b

a
f(x)dx− L(f, P2) <

ε

2
.

Therefore we have U(f, P1) − L(f, P2) < ε. Now let P be the common refinement
of P1, P2. Then we have

U(f, P )− L(f, P ) ≤ U(f, P1)− L(f, P2) < ε,

because refining a partition causes the upper sum to decrease and the lower sum
to increase.

Next suppose f satisfies the specified property in the theorem. Then for all
ε > 0 we have 0 ≤

∫ b
a f(x)dx −

∫ b
a f(x)dx < ε. Thus

∫ b
a f(x)dx =

∫ b
a f(x)dx, and f

is Darboux integrable. �

Theorem 5.33. A function f : [a, b] → R is Riemann integrable if and only if it
is Darboux integrable. In this case, the Riemann integral of f is the same as its
Darboux integral.



CHAPTER 5. INTEGRATION 151

Proof. First suppose f is Riemann integrable and I is its Riemann integral. Then
f is bounded. Suppose ε > 0 is given. There is δ > 0 such that if P is a partition
of [a, b] with ‖P‖ < δ then |R(f, P, T ) − I| < ε

4 for any choice of tags T . Let
P = {a0, . . . , an} be such a partition, and let mi,Mi be respectively the infimum
and supremum of f on [ai−1, ai]. Then we can choose tags T1 = (x1, . . . , xn) such
that 0 ≤ f(xi)−mi <

ε
4(b−a) . Then we have

0 ≤ R(f, P, T1)− L(f, P ) =
∑

(f(xi)−mi)(ai − ai−1) <
ε

4
.

Similarly we can choose tags T2 so that

0 ≤ U(f, P )−R(f, P, T2) <
ε

4
.

Therefore we have

U(f, P )− L(f, P ) = U(f, P )−R(f, P, T2) +R(f, P, T2)− I
+ I −R(f, P, T1) +R(f, P, T1)− L(f, P ) < ε.

Hence f is Darboux integrable. Finally note that we also have |U(f, P ) − I| < ε
2 .

Therefore |
∫ b
a f(x)dx − I| ≤ ε

2 . Thus the Darboux integral of f is the same as its
Riemann integral, since ε is arbitrary.

Next suppose f is Darboux integrable. Then f is bounded. Suppose ε > 0 is
given. Then there is a partition P such that U(f, P ) − L(f, P ) < ε. Since any
Riemann sum is between the upper sum and the lower sum, for any choices of tags
T, S for P we have

|R(f, P, T )−R(f, P, S)| < ε.

Now we can repeat the argument given at the end of the proof of Riemann-Lebesgue
theorem to conclude that the set of discontinuities of f has measure zero. Hence
f is Riemann integrable. Therefore the Riemann integral of f is the same as its
Darboux integral as we proved in the last paragraph. �

Exercise 5.34. Prove that a Darboux integrable function is Riemann integrable,
without using the Riemann-Lebesgue theorem.

Theorem 5.35. A bounded function f : [a, b] → R is Riemann integrable if and
only if for all ε > 0 there exists a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Proof. This is a consequence of the previous two theorems. �



Chapter 6

Sequences and Series of Functions

6.1 Uniform Convergence

Definition 6.1. Let X,Y be two metric spaces. A sequence of functions
fn : X → Y converges pointwise to the function f : X → Y if fn(x)→ f(x) for
all x ∈ X. The sequence (fn) converges uniformly to f if

∀ε > 0 ∃N ∈ N such that
∀n ≥ N ∀x ∈ X we have dY (fn(x), f(x)) < ε.

Remark. It is obvious that uniform convergence implies pointwise convergence.
The difference between the two modes of convergence is that in uniform convergence
the integer N does not depend on x ∈ X.

Example 6.2. Let fn : (0, 1) → R be given by fn(x) = xn. Then fn converges
pointwise to the constant function 0, but not uniformly (why?).

Theorem 6.3. Suppose the sequence of functions fn : X → Y converges uniformly
to f : X → Y , and each fn is continuous at a ∈ X. Then f is continuous at a. In
particular, the uniform limit of a sequence of continuous functions is continuous.

Proof. Given ε > 0, let N be large enough such that

dY (fn(x), f(x)) <
ε

3
,

for all x ∈ X and n ≥ N . Now there is δ > 0 so that

dX(x, a) < δ =⇒ dY (fN (x), fN (a)) <
ε

3
.

Then for dX(x, a) < δ we have

dY (f(x), f(a)) ≤ dY (f(x), fN (x)) + dY (fN (x), fN (a)) + dY (fN (a), f(a)) < ε. �

152
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Remark. We can state the above result as

lim
x→a

lim
n→∞

fn(x) = lim
x→a

f(x) = f(a) = lim
n→∞

fn(a) = lim
n→∞

lim
x→a

fn(x).

In other words, we can interchange the two limits. This is not possible in general,
even for sequences. For example

lim
m→∞

lim
n→∞

m

m+ n
= lim

m→∞
0 = 0 6= 1 = lim

n→∞
1 = lim

n→∞
lim
m→∞

m

m+ n
.

Example 6.4. The assumption of uniform convergence is essential in the above
theorem. For example let fn : [0, 1]→ R be given by fn(x) = xn. Then fn converges
pointwise to the discontinuous function

f(x) =

{
0 x ∈ [0, 1),

1 x = 1.

Example 6.5. Let fn : [0, 1]→ R for n ≥ 2 be defined as

fn(x) =


nx 0 ≤ x ≤ 1

n ,

2− nx 1
n ≤ x ≤

2
n ,

0 2
n ≤ x ≤ 1.

Then fn converges pointwise to the constant function 0, but not uniformly (why?).
This example illustrates the fact that pointwise convergence does not imply uniform
convergence, even if the functions and their limit are all continuous and uniformly
bounded with a compact domain of definition.

Definition 6.6. SupposeX,Y are metric spaces. We denote by C0(X,Y ) the space
of all continuous functions from X to Y . We also use the convention C0(X) :=
C0(X,R). In addition, we denote by C0

b (X,Y ) and C0
b (X), the subsets of C0(X,Y )

and C0(X) consisting of bounded continuous functions.

Remark. Note that when X is compact, C0
b (X) = C0(X), since all continuous

functions on a compact space are bounded.

Theorem 6.7. Suppose X is a metric space, and f, g ∈ C0
b (X). Then

dsup(f, g) := sup{ |f(x)− g(x)| : x ∈ X}

is a metric on C0
b (X), called the sup metric. Furthermore, the convergence with

respect to the sup metric is the same as uniform convergence.
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Proof. First note that |f − g| is bounded, since

|f − g| ≤ |f |+ |g| ≤M1 +M2,

where M1,M2 are upper bounds for |f |, |g| respectively. Thus dsup(f, g) is finite. It
is obvious that dsup is positive definite and symmetric. The triangle inequality is
also easy to check. For f, g, h ∈ C0

b (X) we have

dsup(f, h) = sup
x∈X
{|f(x)− h(x)|}

≤ sup
x∈X
{|f(x)− g(x)|+ |g(x)− h(x)|}

≤ sup
x∈X
{|f(x)− g(x)|}+ sup

x∈X
{|g(x)− h(x)|}

= dsup(f, g) + dsup(g, h).

Here we used the fact that supa∈A, b∈B{a+ b} ≤ supa∈A{a}+ supb∈B{b}.
Now suppose (fn) is a sequence in C0

b (X) that converges to f ∈ C0
b (X) in the

sup metric. This means that for every ε > 0 there is N ∈ N such that for all n ≥ N
we have

sup
x∈X
{|fn(x)− f(x)|} = dsup(fn, f) < ε.

But this means that for all x ∈ X we have |fn(x) − f(x)| < ε. So (fn) converges
uniformly to f . The converse is also true, since if |fn(x)− f(x)| < ε for all x ∈ X,
then supx∈X{|fn(x)− f(x)|} < ε too. �

Remark. For f ∈ C0
b (X) we also define the sup norm

‖f‖sup := sup{ |f(x)| : x ∈ X},

which is obviously finite since f is bounded. Then we have dsup(f, g) = ‖f − g‖sup,
and ‖f‖sup = dsup(f, 0). Thus in particular we have

‖f + g‖sup = dsup(f + g, 0) ≤ dsup(f + g, g) + dsup(g, 0)

= ‖f + g − g‖sup + ‖g‖sup = ‖f‖sup + ‖g‖sup.

Theorem 6.8. Suppose X is a metric space. Then the space C0
b (X) equipped with

the metric dsup is a complete metric space. In particular, C0(X) with dsup is a
complete metric space when X is compact.

Proof. Let (fn) be a Cauchy sequence in C0
b (X). Then for each ε > 0 there is

N ∈ N such that for all m,n ≥ N we have

sup
x∈X
{|fn(x)− fm(x)|} = dsup(fn, fm) < ε.
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Thus in particular, for each x ∈ X the sequence (fn(x)) is a Cauchy sequence in
R. Hence it converges to a real number that we call f(x). Therefore (fn) converges
pointwise to f . We have to show that f ∈ C0

b (X), and (fn) converges uniformly to
f . If we show the latter, then f is automatically continuous since it is the uniform
limit of continuous functions fn. Also, f will be automatically bounded. Because
for large n we would have ‖f − fn‖sup < 1. But ‖fn‖sup ≤ M for some M > 0.
Hence ‖f‖sup < M + 1.

Now suppose ε > 0 is given. Then there is N ∈ N such that for all m,n ≥ N
and all x ∈ X we have

|fn(x)− fm(x)| ≤ dsup(fn, fm) <
ε

2
.

In addition for each x ∈ X we have fn(x) → f(x). Thus for each x ∈ X there is
m(x) ≥ N such that

|f(x)− fm(x)(x)| < ε

2
.

Therefore for each x ∈ X and n ≥ N we have

|f(x)− fn(x)| < |f(x)− fm(x)(x)|+ |fm(x)(x)− fn(x)| < ε.

Hence for all n ≥ N we have dsup(f, fn) < ε as desired. �

Definition 6.9. Suppose (fn) is a sequence of real-valued functions on some metric
space. The series

∑∞
n=1 fn is the sequence of partial sums Sk =

∑k
n=1 fn. If (Sk)

converges pointwise, we denote its limit by the same notation
∑∞

n=1 fn and we say
the series converges. If (Sk) converges uniformly we say the series

∑∞
n=1 fn con-

verges uniformly. And if
∑∞

n=1 |fn| converges pointwise we say the series
∑∞

n=1 fn
converges absolutely.

Remark. A uniformly convergent series of continuous functions is continuous, since
each partial sum is continuous.

Weierstrass M-test. Suppose
∑∞

n=1Mn is a convergent series of real numbers,
and

∑∞
n=1 fn is a series of functions in C0

b (X) where X is a metric space. If
‖fn‖sup ≤ Mn for all n, then

∑∞
n=1 fn converges absolutely and uniformly to a

bounded continuous function.

Proof. Suppose ε > 0 is given. Then for large enough m, k with m > k we have

dsup

( m∑
n=1

fn ,
k∑

n=1

fn

)
=
∥∥∥ m∑
n=k+1

fn

∥∥∥
sup

≤
m∑

n=k+1

‖fn‖sup ≤
m∑

n=k+1

Mn < ε,
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since
∑∞

n=1Mn is convergent. Thus the sequence of partial sums of the series∑∞
n=1 fn is Cauchy in C0

b (X). Hence the series
∑∞

n=1 fn converges uniformly to a
bounded continuous function. To see that it also converges absolutely we can repeat
the above argument for the series

∑∞
n=1 |fn| noting that ‖|fn|‖sup = ‖fn‖sup. �

Theorem 6.10. Let f, g : (a, b)→ R. Suppose the sequence of differentiable func-
tions fn : (a, b) → R converges pointwise to f , and the sequence (f ′n) converges
uniformly to g. Then f is differentiable and f ′ = g.

Proof. Fix some x ∈ (a, b). We have to show that f(x+h)−f(x)
h −g(x) goes to zero

when h→ 0. Let
rn(h) :=

fn(x+ h)− fn(x)

h
− f ′n(x),

for h near but not equal to 0. Then (rn) converges pointwise to f(x+h)−f(x)
h − g(x).

But by the mean value theorem applied to the function fm − fn, we have

rm − rn =
[fm(x+ h)− fn(x+ h)]− [fm(x)− fn(x)]

h
+ f ′n(x)− f ′m(x)

= f ′m(x+ ch)− f ′n(x+ ch) + f ′n(x)− f ′m(x),

for some c ∈ (0, 1). Suppose ε > 0 is given. Then there is N ∈ N such that
|f ′n(z) − g(z)| < ε

8 for all z ∈ (a, b) and n ≥ N . Hence for m,n ≥ N we have
|f ′n(z) − f ′m(z)| < ε

4 for all z ∈ (a, b). Therefore for such m,n we have |rm(h) −
rn(h)| < ε

2 for all h. Now set n = N and let m→∞ to get∣∣∣∣f(x+ h)− f(x)

h
− g(x)− rN (h)

∣∣∣∣ < ε

2
,

for all h. Then for small enough h we have |rN (h)| < ε
2 , since fN is differentiable

at x. Hence ∣∣∣∣f(x+ h)− f(x)

h
− g(x)

∣∣∣∣ < ε,

for small enough h. As ε is arbitrary we get f ′(x) = g(x). �

Remark. In the above theorem, we can furthermore deduce that (fn) converges
uniformly to f . To see this let x0 ∈ (a, b) be a fixed point. Let

sn(x) := fn(x)− fn(x0),

for x ∈ (a, b). Then similarly to the above proof, for a given ε > 0 there is N ∈ N
such that for m,n ≥ N we have

|sm(x)− sn(x)| < ε|x− x0| < (b− a)ε,
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for all x. Now let m→∞ to get∣∣f(x)− f(x0)−
(
fn(x)− fn(x0)

)∣∣ < (b− a)ε,

for all x. Suppose N1 ∈ N is large enough so that |f(x0)− fn(x0)| < ε for n ≥ N1.
Then for n ≥ max{N,N1} we have

|f(x)− fn(x)| ≤
∣∣f(x)− f(x0)−

(
fn(x)− fn(x0)

)∣∣+ |f(x0)− fn(x0)|
< (b− a+ 1)ε.

Therefore (fn) converges uniformly to f , since ε and x are arbitrary. �

Example 6.11. The conclusion of the above theorem does not hold without assum-
ing the convergence of (f ′n). For example fn(x) =

√
x2 + 1/n converges uniformly

to the nondifferentiable function f(x) = |x| (why?). Even if the limit function is
differentiable, the limit of the derivatives need not be equal to the derivative of the
limit. For example fn(x) = 1

n sin(n2x) converges uniformly to the constant function
0, but

f ′n(0) = n cos(n20) = n→ +∞ 6= 0.

Theorem 6.12. Suppose the sequence of Riemann integrable functions fn : [a, b]→
R converges uniformly to f : [a, b]→ R. Then f is Riemann integrable and we have

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx.

Proof. First note that f is bounded. Because for N large enough we have
|fN (x) − f(x)| < 1 for all x ∈ [a, b]. But fN is bounded being Riemann inte-
grable. So we have |f | < 1 +M , where M is an upper bound for |fN |. Now let Dn

be the set of discontinuities of fn. Then Dn has measure zero. Hence D :=
⋃
Dn

has measure zero. Also each fn is continuous on [a, b]−D. Therefore f is contin-
uous on [a, b] − D. Thus the set of discontinuities of f has measure zero, since it
is contained in D. Hence f is Riemann integrable. Finally, suppose ε > 0 is given.
Then for n large enough we have |fn(x)− f(x)| < ε

b−a . Hence∣∣∣∣∫ b

a
fn(x)dx−

∫ b

a
f(x)dx

∣∣∣∣ =

∣∣∣∣∫ b

a
[fn(x)− f(x)]dx

∣∣∣∣ ≤ (b− a)
ε

b− a
= ε. �

Exercise 6.13. The assumption of uniform convergence is essential in the above
theorem. For example let fn : [0, 1]→ R be given by

fn(x) =

{
nxn x ∈ [0, 1),

0 x = 1.
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Show that fn converges pointwise to 0, but we have∫ 1

0
fn(x)dx =

n

n+ 1
→ 1 6= 0 =

∫ 1

0
0 dx.

Example 6.14. Here is another example that shows the limit of the integral is not
necessarily the same as the integral of the limit, if the convergence is not uniform.
Let fn : [0, 1]→ R for n ≥ 2 be defined as

fn(x) =


n2x 0 ≤ x ≤ 1

n ,

2n− n2x 1
n ≤ x ≤

2
n ,

0 2
n ≤ x ≤ 1.

Then fn converges pointwise to the constant function 0, but we have∫ 1

0
fn(x)dx = 1 6→ 0 =

∫ 1

0
0 dx.

Theorem 6.15. Suppose the sequence of Riemann integrable functions fn : [a, b]→
R converges uniformly to f : [a, b] → R. Then the sequence of indefinite integrals
Fn(x) :=

∫ x
a fn(t)dt converges uniformly to F (x) :=

∫ x
a f(t)dt.

Proof. First note that by the last theorem f is Riemann integrable. Now suppose
ε > 0 is given. Then for large enough n we have |fn(t)−f(t)| < ε

b−a for all t ∈ [a, b].
Thus for all x ∈ [a, b] we have

|Fn(x)− F (x)| =
∣∣∣∣∫ x

a
[fn(t)− f(t)]dt

∣∣∣∣ ≤ (x− a)
ε

b− a
≤ ε. �

Term by Term Differentiation and Integration. Suppose we have a sequence
of functions fn : [a, b]→ R.
(i) If each fn is Riemann integrable and the series

∑∞
n=1 fn converges uniformly,

then
∑∞

n=1 fn is Riemann integrable and∫ b

a

∞∑
n=1

fn(x) dx =
∞∑
n=1

∫ b

a
fn(x)dx.

Furthermore, the series of indefinite integrals
∑∞

n=1

∫ x
a fn(t)dt converges uni-

formly to
∫ x
a

∑∞
n=1 fn(t) dt.

(ii) Suppose the series
∑∞

n=1 fn converges pointwise. If each fn is differentiable
on (a, b) and the series

∑∞
n=1 f

′
n converges uniformly on (a, b), then

∑∞
n=1 fn

is differentiable on (a, b) and( ∞∑
n=1

fn

)′
=
∞∑
n=1

f ′n.
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Proof. We just need to apply the corresponding results about sequences to the
sequence of partial sums. Let Sk :=

∑k
n=1 fn, and S :=

∑∞
n=1 fn. Then in (i) the

sequence (Sk) converges uniformly to S. Hence S is Riemann integrable, and we
have ∫ b

a

∞∑
n=1

fn(x) dx =

∫ b

a
S(x)dx = lim

k→∞

∫ b

a
Sk(x)dx

= lim
k→∞

k∑
n=1

∫ b

a
fn(x)dx =

∞∑
n=1

∫ b

a
fn(x)dx.

The cases of indefinite integrals and derivatives are similar. �

Theorem 6.16. There exists a continuous function f : R → R that is nowhere
differentiable, i.e. it is not differentiable at any point.

Proof. Let φ(x) := |x| for x ∈ [−1, 1]. Extend φ to a 2-periodic function on all of
R by setting φ(x+2k) := φ(x) for x ∈ [−1, 1] and k ∈ Z. Note that φ is continuous,
and 0 ≤ φ ≤ 1. Also note that φ equals the linear function

(−1)k(x− k − 1

2
) +

1

2

on the interval [k, k + 1] where k ∈ Z. In addition, for all x, y ∈ R we have

|φ(x)− φ(y)| ≤ |x− y|.

Because if |x− y| ≥ 1 or x, y ∈ [k, k + 1] for some k ∈ Z, then the inequality holds
obviously. Otherwise, we can choose an integer k between x, y, and compare the
values of φ at these three points, to get the desired inequality. Furthermore, note
that when x, y ∈ [k, k + 1] for some k ∈ Z, the inequality becomes an equality.

We claim that

f(x) :=

∞∑
n=0

(3

4

)n
φ(4nx)

is a continuous function that is not differentiable at any x. First note that the
numerical series

∑
n≥0(3

4)n is convergent, so by the M-test of Weierstrass, the above
series converges uniformly. Therefore f is continuous.

Now note that φ(4nx) is a periodic function of period 2
4n . Let δm = 2

4m+1 .
Then for a fixed x and every n > m we have φ(4n(x ± δm)) = φ(4nx), since
±4nδm = ±4n−m−1 · 2 is an integer multiple of the period of φ. We also have
4mδm = 1

2 . Thus, depending on 4mx we can choose hm = δm or hm = −δm so that
4m(x+hm) and 4mx belong to an interval of the form [k, k+ 1] where k ∈ Z. Then
we have

|φ(4m(x+ hm))− φ(4mx)| = |4mhm| = 4mδm =
1

2
.
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Therefore we have

|f(x+ hm)− f(x)| =
∣∣∣∑
n≥0

(3

4

)n
(φ(4n(x+ hm))− φ(4nx))

∣∣∣
=
∣∣∣(3

4

)m
(φ(4m(x+ hm))− φ(4mx))

+
∑
n<m

(3

4

)n
(φ(4n(x+ hm))− φ(4nx))

∣∣∣
≥
(3

4

)m 1

2
−
∑
n<m

(3

4

)n|4nhm|
=

1

2 · 4m
(
3m − 3m − 1

3− 1

)
=

3m + 1

4m+1
.

Hence ∣∣∣∣f(x+ hm)− f(x)

hm

∣∣∣∣ ≥ 3m + 1

2
−→
m→∞

∞.

But hm → 0 as m → ∞. So f cannot be differentiable at x, since otherwise
1
hm

(f(x+ hm)− f(x)) would have converged to f ′(x). �

6.2 Power Series

Definition 6.17. A power series is a series of real-valued functions of a real
variable that has the form

∞∑
n=0

cn(x− a)n.

The numbers cn are the coefficients of the power series, and a is its center.

Remark. When we deal with power series, we use the convention 00 = 1.

Theorem 6.18. For every power series
∑∞

n=0 cn(x−a)n there is R ∈ [0,∞], called
its radius of convergence, such that the power series converges absolutely for
|x− a| < R and diverges for |x− a| > R. Furthermore

R =
1

lim sup n
√
|cn|

.

Proof. By the root test, the convergence and divergence are determined by the
value

lim sup n
√
|cn(x− a)n| = lim sup |x− a| n

√
|cn|

= |x− a| lim sup n
√
|cn| =

|x− a|
R

. �
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Remark. The interval (a − R, a + R) is called the interval of convergence of
the power series.

Theorem 6.19. Suppose the power series f(x) =
∑∞

n=0 cn(x − a)n has radius of
convergence R > 0. Then the power series converges uniformly on [a− r, a+ r] for
every r < R.

Proof. Let Sn(x) be the nth partial sum of the power series. Then for m > n
and |x| ≤ r we have

|Sm(x)− Sn(x)| =

∣∣∣∣∣
m∑

i=n+1

cix
i

∣∣∣∣∣ ≤
m∑

i=n+1

|ci|ri.

But the power series is absolutely convergent at x = r, so
∑m

i=n+1 |ci|ri → 0 as
m,n → ∞. Thus for a given ε > 0 we can find N such that for m > n ≥ N we
have

∑m
i=n+1 |ci|ri < ε. Hence |Sm(x) − Sn(x)| < ε. Now if we let m → ∞, then

for n ≥ N and |x| ≤ r we have |f(x)− Sn(x)| ≤ ε. �

Remark. The above theorem implies that power series are continuous inside their
interval of convergence, since their partial sums are continuous polynomials.

Proposition 6.20. Suppose (an), (bn) are sequences in R, and an is convergent
with lim an > 0. Then

lim sup anbn = lim an lim sup bn.

Proof. Let a = lim an, b = lim sup bn and c = lim sup anbn. We know that the
lim sup of any sequence is the limit of some subsequence of it. We also know that
the limit of any subsequence of a sequence is less than or equal to the lim sup of that
sequence. Now suppose bnk → b. Then ankbnk → ab. Hence ab ≤ c. Conversely,
suppose anlbnl → c. Then for large enough l we must have anl > 0, since a > 0.
Therefore we have

bnl =
anlbnl
anl

→ c

a
.

Thus c
a ≤ b, or c ≤ ab. So c = ab as desired. �

Theorem 6.21. Suppose the power series f(x) =
∑∞

n=0 cn(x − a)n has radius of
convergence R > 0. Then f is differentiable on (a−R, a+R) and we have

f ′(x) =

∞∑
n=1

ncn(x− a)n−1,

∫ x

a
f(t)dt =

∞∑
n=0

cn
n+ 1

(x− a)n+1,
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for all x ∈ (a−R, a+R). In addition, the radii of convergence of the power series
of f ′(x) and

∫ x
a f(t)dt are also R.

Remark. In other words, the derivative and the indefinite integral of a power series
can be computed term by term inside its interval of convergence.

Proof. For x 6= a we have

lim sup n
√
|ncn(x− a)n−1| = lim sup |x− a|

n−1
n

n
√
n|cn|

= |x− a| lim
(
|x− a|

−1
n n
√
n
)

lim sup n
√
|cn|

= |x− a| lim sup n
√
|cn| =

|x− a|
R

.

Thus by the root test, the radius of convergence of the claimed power series of f ′

is R. Now for some fixed x ∈ (a−R, a+R) choose r < R so that x ∈ [a− r, a+ r].
We know that the power series of f and f ′ converge uniformly on [a − r, a + r].
Also each term of the power series of f , i.e. cn(x− a)n, is obviously differentiable.
Therefore using term by term differentiation we obtain

f ′(x) =
∞∑
n=0

(
cn(x− a)n

)′
=
∞∑
n=1

ncn(x− a)n−1.

Similarly, using term by term integration we have∫ x

a
f(t)dt =

∞∑
n=0

∫ x

a
cn(t− a)ndt =

∞∑
n=0

cn
n+ 1

(x− a)n+1,

since each term of the power series of f(t), i.e. cn(t − a)n, is obviously Riemann
integrable.

Finally, note that the radius of convergence of the power series of
∫ x
a f(t)dt is

also R. Because if it has a bigger radius of convergence, then we can differentiate its
power series term by term to conclude that the radius of convergence of the power
series of f is bigger R, which is a contradiction. We can also directly compute the
radius of convergence of

∫ x
a f(t)dt by noting that

lim sup n

√∣∣∣ cn
n+ 1

(x− a)n+1
∣∣∣ = lim sup |x− a|

n+1
n

n

√
|cn|
n+ 1

= |x− a| lim
(
|x− a|

1
n

1
n
√
n+ 1

)
lim sup n

√
|cn|

= |x− a| lim sup n
√
|cn| =

|x− a|
R

,

and employing the root test. �
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Theorem 6.22. A power series f(x) =
∑∞

n=0 cn(x − a)n with positive radius of
convergence is infinitely differentiable inside its interval of convergence and we have

cn =
f (n)(a)

n!
.

Proof. Since f ′ is also a power series with the same radius of convergence as f ,
f ′′ is also a power series with the same radius of convergence. We can inductively
show that each derivative f (k) exists and is a power series with the same radius of
convergence as f . Moreover, we can show by induction that

f (k)(x) =

∞∑
n=k

[n(n− 1) · · · (n− k + 1)]cn(x− a)n−k.

Hence we have f (k)(a) = k(k − 1) · · · (k − k + 1)ck = k! ck as desired. �

Remark. An interesting consequence of the above theorem is that if

∞∑
n=0

cn(x− a)n =

∞∑
n=0

bn(x− a)n

on an open interval around a, then we have cn = bn for all n.

Definition 6.23. Suppose f : (b, c) → R is smooth, and a ∈ (b, c). The Taylor
series of f at a is the power series

∞∑
n=0

f (n)(a)

n!
(x− a)n.

Remark. Note that we do not assume anything about the convergence of the
Taylor series. It can be divergent for all x 6= a. Even if the Taylor series converges,
its limit is not necessarily f .

Definition 6.24. A function f : (b, c)→ R is called analytic or of class Cω if it
can be expressed locally as a convergent power series, i.e. for every a ∈ (b, c) there
exists a power series

∑∞
n=0 cn(x−a)n with positive radius of convergence such that

for x near a we have

f(x) =
∞∑
n=0

cn(x− a)n.

Remark. Note that by Theorem 6.22, an analytic function is smooth and we have
cn = f (n)(a)

n! . Therefore if a function can be expressed as a power series, that power
series is the Taylor series of the function.
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Remark. Power series with positive radius of convergence are analytic inside their
interval of convergence. Note that this fact is not trivial, because it is not obvious
that a power series around the center a can be expressed (locally) as a power series
around another center b.

Example 6.25. There are smooth functions that are not analytic. For example
the function

f(x) :=

{
e−

1
x x > 0

0 x ≤ 0

is smooth, but is not analytic. It is obvious that f is smooth on the set {x 6= 0}. We
show by induction that f is infinitely differentiable at 0, and we have f (n)(0) = 0
for all n. Then it follows that the Taylor series of f at 0 is identically zero, which
differs from f for x > 0. So f is not analytic. Note that the Taylor series of f at
0 is convergent on R, but its value does not equal f . Now we claim that for each
n ∈ N there is a polynomial pn such that

f (n)(x) =

{
pn( 1

x)e−
1
x x > 0,

0 x ≤ 0.

This holds trivially for n = 0, and also for x < 0 and all n. Suppose the claim is
true for some n. Then for n+ 1, and x > 0 we have

f (n+1)(x) =
−1

x2
p′n(

1

x
)e−

1
x + pn(

1

x
)(

1

x2
)e−

1
x = pn+1(

1

x
)e−

1
x ,

where pn+1(t) := −t2p′n(t) + t2pn(t). Also for x = 0 we have limx→0−
f (n)(x)−0

x−0 = 0,
and

lim
x→0+

f (n)(x)− 0

x− 0
= lim

x→0+

1

x
pn(

1

x
)e−

1
x

= lim
t→+∞

tpn(t)e−t = lim
t→+∞

tpn(t)

et
. (t := 1

x)

Note that limt→+∞ e
t = +∞, so if we apply the L’Hôpital’s rule repeatedly we get

lim
t→+∞

qn(t)

et
= lim

t→+∞

q′n(t)

et
= lim

t→+∞

q′′n(t)

et
= · · · = lim

t→+∞

q
(m+1)
n (t)

et
= lim

t→+∞

0

et
= 0,

where qn(t) = tpn(t) and m = deg qn. Hence f (n+1)(0) = 0 as desired. �
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6.3 Exponential and Logarithmic Functions

Theorem 6.26. The radius of convergence of the power series of the exponential
function

exp(x) :=

∞∑
n=0

xn

n!

is infinity. Furthermore we have exp′ = exp.

Proof. Apply the ratio test. Then use term by term differentiation. �

Remark. Note that exp(0) = 1.

Theorem 6.27. The exponential function exp is positive and strictly increasing.
It also satisfies

exp(x+ y) = exp(x) exp(y),

exp(−x) =
1

exp(x)
,

for all x, y ∈ R. Furthermore we have

lim
x→−∞

exp(x) = 0, lim
x→+∞

exp(x) = +∞.

Proof. Let

f(x) := exp(x+ y)− exp(x) exp(y),

g(x) := f(x) exp(−x).

Then f(0) = 0, and f ′ = f . Also g(0) = 0, and g′ ≡ 0. Hence g ≡ 0. Now, it is
obvious from the definition that exp(x) ≥ 1 for x ≥ 0. Hence for x ≤ 0 we have

exp(−x) > 0 =⇒ f(x) = 0.

Suppose y ≥ 0, and set x = −y. Then we have f(−y) = 0. Thus

1 = exp(0) = exp(−y + y) = exp(−y) exp(y).

Since exp(y) > 0, we obtain exp(−y) > 0. Therefore exp is positive everywhere.
Consequently f ≡ 0. Thus the first identity holds for all x, y. The second identity
follows easily since for all x ∈ R we have exp(−x) exp(x) = exp(−x+x) = exp(0) =
1. Finally note that exp′ = exp > 0. So exp is strictly increasing.
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Next we obtain the limits. We can easily deduce from the definition that
exp(x) > 1 + x for x > 0. This gives the limit at +∞. For the limit at −∞
we use the inequality

0 < exp(x) =
1

exp(−x)
<

1

1− x
,

for x < 0. �

Remark. In the above proof, from f ′ = f and f(0) = 0, we concluded that
f ≡ 0. This is a standard technique in differential equations. The usual trick is
to multiply f by exp(−x), and then to differentiate the product. Here we had to
be more careful, since we have not proved the needed properties of the exponential
function yet.

Definition 6.28. We define the logarithm of x > 0 to be

log(x) :=

∫ x

1

1

t
dt.

Remark. Note that log(1) = 0.

Theorem 6.29. For all x, y > 0 we have

log′(x) =
1

x
,

log(xy) = log(x) + log(y),

log
(1

x

)
= − log(x).

In addition, log is strictly increasing. Furthermore

lim
x→0+

log(x) = −∞, lim
x→+∞

log(x) = +∞.

Proof. By the fundamental theorem of calculus we have log′(x) = 1
x for x > 1.

For x ≤ 1 we have

log(x) =

∫ x

1

1

t
dt = −

∫ 1

x

1

t
dt =

∫ x

c

1

t
dt−

∫ 1

c

1

t
dt,

for some fixed c ∈ (0, x). Again, we obtain the desired formula by the fundamental
theorem of calculus. Now it is obvious that log is strictly increasing, since 1

x > 0
for x > 0.

To prove the second identity, we fix some y > 0. Then (log(xy))′ = y
xy = 1

x . So
for

f(x) := log(xy)− log(x)− log(y)
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we have f ′(x) ≡ 0. But f(1) = 0, hence f ≡ 0 as desired. The third identity follows
easily because log(x) + log( 1

x) = log(x 1
x) = log(1) = 0.

Now we obtain the limits. Note that log(2) > log(1) = 0. We also have

log(2n) = log(2× 2n−1) = log(2) + log(2n−1)

= 2 log(2) + log(2n−2) = · · · = n log(2).

Now suppose M > 0 is given. Then there is a positive integer n > M
log(2) . So for

x > 2n we have
log(x) > log(2n) = n log(2) > M.

Hence log(x) → +∞ as x → +∞. To obtain the limit as x → 0+ we can argue
similarly noting that log( 1

2n ) = −n log(2), and 1
2n → 0. �

Second Proof. To prove the second identity, we fix some x, y > 0. Then we have

log(xy) =

∫ xy

1

1

t
dt =

∫ x

1

1

t
dt+

∫ xy

x

1

t
dt = log(x) +

∫ xy

x

1

t
dt.

Thus it suffices to show that
∫ xy
x

1
t dt = log(y). Let g(s) := xs for s > 0. Then by

changing the variable we get∫ xy

x

1

t
dt =

∫ g(y)

g(1)

1

t
dt =

∫ y

1

1

g(s)
g′(s)ds =

∫ y

1

1

xs
xds =

∫ y

1

1

s
ds = log(y).

�

Theorem 6.30. The logarithm log : (0,+∞)→ R is the inverse of the exponential
function exp : R → (0,+∞). Consequently, both log and exp are one-to-one and
onto.

Proof. We have

[log(exp(x))]′ =
1

exp(x)
exp′(x) =

1

exp(x)
exp(x) = 1 = x′.

Also, we have log(exp(0)) = log(1) = 0. Thus log(exp(x)) = x. This implies that
log is onto. Therefore log is the inverse of exp, since log is also one-to-one as it is
strictly increasing. �

Theorem 6.31. For |x| < 1 we have log(1 + x) =
∑∞

n=1
(−1)n−1

n xn.

Proof. For |t| < 1 we have 1
1+t = 1

1−(−t) =
∑∞

k=0(−t)k =
∑∞

k=0(−1)ktk. Thus∫ x

0

1

1 + t
dt =

∞∑
k=0

(−1)k

k + 1
xk+1 =

∞∑
n=1

(−1)n−1

n
xn.



CHAPTER 6. SEQUENCES AND SERIES OF FUNCTIONS 168

But (log(1 + x))′ = 1
1+x , so we get the desired result by the fundamental theorem

of calculus. �

Theorem 6.32. log, exp are analytic. As a result, they are both smooth.

Proof. We have to show that log, exp can be expressed locally as a convergent
power series around any point in their domains. We do this by employing the
functional identities that they satisfy. First consider exp. Let a ∈ R be an arbitrary
point. Then we have

exp(x) = exp(a+ x− a) = exp(a) exp(x− a)

= exp(a)

∞∑
n=0

(x− a)n

n!
=

∞∑
n=0

exp(a)

n!
(x− a)n.

Note that the radius of convergence of this power series is infinity. Now consider
log. Let a > 0. Then for |x− a| < a we have

log(x) = log(a+ x− a) = log
(
a(1 +

x− a
a

)
)

= log(a) + log
(
1 +

x− a
a

)
= log(a) +

∞∑
n=1

(−1)n−1

nan
(x− a)n. �

Real Exponents.

Theorem 6.33. Let x ∈ (0,∞). Then for all r ∈ R we have

log xr = r log x.

Proof. Note that xr > 0 when x > 0. First suppose that r is rational. When
r = 0 the equality holds trivially, since log 1 = 0. Next we show by induction that
for all positive integers n, the equality holds when r = n. The case of n = 1 is
trivial. For the induction step we have

log xn+1 = log(xnx) = log xn + log x = n log x+ log x = (n+ 1) log x.

Now if r = k
m ∈ Q for some positive integers m, k, we have

k log x = log xk = log
( m√

xk
)m

= m log
m
√
xk =⇒ log x

k
m =

k

m
log x.

Then, suppose r = −q < 0 where q ∈ Q. Then

log xr = log x−q = log
1

xq
= − log xq = −q log x = r log x.
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Finally for an arbitrary r ∈ R we have

xr =

{
sup {xp : p ∈ Q, p ≤ r} x ≥ 1,

inf {xp : p ∈ Q, p ≤ r} 0 < x < 1.

Let p, q be rational numbers. When x = 1 the desired equality holds trivially, since
1r = 1. When x > 1 we have p log x = log xp ≤ log xr for all p ≤ r, since log is
increasing. Thus r log x ≤ log xr. Because log x > log 1 = 0, so

p ≤ log xr

log x
for all p ≤ r =⇒ r ≤ log xr

log x
.

On the other hand we know that for all q ≥ r we have xq ≥ xp, for every p ≤ r.
Hence xq ≥ xr. Therefore q log x = log xq ≥ log xr. Thus r log x ≥ log xr, and we
get the desired equality. The case of 0 < x < 1 is similar. Just note that in this
case log x < 0, so we have to reverse the inequalities when we divide and multiply
by log x. �

Theorem 6.34. For all x, y > 0 and all r, s ∈ R we have
(i) xr = exp(r log x).
(ii) xrxs = xr+s.
(iii) (xr)s = xrs.
(iv) (xy)r = xryr.

Proof. We have

xr = exp(log xr) = exp(r log x),

xrxs = exp(r log x) exp(s log x)

= exp((r + s) log x) = xr+s,

(xr)s = exp(s log xr) = exp(rs log x) = xrs,

(xy)r = exp(r log xy) = exp(r(log x+ log y))

= exp(r log x) exp(r log y) = xryr. �

Theorem 6.35. Suppose a, r ∈ R, and a > 0. Then the functions x 7→ xr and
x 7→ ax are smooth functions on (0,∞) and R, respectively. In addition we have

(xr)′ = rxr−1, (ax)′ = (log a)ax.

As a result, xr is strictly increasing on (0,∞) when r > 0, and it is strictly decreas-
ing when r < 0. Also, ax is strictly increasing on R when a > 1, and it is strictly
decreasing when 0 < a < 1.
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Proof. Note that xr = exp(r log x) and ax = exp(x log a). Hence both xr and ax

are compositions of smooth functions, so they are smooth. Now we have

(xr)′ = [exp(r log x)]′ =
r

x
exp(r log x) = rx−1xr = rxr−1,

(ax)′ = [exp(x log a)]′ = (log a) exp(x log a) = (log a)ax.

The last part of the theorem follows from the fact that the sign of the derivative
determines the monotonicity of the function. Note that the powers of a positive
number are always positive. Also note that log a > 0 = log 1 if and only if a > 1. �

Remark. Suppose f, g are differentiable functions and f > 0. Then the derivative
of the function fg can be computed as follows. We have[

f(x)g(x)
]′

=
[

exp
(
g(x) log f(x)

)]′
=
[
g′(x) log f(x) + g(x)

f ′(x)

f(x)

]
exp

(
g(x) log f(x)

)
=
[
g′(x) log f(x) + g(x)

f ′(x)

f(x)

]
f(x)g(x).

This is a case of the so-called logarithmic differentiation.

Definition 6.36. e := exp(1) =
∑∞

n=0
1
n! .

Remark. Note that e >
∑2

n=0
1
n! = 2.5. We also have

log 3 =

∫ 3

1

dt

t
=

11∑
n=4

∫ (n+1)/4

n/4

dt

t
≥

11∑
n=4

1

4

4

n+ 1
=

1

5
+ · · ·+ 1

12
> 1.

Hence e = exp(1) < exp(log 3) = 3. Thus 2.5 < e < 3.

Theorem 6.37. For all x ∈ R we have

exp(x) = ex.

Proof. Note that log e = 1. Thus ex = exp(x log e) = exp(x). �

Theorem 6.38. We have

e = lim
h→0+

(1 + h)
1
h = lim

x→+∞

(
1 +

1

x

)x
.

Proof. Note that we have

1 = log′(1) = lim
h→0+

log(1 + h)− log(1)

h
= lim

h→0+
log(1 + h)

1
h .
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Hence as exp is continuous we get

e = exp(1) = exp
(

lim
h→0+

log(1 + h)
1
h
)

= lim
h→0+

exp
(

log(1 + h)
1
h
)

= lim
h→0+

(1 + h)
1
h .

By changing the variable to x = 1
h in this limit, we also get the second limit. �

Theorem 6.39. Suppose a, r ∈ R, and a > 0. Then we have

If r > 0 then lim
x→0+

xr = 0, lim
x→+∞

xr = +∞,

If r < 0 then lim
x→0+

xr = +∞, lim
x→+∞

xr = 0,

If a > 1 then lim
x→−∞

ax = 0, lim
x→+∞

ax = +∞,

If 0 < a < 1 then lim
x→−∞

ax = +∞, lim
x→+∞

ax = 0.

Proof. We know that xr = exp(r log x). Hence we can compute all the above
limits by using Theorem 3.17, and the value of the limits of exp and log. The same
is true for ax = exp(x log a). Note that the sign of r and log a affect the value of
the limits. �

Theorem 6.40. For all r > 0 and all a > 1 we have

lim
x→+∞

ax

xr
= +∞, lim

x→+∞

log x

xr
= 0.

Remark. The above limits mean that when x → +∞, ax grows faster than any
power of x, and any power of x grows faster than log x.

Proof. Suppose n is an integer greater than r. Then it is obvious from the series
expansion of exp(x) that for x > 0 we have

ax = exp(x log a) >
(log a)n+1

(n+ 1)!
xn+1.

Note that log a is positive too. Hence ax

xn >
(log a)n+1

(n+1)! x→∞ as x→∞. Therefore

lim
x→∞

ax

xr
= lim

x→∞
xn−r

ax

xn
=∞ ·∞ =∞.

For the second limit we can use the L’Hôpital’s rule to obtain

lim
x→∞

log x

xr
= lim

x→∞

1

x
rxr−1

= lim
x→∞

1

rxr
=

1

∞
= 0. �
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Theorem 6.41. Suppose a, b > 0, and b 6= 1. Then b
log a
log b = a.

Proof. Note that log b 6= 0. Then we have

b
log a
log b = exp

( log a

log b
log b

)
= exp(log a) = a. �

Remark. Suppose a, b > 0, and b 6= 1. We can define logb a to be the unique
positive real number such that blogb a = a. Then by the above theorem we have
logb a = log a

log b .

Definition 6.42. Suppose r ∈ R and n ∈ N. The number(
r

n

)
:=

r(r − 1) · · · (r − n+ 1)

n!

is called a binomial coefficient. We also set
(
r
0

)
:= 1.

Remark. Note that when r = m is a positive integer greater than n, we have
m · · · (m− n+ 1)

n!
=
m · · · (m− n+ 1)(m− n) · · · 1

n!(m− n)!
=

m!

n!(m− n)!
.

So this new notion of binomial coefficient agrees with the old one. (When n = 0,
or m = n, the equality of the two values is also obvious.) Also note that when m,n
are positive integers such that m < n then

(
m
n

)
= 0.

Proposition 6.43. For all r ∈ R and n ∈ N we have(
r

n

)
=
r

n

(
r − 1

n− 1

)
,(

r − 1

n

)
+

(
r − 1

n− 1

)
=

(
r

n

)
.

Proof. We have

r

n

(
r − 1

n− 1

)
=
r

n

(r − 1) · · · (r − n+ 1)

(n− 1)!
=
r(r − 1) · · · (r − n+ 1)

n!
=

(
r

n

)
.

We also have(
r − 1

n

)
+

(
r − 1

n− 1

)
=

(r − 1) · · · (r − n)

n!
+

(r − 1) · · · (r − n+ 1)

(n− 1)!

=
(r − 1) · · · (r − n+ 1)

(n− 1)!
(
r − n
n

+ 1)

=
(r − 1) · · · (r − n+ 1)

(n− 1)!

r

n

=
r(r − 1) · · · (r − n+ 1)

n!
=

(
r

n

)
.

�



CHAPTER 6. SEQUENCES AND SERIES OF FUNCTIONS 173

Binomial Series. Suppose r ∈ R. Then for |x| < 1 we have

(1 + x)r =
∞∑
n=0

(
r

n

)
xn.

Proof. Let f(x) :=
∑∞

n=0

(
r
n

)
xn. We have∣∣∣∣∣

(
r

n+1

)
xn+1(

r
n

)
xn

∣∣∣∣∣ =

∣∣∣∣r − nn+ 1

∣∣∣∣ |x| −→n→∞ |x|.
Thus by the ratio test the power series is absolutely convergent for |x| < 1, i.e. the
radius of convergence of the power series is at least 1. When r = 0 the result holds
trivially. So suppose r 6= 0. Then for |x| < 1 we have

f ′(x) =

∞∑
n=1

n

(
r

n

)
xn−1 =

∞∑
n=1

r

(
r − 1

n− 1

)
xn−1.

Thus

(1 + x)

r
f ′(x) =

∞∑
n=1

(
r − 1

n− 1

)
xn−1 +

∞∑
n=1

(
r − 1

n− 1

)
xn

= 1 +
∞∑
n=1

(
r − 1

n

)
xn +

∞∑
n=1

(
r − 1

n− 1

)
xn

(We replaced n− 1 with n in the 1st sum.)

= 1 +
∞∑
n=1

[(r − 1

n

)
+

(
r − 1

n− 1

)]
xn = 1 +

∞∑
n=1

(
r

n

)
xn = f(x).

Hence we have (note that (1 + x)r > 0 for |x| < 1)[ f(x)

(1 + x)r

]′
=
f ′(x)(1 + x)r − rf(x)(1 + x)r−1

(1 + x)2r
= 0.

In addition f(0) = 1 = (1 + 0)r. Therefore f(x) = (1 + x)r for all |x| < 1. �

6.4 Trigonometric Functions

Theorem 6.44. The radii of convergence of the power series of sine and cosine

sin(x) :=

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1,

cos(x) :=

∞∑
n=0

(−1)n

(2n)!
x2n,

are infinity. Furthermore we have sin′ = cos and cos′ = − sin.
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Proof. Apply the ratio test. Then use term by term differentiation. �

Remark. Note that sin(0) = 0 and cos(0) = 1. It is also obvious that

sin(−x) = − sin(x),

cos(−x) = cos(x).

Remark. We usually consider cosx to be the power series
∑

n≥0 anx
n, where

a2n−1 = 0 and a2n = (−1)n

(2n)! . But sometimes we prefer to not have the zero co-
efficients, for example when we apply the ratio test in the above proof. In these
cases we consider cosx to be the numerical series

∑
n≥0 bn(x2)n, where bn = (−1)n

(2n)! .
It is easy to see that the two characterizations of cos are identical, simply by noting
that the partial sums of the two series have the same value at every x. We also
have similar considerations regarding sinx.

Theorem 6.45. For all x, y ∈ R we have
(i) sin2(x) + cos2(x) = 1.
(ii) sin(x+ y) = sin(x) cos(y) + cos(x) sin(y).
(iii) cos(x+ y) = cos(x) cos(y)− sin(x) sin(y).

Proof. (i) We have

[sin2(x) + cos2(x)]′ = 2 sin(x) cos(x) + 2 cos(x)(− sin(x)) = 0.

But sin2(0) + cos2(0) = 1, so the identity holds for all x.
(ii) Fix some y and let

f(x) := sin(x+ y)− sin(x) cos(y)− cos(x) sin(y).

Then we can easily see that f ′′ = −f , and f(0) = f ′(0) = 0. Now set

g1(x) := f(x) cos(x)− f ′(x) sin(x),

g2(x) := f(x) sin(x) + f ′(x) cos(x).

Then

g′1 = f ′ cosx− f sinx− f ′′ sinx− f ′ cosx = −f sinx+ f sinx = 0.

Similarly g′2 = 0. In addition we have g1(0) = g2(0) = 0. Therefore g1 ≡ 0 ≡ g2.
Hence we also have

f = f [cos2 x+ sin2 x] + f ′[− cosx sinx+ sinx cosx]

= g1 cosx+ g2 sinx ≡ 0.

(iii) This follows from (ii) by differentiating with respect to x. �
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Remark. In the above proof, from f ′′ = −f and f(0) = f ′(0) = 0, we concluded
that f ≡ 0. Similarly to the case of the exponential function, the technique used
here comes from differential equations.

Definition 6.46. π := 2
∫ 1
−1

√
1− x2 dx.

Remark. The graph of
√

1− x2 for x ∈ [−1, 1] is a semicircle. Thus the above
definition intuitively means that π is the area of a circle of radius one. By approxi-
mating the above integral we can estimate the value of π as accurately as we want.
It is also easy to see that π := 4

∫ 1
0

√
1− x2 dx.

Theorem 6.47. We have cos(π2 ) = 0 and sin(π2 ) = 1. Furthermore, π
2 is the

smallest positive number whose cosine is zero.

Proof. As cos(0) = 1 and cos is continuous, cos(x) > 0 when x > 0 is small.
Suppose to the contrary that cos(x) > 0 for all x > 0. Then sin will be strictly
increasing on [0,∞). Let a > 0. Then b := sin a > sin 0 = 0. Hence by the mean
value theorem there is c > a such that

cos(a+
cos a

b
)− cos a =

cos a

b
(− sin c) <

cos a

b
(− sin a) = − cos a.

This implies that cos(a+ cos a
b ) < 0, which is a contradiction. Therefore cos(x) ≤ 0

for some x > 0. Due to the continuity of cos, the set

A := {x ≥ 0 : cos(x) = 0} = {x ≥ 0} ∩ {cos(x) = 0}

is nonempty and closed. Therefore inf A ∈ A. Note that inf A > 0, since cos 0 = 1.
Now we define

α := 2 inf A.

Then cos(α2 ) = 0. Therefore sin(α2 ) = ±1 by the first identity in the last theorem.
But cos > 0 on [0, α2 ). Thus sin is strictly increasing and positive on (0, α2 ). Hence
sin(α2 ) must be positive.

It only remains to show that α = π. We do this by changing the variable
in the integral

∫ 1
0

√
1− x2 dx. We know that the derivative of sin is continuous

everywhere, and is positive on the interval (0, α2 ). Thus by the change of variable
x = sin t we obtain∫ sin(α

2
)

sin(0)

√
1− x2 dx =

∫ α
2

0

√
1− sin2 t cos t dt =

∫ α
2

0

√
cos2 t cos t dt.

Note that cos is positive on (0, α2 ), so
√

cos2 t = cos t. We also have cos 2t =
cos2 t− sin2 t = 2 cos2 t− 1. Therefore∫ 1

0

√
1− x2 dx =

∫ α
2

0
cos2 t dt =

∫ α
2

0

cos 2t+ 1

2
dt

=
1

4
sin 2t+

t

2

∣∣∣α2
0

=
1

4
sin(α) +

α

4
.
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But sin(α) = 2 sin(α2 ) cos(α2 ) = 0. Hence we get

π = 4

∫ 1

0

√
1− x2 dx = sin(α) + α = α,

as desired. �

Definition 6.48. A function f : R→ R is called periodic with period p ∈ R−{0},
if for all x ∈ R we have

f(x+ p) = f(x).

Remark. Note that if f is periodic with period p, then for all x ∈ R and all n ∈ Z
we have

f(x+ np) = f(x).

This can be proved by an easy induction on n when n ≥ 0. The case of negative n
follows immediately by noting that f(x− p) = f(x− p+ p) = f(x).

Theorem 6.49. sin and cos are periodic with period 2π, i.e. for all x ∈ R we have

sin(x+ 2π) = sinx,

cos(x+ 2π) = cosx.

Furthermore, the range of sin and cos is [−1, 1].

Proof. We have

sinπ = sin(
π

2
+
π

2
) = 2 sin

π

2
cos

π

2
= 0,

cosπ = cos(
π

2
+
π

2
) = cos2 π

2
− sin2 π

2
= −1.

Therefore we can similarly show that sin 2π = 0 and cos 2π = 1. Hence

sin(x+ 2π) = sinx cos 2π + cosx sin 2π = sinx,

cos(x+ 2π) = cosx cos 2π − sinx sin 2π = cosx.

Next we show that the range of sin, cos is [−1, 1]. First note that sin2 + cos2 = 1.
So | sin |, | cos | ≤ 1, which means the range is contained in [−1, 1]. On the other
hand we have cos 0 = 1, cosπ = −1. Also sin π

2 = 1, and we can easily show that
sin 3π

2 = −1. Thus we get the desired result by the intermediate value theorem. �

Remark. Similarly to the above proof, we can show that

sin(x+ π) = − sinx, cos(x+ π) = − cosx.
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Theorem 6.50. sin and cos are analytic functions. As a result, they are both
smooth.

Proof. We have to show that sin, cos can be expressed locally as a convergent
power series around any point in their domains. We do this by employing the
functional identities that they satisfy. Let a ∈ R. Then we have

sin(x) = sin(a+ x− a) = sin(a) cos(x− a) + cos(a) sin(x− a)

= sin(a)
∞∑
n=0

(−1)n

(2n)!
(x− a)2n + cos(a)

∞∑
n=0

(−1)n

(2n+ 1)!
(x− a)2n+1

=

∞∑
n=0

cn
n!

(x− a)n, where cn :=

{
(−1)

n
2 sin(a) n is even,

(−1)
n−1
2 cos(a) n is odd.

Note that the radius of convergence of this power series is infinity. The case of cos
is similar. �

Geometric Definition of Trigonometric Functions. Let us show that our
definitions of sin and cos agree with the familiar geometric definitions presented in
high school algebra courses. Let ABC be a right triangle in the plane R2, with the
right angle at B. We assume that the coordinates are chosen so that A = (0, 0),
B = (b, 0), and C = (b, c), where b, c > 0. First we have to define the measure of
an angle.

Definition. The angle between two rays in R2 emanating from the origin is t
radians if the portion of the unit circle S1 inside that angle has length t.

In order to work with the above definition, we need to define and compute the
length of a curve in the plane. First we start with the following definition.

Definition 6.51. Suppose r : [a, b]→ Rn is continuous. We say r is a rectifiable
path if there is C > 0 such that for every partition P = {a0, . . . , ak} of [a, b] we
have

L(r, P ) :=
k−1∑
j=0

|r(aj+1)− r(aj)| ≤ C.

When r is a rectifiable path, we define its length to be

L(r) = sup
P
L(r, P ),

where the supremum is taken over all partitions P of [a, b].
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Remark. Note that L(r, P ) is the length of a polygonal path with the vertices
r(a0), . . . , r(ak). So when the mesh of P converges to zero, i.e. when the partition
becomes finer, we expect that the corresponding polygonal path approximates the
image of r more closely. Thus we expect that for well-behaved paths, L(r, P )
converges to the length of r as the mesh of P goes to zero. On the other hand, the
straight line segment is the shortest path between two points. Thus when we refine
a partition, i.e. when we add more points to it, the length of the corresponding
polygonal path increases. In other words, if Q = P ∪{c} is a refinement of P , with
al < c < al+1, then we have

L(r, P ) =
k−1∑
j=0

|r(aj+1)− r(aj)| = |r(al+1)− r(al)|+
∑
j 6=l
|r(aj+1)− r(aj)|

≤ |r(al+1)− r(c)|+ |r(c)− r(al)|+
∑
j 6=l
|r(aj+1)− r(aj)| = L(r,Q).

And inductively, we can show that L(r, P ) ≤ L(r,Q), when Q is a refinement of P
which has m extra points. Also note that for every two partitions P1, P2, there is a
partition Q = P1 ∪ P2, aka their common refinement, such that L(r, Pi) ≤ L(r,Q)
for i = 1, 2. Therefore to compute the limit of L(r, P ), when the mesh of P goes
to zero, it suffices to take the supremum of L(r, P ) over all partitions P . Hence we
arrive at the above definition.

Definition 6.52. Let C ⊂ Rn. We say C is a rectifiable curve if there is a one-
to-one continuous function r : [a, b] → Rn which is a rectifiable path, such that C
is the image of r, i.e. C = r([a, b]). In this case we say r is a parametrization of
C. We also define the length of C to be

L(C) := L(r).

Theorem 6.53. Suppose r : [a, b] → Rn is a one-to-one rectifiable path, and C is
the image of r. Also suppose that ρ : [c, d]→ Rn is a one-to-one continuous function
whose image equals C. Then ρ is a rectifiable path, and has the same length as r,
i.e. L(r) = L(ρ).

Remark. This theorem means that the notions of rectifiability and length of a
curve do not depend on the particular parametrization. In other words, these
notions are invariant under reparametrization.

Proof. Consider the function α := r−1◦ρ : [c, d]→ C → [a, b]. Since r is a one-to-
one continuous function on a compact domain, r−1 is continuous too. Therefore α
is a one-to-one continuous function between two intervals. Thus it is either strictly
increasing or strictly decreasing, as shown in Exercise 2.84. Let us assume that α
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is strictly increasing, the other case is similar. Note that α is also onto, since the
image of both r, ρ is C. Now suppose Q = {c0, . . . , ck} is a partition of [c, d]. Let
aj := α(cj). Then P := {a0, . . . , ak} is a partition of [a, b], because aj < aj+1, and
we must have a0 = a, ak = b, due to the fact that α is strictly increasing and onto.
(Note that for P to be a partition when α is strictly decreasing, we have to set
aj := α(ck−j).)

Now note that ρ = r ◦ α. Hence ρ(cj) = r(aj). Therefore we have

L(ρ,Q) =

k−1∑
j=0

|ρ(cj+1)− ρ(cj)| =
k−1∑
j=0

|r(aj+1)− r(aj)| = L(r, P ) ≤ L(r).

Thus ρ is rectifiable. In addition we have L(ρ) ≤ L(r). If we repeat the above
argument with the roles of r, ρ switched, we get L(r) ≤ L(ρ) too. �

Theorem 6.54. Suppose I is an open interval containing [a, b], and r = (r1, . . . , rn) :
I → Rn. Suppose that for each i, ri is differentiable on I, and r′i is continuous over
[a, b]. Then r|[a,b] is a rectifiable path, and we have

L(r|[a,b]) =

∫ b

a
|r′(t)| dt =

∫ b

a

(
r′1(t)2 + · · ·+ r′n(t)2

) 1
2dt,

where r′ := (r′1, . . . , r
′
n).

Proof. It is obvious that r is continuous. Let x, y ∈ [a, b], and let z := r(y)−r(x).
Then for each i we have zi = ri(y)− ri(x) =

∫ y
x r
′
i(t)dt. Hence we have

|z|2 =
∑
i≤n

z2
i =

∑
i≤n

zi

∫ y

x
r′i(t)dt =

∫ y

x

∑
i≤n

zir
′
i(t)dt

=

∫ y

x
z · r′(t)dt ≤

∫ y

x
|z||r′(t)| dt = |z|

∫ y

x
|r′(t)| dt.

Therefore |r(y)−r(x)| = |z| ≤
∫ y
x |r

′(t)| dt. Now let P = {a0, . . . , ak} be a partition
of [a, b]. Then we have

L(r|[a,b], P ) =
k−1∑
j=0

|r(aj+1)− r(aj)| ≤
k−1∑
j=0

∫ aj+1

aj

|r′(t)| dt =

∫ b

a
|r′(t)| dt.

Hence r|[a,b] is rectifiable. In addition we have L(r|[a,b]) ≤
∫ b
a |r
′(t)| dt. Thus we

only need to prove the reverse inequality.
On the other hand we know that r′ is uniformly continuous on [a, b]. Hence for

a given ε > 0 there is δ > 0 such that if |x− y| < δ then |r′(x)− r′(y)| < ε. Now let
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P = {a0, . . . , ak} be a partition of [a, b] whose mesh ‖P‖ = maxj<k |aj+1− aj | < δ.
Then for every t ∈ [aj , aj+1] we have |r′(t) − r′(aj)| < ε, so |r′(t)| < |r′(aj)| + ε.
Therefore ∫ aj+1

aj

|r′(t)| dt ≤
(
|r′(aj)|+ ε

)
(aj+1 − aj). (∗)

Now for each i there is θi ∈ [aj , aj+1] so that

ri(aj+1)− ri(aj) = r′i(θi)(aj+1 − aj).

Thus

|ri(aj+1)− ri(aj)− r′i(aj)(aj+1 − aj)|
= |r′i(θi)− r′i(aj)|(aj+1 − aj) < ε(aj+1 − aj).

Therefore we have

|r(aj+1)− r(aj)− r′(aj)(aj+1 − aj)|

≤
∑
i≤n
|ri(aj+1)− ri(aj)− r′i(aj)(aj+1 − aj)| < nε(aj+1 − aj).

Hence |r′(aj)|(aj+1− aj) < |r(aj+1)− r(aj)|+nε(aj+1− aj). Thus from inequality
(∗) we get ∫ aj+1

aj

|r′(t)| dt ≤ |r(aj+1)− r(aj)|+ (n+ 1)ε(aj+1 − aj).

Therefore we have∫ b

a
|r′(t)| dt =

∑
j<k

∫ aj+1

aj

|r′(t)| dt

≤
∑
j<k

|r(aj+1)− r(aj)|+ (n+ 1)ε
∑
j<k

(aj+1 − aj)

= L(r|[a,b], P ) + (n+ 1)ε(b− a) ≤ L(r|[a,b]) + (n+ 1)ε(b− a).

Now as ε is arbitrary we get
∫ b
a |r
′(t)| dt ≤ L(r|[a,b]), as desired. �

Finally let us return to our original problem. Recall that ABC is a right triangle
in the plane R2, with the right angle at B, such that A = (0, 0), B = (b, 0), and
C = (b, c), where b, c > 0. In order to compute the sine and cosine of the angle
Â at the vertex A, we have to compute the length of the portion of the unit circle
that lies between the two rays

−−→
AB,

−→
AC. This portion has the endpoints (1, 0) and
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( b√
b2+c2

, c√
b2+c2

). The map t 7→ (
√

1− t2, t) for t ∈ [0, c√
b2+c2

] is a one-to-one
parametrization of the portion. Let a := c√

b2+c2
. Thus the length of the portion is

∫ a

0

√
1 +

( −t√
1− t2

)2
dt =

∫ a

0

1√
1− t2

dt.

Since a < 1, the integrand is continuous. Also sin 0 = 0 < a < 1 = sin π
2 , and

sin is strictly increasing on [0, π2 ), since cos > 0 on [0, π2 ). Thus there is a unique
α ∈ (0, π2 ) so that sinα = a. Now we change the variable of integration as t = sin s.
Hence we have∫ a

0

1√
1− t2

dt =

∫ α

0

1√
1− sin2 s

cos s ds =

∫ α

0

cos s√
cos2 s

ds =

∫ α

0
1ds = α.

Therefore we can finally compute the sine and cosine of the angle Â. Remember
that by definition these are the sine and cosine of the length of the portion of the
unit circle that lies between the two rays

−−→
AB,

−→
AC, i.e. α. The lengths of the sides of

the triangle are AB = b, BC = c, and by the Pythagorean theorem AC =
√
b2 + c2.

Thus

sin Â := sinα = a =
c√

b2 + c2
=
BC

AC
,

cos Â := cosα =
√

1− sin2 α =
√

1− a2 =
b√

b2 + c2
=
AB

AC
.

These are the familiar geometric expressions for sine and cosine. �

Complex Exponents.

Definition 6.55. Let r ∈ R be positive, and z = x+ iy ∈ C. We define

rz = rx+iy := rx
(

cos(y log r) + i sin(y log r)
)
.

Remark. Obviously when z is real, rz has the same value as we defined before.

Theorem 6.56. Let r, s ∈ (0,∞) and z, w ∈ C. Then we have
(i) rzrw = rz+w.
(ii) (rs)z = rzsz.

Proof. Suppose z = x+ iy and w = a+ ib.
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(i) We have

rzrw = rx
(

cos(y log r) + i sin(y log r)
)
ra
(

cos(b log r) + i sin(b log r)
)

= rxra
[

cos(y log r) cos(b log r)− sin(y log r) sin(b log r)

+ i
(

cos(y log r) sin(b log r) + sin(y log r) cos(b log r)
)]

= rx+a
[

cos
(
(y + b) log r

)
+ i sin

(
(y + b) log r

)]
= rz+w.

(ii) We have

rzsz = rx
(

cos(y log r) + i sin(y log r)
)
sx
(

cos(y log s) + i sin(y log s)
)

= rxsx
[

cos(y log r) cos(y log s)− sin(y log r) sin(y log s)

+ i
(

cos(y log r) sin(y log s) + sin(y log r) cos(y log s)
)]

= (rs)x
[

cos
(
y(log r + log s)

)
+ i sin

(
y(log r + log s)

)]
= (rs)x

[
cos
(
y log(rs)

)
+ i sin

(
y log(rs)

)]
= (rs)z. �

Theorem 6.57. Let r ∈ (0,∞) and z = x + iy ∈ C. Then for any n ∈ Z and
a ∈ R we have
(i) (rz)n = rnz.
(ii) (ra)z = raz.

Proof. (i) It is trivial that the equality holds for n = 0. For positive n we prove
the theorem by induction. The induction step is

(rz)n+1 = (rz)nrz = rnzrz = rnz+z = r(n+1)z.

Next consider n = −1. Then

(rz)−1 =
(
rx(cos(y log r) + i sin(y log r))

)−1

= r−x
cos(y log r)− i sin(y log r)

cos2(y log r) + sin2(y log r)

= r−x
(

cos(−y log r) + i sin(−y log r)
)

= r−z.

Now suppose n = −m < 0. We have

(rz)−m = ((rz)−1)m = (r−z)m = r−mz.

(ii) We have

(ra)z = (ra)x
(

cos(y log ra) + i sin(y log ra)
)

= rax
(

cos(ay log r) + i sin(ay log r)
)

= raz. �
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Theorem 6.58. Let r ∈ (0,∞) and z = a+ ib ∈ C. Then the functions t 7→ tz and
t 7→ rtz are differentiable functions on (0,∞) and R, respectively. Furthermore we
have
(i) (tz)′ = d

dt(t
z) = ztz−1.

(ii) (rtz)′ = d
dt(r

tz) = (log r)zrtz.

Proof. First note that the derivative of a complex-valued function is the func-
tion whose real and imaginary parts are respectively the derivative of the real and
imaginary parts of the original function.

(i) We have

(tz)′ =
(
ta cos(b log t) + ita sin(b log t)

)′
= ata−1 cos(b log t)− ta sin(b log t)

b

t

+ i
(
ata−1 sin(b log t) + ta cos(b log t)

b

t

)
= (a+ ib) ta−1

(
cos(b log t) + i sin(b log t)

)
= ztz−1.

(ii) We have

(rtz)′ =
(
rta cos(tb log r) + irta sin(tb log r)

)′
= (log r)arta cos(tb log r)− rtab(log r) sin(tb log r)

+ i
(
(log r)arta sin(tb log r) + rtab(log r) cos(tb log r)

)
= (log r)(a+ ib) rta

(
cos(tb log r) + i sin(tb log r)

)
= (log r)zrtz.

Alternatively, we can compute the derivative using the last part as follows

(rtz)′ = ((rt)z)′ = z(rt)z−1(rt)′ = (log r)z(rt)z−1rt = (log r)z(rt)z. �

Remark. Let z = x+ iy ∈ C and r = e. Then we have

ez = ex(cos y + i sin y).

In particular for θ ∈ R we have

eiθ = cos θ + i sin θ.

Note that ez is a periodic function with period 2πi, since

ez+2πi = ex
(

cos(y + 2π) + i sin(y + 2π)
)

= ex(cos y + i sin y) = ez.
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As a result we have ei(θ+2π) = eiθ. Another interesting fact is that for θ = π we
have

eiπ = cosπ + i sinπ = −1,

or equivalently eiπ + 1 = 0.

Theorem 6.59. The map θ 7→ eiθ is a one-to-one and onto correspondence between
the interval [0, 2π) and the unit circle S1 ⊂ C = R2.

Proof. Note that we always have

|eiθ| =
√

cos2 θ + sin2 θ = 1.

Hence the image of the map is inside S1. Let a + ib ∈ S1. Then a2 + b2 = 1, so
−1 ≤ a, b ≤ 1. Also we have b = ±

√
1− a2. Now the range of cos is [−1, 1], and

cos is periodic with period 2π. Thus there is θ ∈ [0, 2π) such that a = cos θ. If
b, sin θ have the same sign, then

b = ±
√

1− a2 = ±
√

1− cos2 θ = sin θ.

Therefore we have eiθ = a+ ib as desired. Otherwise we can use 2π − θ instead of
θ, since

cos(2π − θ) = cos(−θ) = cos θ,

sin(2π − θ) = sin(−θ) = − sin θ.

Note that in this case we can assume θ 6= 0, since for θ = 0 we must have b = 0 =
sin 0. Also if θ ∈ (0, 2π) then 2π − θ ∈ (0, 2π) too. Hence we have shown that the
map is onto.

Next let us show that the map is one-to-one. We know that cos is positive on
(0, π2 ), so sin is increasing and therefore positive on this interval. Since sin(2π−x) =
− sinx, and sin(π−x) = sinx, we see that sin is positive on (0, π), and it is negative
on (π, 2π). Therefore cos is decreasing on (0, π), and it is increasing on (π, 2π), so
it is injective on each of these intervals. Also note that cos maps both of these
intervals onto (−1, 1), by the intermediate value theorem. Thus every number in
the interval (−1, 1) is the cos of two points in [0, 2π), one in (0, π) and one in
(π, 2π). In addition, the sin of these two points have different signs. Also, the
only points in [0, 2π) with cos equal to 1,−1 are respectively 0, π. Hence if for two
points θ, φ ∈ [0, 2π) we have eiθ = eiφ, then cos θ = cosφ, and sin θ = sinφ. But by
the above arguments, these two equalities imply that θ = φ. Therefore we get the
desired. �
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6.5 Compactness in Function Spaces

Definition 6.60. A metric space is separable if it has a countable dense subset.

Example 6.61. R is separable since Q is a countable and dense subset of R. More
generally any interval in R is separable, because the rational numbers in the interval
form a countable and dense subset of the interval.

Theorem 6.62. A compact metric space is separable.

Proof. Suppose X is a compact metric space. Let n ∈ N. Then the fam-
ily {B 1

n
(x)}x∈X is an open covering of X. Hence there are finitely many points

x1, . . . , xk ∈ X such that

X ⊂ B 1
n

(x1) ∪ · · · ∪B 1
n

(xk). (∗)

Let us rename these points and call them xn,1, . . . , xn,kn . Now we claim that the
set

A := {xn,i : n ∈ N, i ≤ kn}

is dense in X. To prove this we have to show that X = Ā. Let x ∈ X. Then
for every n ∈ N there is xn,in ∈ A such that x ∈ B 1

n
(xn,in) by (∗). It is easy to

see that xn,in → x as n → ∞. Therefore every x ∈ X is in the closure of A, and
consequently A is dense in X. Finally note that A is countable since it is the union
of countably many finite sets. �

Definition 6.63. Let X,Y be two metric spaces. A sequence of continuous func-
tions fn : X → Y is equicontinuous if

∀ε > 0 ∃δ > 0 such that ∀n ∀x, y ∈ X
dX(x, y) < δ =⇒ dY (fn(x), fn(y)) < ε.

Remark. The point of the above definition is that δ does not depend on n. It
also does not depend on x, y, so we are tacitly assuming that each fn is uniformly
continuous.

Arzela-Ascoli Theorem. Suppose X is a compact metric space. Then every
bounded equicontinuous sequence of functions in C0(X,R) has a uniformly conver-
gent subsequence.

Proof. Let (fn) be a bounded equicontinuous sequence in C0(X). So there is
C > 0 such that ‖fn‖sup ≤ C for all n. Suppose {x1, x2, . . .} is a countable
dense subset of X. Then for every i, n we have |fn(xi)| ≤ ‖fn‖sup ≤ C. Thus
the sequence (fn(x1)) is a bounded sequence in R. Hence it has a subsequence
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(fn,1(x1)) that converges to some y1 ∈ R. Now consider the sequence (fn,1(x2)). It
is also a bounded sequence. So it has a subsequence (fn,2(x2)) that converges to
some y2. We can continue this process inductively and obtain a subsequence (fn,k)
of (fn,k−1) such that (fn,k(xk)) converges to some yk. Note that by our construction
fn,k(xi)→ yi for i ≤ k.

We claim that the diagonal sequence (fk,k) is a uniformly convergent subse-
quence of (fn). First note that for all i we have fk,k(xi) → yi, since (fk,k) is a
subsequence of (fn,i) if we ignore its first i− 1 terms. Now suppose ε > 0 is given.
Then equicontinuity implies that there is δ > 0 so that for all x, y ∈ X and all
n ∈ N we have

dX(x, y) < δ =⇒ |fn(x)− fn(y)| < ε

3
.

Also, for any x ∈ X there is xi such that dX(x, xi) < δ. This means that the family
of open balls {Bδ(xi)} is an open covering of X. Hence there are finitely many of
xi’s namely x1, . . . , xj such that

X ⊂ Bδ(x1) ∪ · · · ∪Bδ(xj).

Then let Ni ∈ N be large enough so that for m,n ≥ Ni we have |fn,n(xi) −
fm,m(xi)| < ε

3 . This is possible since the sequences (fn,n(xi)) are convergent,
therefore they are Cauchy. Let N = max{N1, . . . , Nj}. Then for any x ∈ X there
is xi with i ≤ j so that dX(x, xi) < δ. Hence for m,n ≥ N we have

|fn,n(x)− fm,m(x)|
≤ |fn,n(x)− fn,n(xi)|+ |fn,n(xi)− fm,m(xi)|+ |fm,m(xi)− fm,m(x)|

<
ε

3
+
ε

3
+
ε

3
= ε.

Therefore (fn,n) is a Cauchy sequence in C0(X). Thus the result follows because
C0(X) is complete, and convergence in C0(X) is the uniform convergence. �

Example 6.64. The mere boundedness of (fn) does not imply that it has a uni-
formly convergent subsequence. For example the sequence of functions (xn) in
C0([0, 1]) is bounded, but it does not have a uniformly convergent subsequence. To
see this, suppose to the contrary that a subsequence (xnk) converges uniformly to
a function f . Then it also converges pointwise to f . Thus we must have f(1) = 1
and f(x) = 0 for 0 ≤ x < 1. Therefore f is not continuous. But this contradicts
the fact that the uniform limit of continuous functions is continuous.

Theorem 6.65. Let (fn) be a sequence in C0([a, b],R). Suppose each fn is differ-
entiable on (a, b), and for some M > 0 we have |f ′n(x)| ≤M independently of x, n.
Also suppose that for some x0 ∈ [a, b] the sequence (fn(x0)) is bounded. Then (fn)
has a uniformly convergent subsequence.
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Proof. It suffices to show that (fn) is bounded and equicontinuous. By the mean
value theorem we have

|fn(x)− fn(y)| ≤M |x− y|

for all x, y ∈ [a, b] and all n ∈ N. Hence to show that (fn) is equicontinuous, for
a given ε we can take δ = ε

M . Next to show that (fn) is bounded in C0([a, b]) we
note that for any x ∈ [a, b] we have

|fn(x)| ≤ |fn(x)− fn(x0)|+ |fn(x0)| ≤M |x− x0|+ C ≤M(b− a) + C,

where C > 0 is a bound for the sequence (|fn(x0)|). �

6.6 Approximation by Polynomials

Weierstrass Approximation Theorem. The set of polynomials is dense in
C0([a, b],R), i.e. any real-valued continuous function on [a, b] is the uniform limit
of a sequence of polynomials.

Proof. (Bernstein, 1912) It suffices to prove the theorem when [a, b] = [0, 1].
Because if f(x) is a continuous function of x ∈ [a, b], then f((1 − t)a + tb) is a
continuous function of t ∈ [0, 1]. Hence if p is a polynomial such that∣∣p(t)− f((1− t)a+ tb)

∣∣ < ε,

for a given ε > 0 and t ∈ [0, 1], then∣∣∣p(x− a
b− a

)
− f(x)

∣∣∣ < ε,

for x ∈ [a, b]. Note that by the binomial theorem, p
(
x−a
b−a
)
is a polynomial in x.

So suppose f is a continuous function on [0, 1]. Let

pn(x) :=
n∑
k=0

(
n

k

)
f
(k
n

)
xk(1− x)n−k.

pn is a polynomial called a Bernstein polynomial. We claim that pn converges
uniformly to f as n→∞. First note that by the binomial theorem we have

n∑
k=0

(
n

k

)
xk(1− x)n−k = (x+ 1− x)n = 1.

We also have
n∑
k=0

(nx− k)2

(
n

k

)
xk(1− x)n−k = nx(1− x). (∗)
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We will prove the above identity at the end of this proof. To simplify the notation
we set

rk(x) :=

(
n

k

)
xk(1− x)n−k.

Note that rk(x) ≥ 0 for all x ∈ [0, 1].
Now suppose ε > 0 is given. We want to find N ∈ N such that for n ≥ N and

x ∈ [0, 1] we have |pn(x)− f(x)| < ε. Since f(x) =
∑n

k=0 f(x)rk(x), we have

|pn(x)− f(x)| ≤
n∑
k=0

∣∣f(k
n

)
− f(x)

∣∣rk(x).

Due to the uniform continuity of f there is δ > 0 such that |y − x| < δ implies
|f(y)− f(x)| < ε

2 . Let

I := {0 ≤ k ≤ n :
∣∣∣k
n
− x
∣∣∣ < δ}, J := {0 ≤ k ≤ n :

∣∣∣k
n
− x
∣∣∣ ≥ δ}.

Then for k ∈ J we have (nx− k)2 ≥ n2δ2. Thus∑
k∈J

rk(x) =
1

n2δ2

∑
k∈J

n2δ2rk(x) ≤ 1

n2δ2

∑
k∈J

(nx− k)2rk(x)

≤ 1

n2δ2

∑
k≤n

(nx− k)2rk(x) =
1

nδ2
x(1− x) ≤ 1

4nδ2
.

Note that here we used the fact that the maximum of x(1− x) on [0, 1] is 1
2 . Now

let M > 0 be the maximum of f on [0, 1]. Then for n > M
εδ2

we have

|pn(x)− f(x)| ≤
∑
k∈I

∣∣f(k
n

)
− f(x)

∣∣rk(x) +
∑
k∈J

∣∣f(k
n

)
− f(x)

∣∣rk(x)

<
ε

2

∑
k∈I

rk(x) + 2M
∑
k∈J

rk(x) ≤ ε

2

∑
k≤n

rk(x) +
M

2nδ2
<
ε

2
+
ε

2
= ε.

Proof of the identity (∗): We differentiate (x + y)n =
∑n

k=0

(
n
k

)
xkyn−k with

respect to x twice to obtain

n(x+ y)n−1 =
n∑
k=0

(
n

k

)
kxk−1yn−k,

n(n− 1)(x+ y)n−2 =
n∑
k=0

(
n

k

)
k(k − 1)xk−2yn−k.
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Then we multiply these equations by x, x2 respectively, and we set y = 1−x. Hence
we get

nx =
n∑
k=0

(
n

k

)
kxk(1− x)n−k =

n∑
k=0

krk(x),

n(n− 1)x2 =

n∑
k=0

(
n

k

)
k(k − 1)xk(1− x)n−k =

n∑
k=0

k(k − 1)rk(x).

Now we have
n∑
k=0

(nx− k)2rk(x) = n2x2
n∑
k=0

rk(x)− 2nx
n∑
k=0

krk(x) +
n∑
k=0

k2rk(x)

= n2x2 − 2n2x2 +
n∑
k=0

k(k − 1)rk(x) +
n∑
k=0

krk(x)

= −n2x2 + n(n− 1)x2 + nx = nx(1− x). �

Exercise 6.66. Give an example of a continuous function on (0, 1) that is not the
uniform limit of any sequence of polynomials. Do the same for [0,∞).



Chapter 7

Multivariable Differential
Calculus

7.1 Derivatives

Definition 7.1. Suppose U ⊂ Rn is open and f : U → Rm. Then we say f is
differentiable at a point x ∈ U if there exist an m by n matrix A ∈ Rm×n such
that for h ∈ Rn with |h| small we have

f(x+ h) = f(x) +Ah+R(h),

where R is a function from a neighborhood of the origin of Rn into Rm that satisfies

lim
h→0

R(h)

|h|
= 0.

Remark. A function R satisfying the above property is called sublinear (at zero).
Remark. Differentiability of a function means that we can locally approximate the
function with a linear function, and the error to this approximation decays faster
than a linear function (i.e. it is sublinear).
Remark. There is an equivalent way to formulate differentiability. Let

r(h) :=

{
R(h)
|h| h 6= 0

0 h = 0.

Then for h ∈ Rn with |h| small we have

f(x+ h) = f(x) +Ah+ |h|r(h), and lim
h→0

r(h) = 0.

It is easy to show that f is differentiable at x if and only if for some matrix A and
function r the above relations hold.

190
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Remark. Note that R, r are both continuous at 0. We call them the remainders.

Theorem 7.2. The matrix in the definition of differentiability is unique.

Proof. Suppose to the contrary that there are two such matrices A1, A2 satisfying
the differentiability relation. Then for any h ∈ Rn and small positive t we have

f(x+ th) = f(x) +Ai(th) + |th|ri(th) i = 1, 2,

for some remainders r1, r2. If we subtract these two relations we get

(A1 −A2)(th) = |th|
(
r2(th)− r1(th)

)
.

Thus
(A1 −A2)h = |h|

(
r2(th)− r1(th)

)
.

But
lim
t→0

ri(th) = ri
(
lim
t→0

th
)

= ri(0) = 0,

since ri’s are continuous at 0. Hence

(A1 −A2)h = lim
t→0

(A1 −A2)h = lim
t→0
|h|
(
r2(th)− r1(th)

)
= 0.

Therefore A1 = A2. �

Definition 7.3. The matrix in the definition of differentiability is called the (total
or Frechet) derivative of f at x and is denoted by Df(x).

Definition 7.4. A map T : Rn → Rm is called linear if for every v, w ∈ Rn and
c1, c2 ∈ R we have

T (c1v + c2w) = c1T (v) + c2T (w).

Remark. Let A be an m× n matrix. Then the map v 7→ Av is a linear map from
Rn to Rm. Conversely, let T : Rn → Rm be a linear map. Let v ∈ Rn. Then we
have v = v1e1 + · · ·+ vnen. Hence

T (v) = T (v1e1 + · · ·+ vnen) = v1T (e1) + · · ·+ vnT (en) = Av,

where A is the m× n matrix whose jth column is T (ej). In addition, note that if
for some matrix B we have T (v) = Bv for every v, then as shown in Appendix A
we have

B.,j = Bej = T (ej) = A.,j ,

i.e. the jth column of B is equal to the jth column of A, for every j. Hence B = A.
Therefore every linear map between Euclidean spaces is given by the action of a
unique matrix.
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Theorem 7.5. A linear map between Euclidean spaces is differentiable everywhere
and its derivative is its matrix. Also the derivative of a constant function exists
and equals zero everywhere.

Proof. Just note that the remainder is zero in both cases. �

Definition 7.6. Suppose U ⊂ Rn is open and f = (f1, . . . , fm) : U → Rm. The
directional derivative of f at x ∈ U in the direction of v ∈ Rn is the vector

Dvf(x) := lim
t→0

f(x+ tv)− f(x)

t
,

if the limit exists. Let {e1, . . . , en} be the standard basis of Rn. Then we denote
Dejf(x) by

Djf(x), Dxjf(x),
∂f

∂xj
(x), or fxj .

The partial derivatives of f at x are

Djfi(x) = lim
t→0

fi(x+ tej)− fi(x)

t
.

Remark. Suppose I is an open subset of R, and f : I → Rm is differentiable at x.
Then Df(x) ∈ Rm×1 = Rm, i.e. the derivative is a vector. It is easy to see that in
this case we have

Df(x) = D1f(x) = f ′(x) := lim
h→0

f(x+ h)− f(x)

h
.

Here D1f(x) is the directional derivative of f in the direction of 1 ∈ R.

Theorem 7.7. Suppose U ⊂ Rn is open and f = (f1, . . . , fm) : U → Rm. Then for
some v ∈ Rn the directional derivative Dvf(x) exists if and only if Dvfi(x) exists
for all i. Furthermore

Dvf(x) =
(
Dvf1(x), . . . , Dvfm(x)

)
.

In particular when n = 1 we have

f ′(x) =
(
f ′1(x), . . . , f ′m(x)

)
.

Proof. We have

1

t
[f(x+ tv)− f(x)] =

(1

t
[f1(x+ tv)− f1(x)], . . . ,

1

t
[fm(x+ tv)− fm(x)]

)
.

Now let t → 0. Note that the limit of a vector function exists if and only if the
limit of every component exists. �
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Theorem 7.8. Suppose U ⊂ Rn is open, and f : U → Rm is differentiable at x.
Then all the directional derivatives of f at x exist and

Dvf(x) = Df(x)v

for all v ∈ Rn. In particular the jth column of Df(x) is Djf(x), i.e.

Df(x) =
[
D1f

∣∣ . . . ∣∣ Dnf
]
.

Proof. For every vector v and small real number t we can put h = tv in the
differentiability relation to obtain

f(x+ tv) = f(x) +Df(x)(tv) + |tv|r(tv).

Therefore we have

Dvf(x) = lim
t→0

f(x+ tv)− f(x)

t
= lim

t→0

(
Df(x)v ± |v|r(tv)

)
= Df(x)v.

The last statement of the theorem follows from the fact that the jth column of a
matrix equals the action of that matrix on the standard basis vector ej . �

Remark. The above theorem gives a second proof that the matrix in the definition
of differentiability is unique. Since if there were two such matrices, their action on
every vector v must have been equal to Dvf which is determined uniquely as the
value of a limit.

Remark. When m = 1, i.e. when f is scalar-valued, Df(x) is a 1× n row vector.
The gradient of f at x is the n× 1 column vector defined by ∇f(x) :=

(
Df(x)

)T.
So, the gradient ∇f(x) is a vector in Rn, while the derivative Df(x) defines a linear
map from Rn to R. Furthermore, for v ∈ Rn we have

Dvf(x) = Df(x)v =
∑

Djf(x)vj = v · ∇f(x).

Theorem 7.9. Suppose U ⊂ Rn is open and f = (f1, . . . , fm) : U → Rm is
differentiable at x. Then the ijth entry of Df(x) is Djfi(x), i.e.

Df(x) =


D1f1(x) D2f1(x) . . . Dnf1(x)
D1f2(x) D2f2(x) . . . Dnf2(x)

...
...

. . .
...

D1fm(x) D2fm(x) . . . Dnfm(x)

.
Remark. The above matrix of partial derivatives is also known as the Jacobian
matrix. Thus the theorem says that if a function is differentiable, its derivative is
equal to its Jacobian matrix.
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Proof. The ijth entry of the matrix Df(x) is the ith entry of its jth column.
But by the previous theorems the jth column of Df(x) is Djf(x), and the ith entry
of Djf(x) is Djfi(x). �

Example 7.10. Consider the function f : Rn×n → Rn×n that maps each matrix A
to f(A) = A2. Let us for the moment assume that f is differentiable, and compute
Df . First note that we can think of matrices in Rn×n as vectors in Rn2 . Now the
ijth entry of f(A), or in other words its ijth component, is

(f(A))ij = Ai1A1j +Ai2A2j + · · ·+AinAnj .

Therefore we have

DAilfij = Alj , DAijfij = Aii +Ajj ,

DAkjfij = Aik, DAklfij = 0,

where k 6= i, l 6= j. Note that when i = j, the above formula gives the correct value
DAiifii = 2Aii. Also note that Df is an n2 × n2 matrix. Next let us compute the
value of Df(A)B, where B ∈ Rn×n. Keep in mind that we use double indices ij
to denote the components of the n2-dimensional vector B. The same is true about
the matrix Df(A). We have

(Df(A)B)ij =
∑
k,l

(Df(A))ij,klBkl =
∑
k,l

DAklfij(A)Bkl

=
∑
l 6=j

DAilfij(A)Bil +
∑
k 6=i

DAkjfij(A)Bkj

+DAijfij(A)Bij +
∑

k 6=i,l 6=j
DAklfij(A)Bkl

=
∑
l 6=j

AljBil +
∑
k 6=i

AikBkj + (Aii +Ajj)Bij

=
∑
l≤n

AljBil +
∑
k≤n

AikBkj = (BA)ij + (AB)ij .

Therefore we have
Df(A)B = BA+AB.

Note that this is the generalization of the familiar formula (x2)′ = 2x to the space
of matrices, where the multiplication is not commutative. Finally, we can easily
show that f is differentiable; because the remainder

f(A+B)− f(A)−Df(A)B = (A+B)2 −A2 −BA−AB = B2

is easily seen to be sublinear.
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Theorem 7.11. Suppose f is differentiable at x, then it is continuous at x too.

Proof. For y near x we have

lim
y→x

f(y) = lim
y→x

[f(x) +Df(x)(y − x) +R(y − x)] = f(x).

Note that here we used the continuity of R at 0, and the continuity of the linear
map defined by the matrix Df(x). (Remember that polynomial functions between
Euclidean spaces are continuous.) �

Example 7.12. A function that has directional derivatives in every direction at
a point is not necessarily differentiable there; it is not even necessarily continuous
there. As an example, consider f : R2 → R given by

f(x, y) =

{
x2y
x4+y2

(x, y) 6= (0, 0),

0 (x, y) = (0, 0).

Then f is not continuous at (0, 0), since if we approach the origin along the parabola
y = x2 the value of f approaches 1

2 . Thus f cannot be differentiable at (0, 0). But
f has directional derivatives at the origin in every direction. Let v = (a, b) be an
arbitrary nonzero vector in R2. Then we have

Dvf(0, 0) = lim
t→0

f(ta, tb)− f(0, 0)

t
= lim

t→0

t3a2b

t(t4a4 + t2b2)
=

{
a2

b b 6= 0,

0 b = 0.

Note that unlike differentiable functions, Dvf(0, 0) does not depend linearly on the
vector v.

Remark. Another interesting property of the function f in the above example
is that its restriction to every line passing through the origin is continuous at the
origin (since f has directional derivative in every direction), but f is not continuous
at the origin as a function of two variables.

Example 7.13. Even if Dvf(x) exists for every v and depends linearly on v, we
cannot conclude that f is continuous at x. For example consider

f(x, y) =

{
1 y = x2 and x 6= 0,

0 otherwise.

Then f is clearly discontinuous at (0, 0), but Dvf(0, 0) = 0 for every vector v. A
more interesting example is the function

g(x, y) =

{
x y = x2,

0 otherwise,

which is continuous at (0, 0) and Dvg(0, 0) = 0 for every vector v. But g is not
differentiable at (0, 0) (why?).
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Remark. Suppose Dvf(x) exists for every vector v and depends linearly on v. Let
A be the matrix whose jth column is Djf(x). Then if v = (v1, . . . , vn) we have

Dvf(x) =
∑

vjDjf(x) = Av.

Now set
R(h) := f(x+ h)− f(x)−Ah.

Then when h = tv for some t > 0 we have

R(h)

|h|
=

1

|v|

(f(x+ tv)− f(x)

t
−Av

)
−→
t→0

1

|v|
(
Dvf(x)−Av

)
= 0.

Therefore R is sublinear when we approach 0 in the direction of v. In other words,
for every ε > 0 there is δv > 0, such that when |h| < δv, and h is a multiple of v,
then ∣∣∣∣R(h)

|h|

∣∣∣∣ < ε.

But this is not enough for f to be differentiable at x. Because δv depends on v,
while in the definition of differentiability we require R(h)

|h| to go to zero as a function
of several variables, i.e. we need to be able to choose a δ that works for all v.

Exercise 7.14. Check that the nondifferentiable function g of the previous example
has a remainder at (0, 0) that is sublinear in every direction but is not sublinear as
a function of two variables.

Theorem 7.15. Suppose U ⊂ Rn is an open set containing a point x, and f =
(f1, . . . , fm) : U → Rm. Then f is differentiable at x if and only if each fi is
differentiable at x. And in this case Dfi is the ith row of Df , i.e.

Df(x) =

Df1(x)
...

Dfm(x)

.
Proof. Suppose that f is differentiable at x. Then there exist an m × n matrix
A and a sublinear function R, so that for small h ∈ Rn we have

f(x+ h) = f(x) +Ah+R(h).

Thus for each i, the ith components of both sides are equal, i.e. for small h ∈ Rn
we have

fi(x+ h) = fi(x) + (Ah)i +Ri(h) = fi(x) +Ai,.h+Ri(h),
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where Ai,. is the ith row of the matrix A. Note that we also have limh→0Ri(h)/|h| =
0, since Ri(h)/|h| is the ith component of R(h)/|h|, and limh→0R(h)/|h| = 0.
Hence fi is differentiable at x, and its derivative is the ith row of Df(x).

Conversely, suppose each fi is differentiable at x. Let A be the m × n matrix
whose ith row isDfi(x). Suppose Ri is the remainder in the differentiability relation
of fi. Then let R be the function into Rm defined on a neighborhood of 0 ∈ Rn,
whose ith component is Ri. Note that each Ri is defined on an open ball around
0 ∈ Rn, so R is defined on the open ball with the smallest radius. Now for h in this
smallest open ball we have

f(x+ h) = f(x) +Ah+R(h).

Because for each i, the ith components of both side are equal, as we have

fi(x) + (Ah)i +Ri(h) = fi(x) +Dif(x)h+Ri(h) = fi(x+ h).

Also similarly to the above, we can show that R is sublinear, since its components
are sublinear. Therefore f is differentiable at x, and has the required derivative. �

Proposition 7.16. Suppose x, v ∈ Rn, U is a neighborhood of x, and f : U → Rm.
Also suppose that f has directional derivative in the v direction at the points near
x that lie on the line

{x+ sv : s ∈ R}.

Let a ∈ R, and let g(t) := f(x + atv) be a function from a neighborhood of 0 ∈ R
into Rm. Then we have

g′(t) = aDvf(x+ atv).

Proof. If a = 0 then g is constant and the relation holds obviously. When a 6= 0
we set y = x+ atv and h = s

a to obtain

lim
h→0

g(t+ h)− g(t)

h
= lim

s→0
a
f(y + sv)− f(y)

s
= aDvf(y) = aDvf(x+ atv). �

Remark. In the above proposition, when f is differentiable, the formula for g′ is a
consequence of the chain rule as we will show later. But here we only assumed that f
has directional derivative in one direction. This version with the weaker hypothesis
is sometimes useful when we do not know a priori that f is differentiable.

Theorem 7.17. If a function f has partial derivatives in a neighborhood of a point
x ∈ Rn, and the partial derivatives are all continuous at x; then f is differentiable
at x.
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Proof. It is sufficient to prove the differentiability of each component of the func-
tion f , so without loss of generality we can assume that f is real-valued. Suppose
h = (h1, . . . , hn) ∈ Rn is a point with small |h|. Let yj := (h1, . . . , hj , 0, . . . , 0).
Then we have

f(x+ h)− f(x)−
n∑
j=1

Djf(x)hj =

n∑
j=1

[
f(x+ yj)− f(x+ yj−1)−Djf(x)hj

]
.

Now let gj(t) := f(x + yj−1 + thjej), where ej ’s are the standard basis vectors of
Rn. Then by the mean value theorem for some tj ∈ (0, 1) we have

f(x+ yj)− f(x+ yj−1) = gj(1)− gj(0) = g′j(tj) = hjDjf(x+ yj−1 + tjhjej).

Let θj := x+ yj−1 + tjhjej . Hence we have

1

|h|

∣∣∣f(x+ h)− f(x)−
∑

Djf(x)hj

∣∣∣
=

∣∣∣∣∑[
Djf(θj)−Djf(x)

] hj
|h|

∣∣∣∣ ≤∑ |Djf(θj)−Djf(x)|.

The last expression goes to zero as h→ 0, since the partial derivatives are contin-
uous at x, and θj → x as h→ 0. Thus f is differentiable at x, and its derivative is
the 1× n matrix whose jth column is Djf(x). �

Example 7.18. The converse of the above theorem is not true. A function can be
differentiable at a point while its partial derivatives are discontinuous. For example

f(x, y) =

{
(x2 + y2) sin( 1

x2+y2
) (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

is differentiable at (0, 0), but its partial derivatives are unbounded as we approach
the origin.

7.2 Rules of Differentiation

Theorem 7.19. Suppose U ⊂ Rn is an open set containing a point x, and f, g :
U → Rm are differentiable at x. Let c1, c2 ∈ R. Then c1f + c2g is differentiable at
x and

D(c1f + c2g)(x) = c1Df(x) + c2Dg(x).

Proof. We have

(c1f + c2g)(x+ h) = (c1f + c2g)(x)

+
(
c1Df(x) + c2Dg(x)

)
h+ |h|

(
c1rf (h) + c2rg(h)

)
,
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where rf , rg are the remainders in the differentiability relations of f, g, respectively.
Then we have

lim
h→0

c1rf (h) + c2rg(h) = 0.

Thus the last term is sublinear and c1f + c2g is differentiable with the desired
derivative. �

Definition 7.20. A map L : Rn1 × · · · × Rnk → Rm is called multilinear, or
k-linear, if L is linear with respect to each variable when the other variables are
fixed, i.e. for any i ≤ k we have

L(v1, . . . , vi−1, c1vi + c2wi, vi+1, . . . , vk)

= c1L(v1, . . . , vi−1, vi, vi+1, . . . , vk) + c2L(v1, . . . , vi−1, wi, vi+1, . . . , vk),

for every vectors v1, . . . , vk, wi and scalars c1, c2 ∈ R.

Remark. A 2-linear maps is also known as a bilinear map. In addition, note that
a 1-linear map is just a linear map.

Theorem 7.21. Suppose L : Rn1 × · · · × Rnk → Rm is a multilinear map. Then
there exists C > 0 such that

|L(v1, . . . , vk)| ≤ C|v1| · · · |vk|,

for all (v1, . . . , vk) ∈ Rn1 × · · · × Rnk . As a result L is continuous.

Remark. A particular case of the above theorem is when k = 1 and we have a
linear map defined by an m × n matrix A. Then there is C > 0 such that for all
v ∈ Rn we have

|Av| ≤ C|v|.

This implies that for two vectors v, w

|Av −Aw| = |A(v − w)| ≤ C|v − w|,

i.e. linear maps are Lipschitz.

Proof. The proof is by induction on k. For the induction base we have k = 1,
i.e. L is a linear map from Rn into Rm. Let e1, . . . , en be the standard basis of Rn,
and let v = a1e1 + · · ·+ anen be an arbitrary vector in Rn. Then we have

|Lv| = |a1Le1 + · · ·+ anLen| ≤ |a1||Le1|+ · · ·+ |an||Len| ≤ C|v|,

where C = |Le1|+ · · ·+ |Len|. Note that here we used the special property of the
standard norm of Rn that |ai| ≤ |v|.
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Now suppose k > 1 and the claim holds for (k − 1)-linear maps. Define

Lv(v2, . . . , vk) := L(v, v2, . . . , vk).

Then it is easy to see that Lv is a (k − 1)-linear map. Hence we have

|Lv(v2, . . . , vk)| ≤ Cv|v2| . . . |vk|,

for some constant Cv > 0. Now let v1 =
∑
aiei where ei’s are the standard basis

of Rn1 . We have

|L(v1, v2, . . . , vk)| =
∣∣∣∑ aiL(ei, v2, . . . , vk)

∣∣∣ ≤∑ |ai| |Lei(v2, . . . , vk)|

≤
∑
|v1|Cei |v2| · · · |vk| =

(∑
Cei
)
|v1||v2| · · · |vk|.

To prove the continuity suppose |wi− vi| < 1. So |wi| < D := maxi≤k(|vi|+ 1).
Then we have

|L(v1, v2, . . . , vk)− L(w1, w2, . . . , wk)|

=
∣∣∣∑

i≤k

(
L(w1, . . . , wi−1, vi, vi+1, . . . , vk)− L(w1, . . . , wi−1, wi, vi+1, . . . , vk)

)∣∣∣
≤
∑∣∣L(w1, . . . , wi−1, vi, vi+1, . . . , vk)− L(w1, . . . , wi−1, wi, vi+1, . . . , vk)

∣∣
=
∑∣∣L(w1, . . . , wi−1, vi − wi, vi+1, . . . , vk)

∣∣
≤
∑

C|w1| · · · |wi−1||vi+1| · · · |vk||vi − wi| ≤ CDk−1
∑
|vi − wi|.

Thus when wi is close to vi for each i, L(w1, . . . , wk) is close to L(v1, . . . , vk). �

Leibniz Rule. Suppose U ⊂ Rn is an open set containing a point x, and f : U →
Rm and g : U → Rp are differentiable at x. Also suppose B : Rm × Rp → Rq is
bilinear. Then B[f, g] is differentiable at x, and for every v ∈ Rn we have

D(B[f, g])(x)v = B[Df(x)v, g(x)] +B[f(x), Dg(x)v].

In particular, when n = 1 we have

(B[f, g])′(x) = B[f ′(x), g(x)] +B[f(x), g′(x)].

Remark. If we use the product notation f ? g := B[f, g], and the directional
derivative notation, the Leibniz rule can be written in the more familiar form

Dv(f ? g)(x) = Dvf(x) ? g(x) + f(x) ? Dvg(x).
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Proof. Let F = B[f, g], A = Df(x) and E = Dg(x). Let R,S be respectively
the remainders in the differentiability relations of f, g. Then

F (x+ h) = B[f(x+ h), g(x+ h)]

= B
[
f(x) +Ah+R(h), g(x) + Eh+ S(h)

]
= F (x) +B[Ah, g(x)] +B[f(x), Eh] +B[Ah,Eh]

+B[R(h), g(x+ h)] +B[f(x) +Ah, S(h)].

The 2nd and 3rd terms in the last expression are linear in h, and the matrix of
their sum is the required derivative. So, it suffices to show that the last three terms
in the above formula are sublinear. As B is bilinear we have |B[a, b]| ≤ C|a||b| for
some constant C. Also there are constants CA, CE such that |Ah| ≤ CA|h|, and
|Eh| ≤ CE |h|. Therefore

|B[Ah,Eh]|
|h|

≤ C|Ah||Eh|
|h|

≤ CCACE |h| −→
h→0

0.

Thus the forth term is sublinear by the squeeze theorem. For the fifth term we have

1

|h|
B[R(h), g(x+ h)] = B

[R(h)

|h|
, g(x+ h)

]
−→
h→0

B[0, g(x)] = 0.

And for the last term we have

1

|h|
B[f(x) +Ah, S(h)] = B

[
f(x) +Ah,

S(h)

|h|

]
−→
h→0

B[f(x), 0] = 0.

Note that B is continuous; and it vanishes when one of its components is zero, due
to its bilinearity. �

Remark. Let e1, e2, . . . be the standard basis of the Euclidean space Rm. We will
use the same notation for these vectors in every dimension. Let B : Rm×Rp → Rq
be a bilinear map. For k ≤ m and l ≤ p, consider the vector B[ek, el] ∈ Rq. Then
there are unique real numbers Bi

kl such that

B[ek, el] =
∑
i≤q

Bi
klei.

The numbers Bi
kl are called the components of the bilinear map B. Let 〈 , 〉 be the

standard inner product on Euclidean spaces. Then we have

Bi
kl = 〈B[ek, el], ei〉.
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Now for all u ∈ Rm and v ∈ Rp there are unique real numbers uk, vl such that
u =

∑
k≤m ukek, and v =

∑
l≤p vlel. Hence by using the bilinearity of B we get

B[u, v] =
∑
i≤q

∑
k≤m

∑
l≤p

(Bi
klukvl)ei.

Note that uk = 〈u, ek〉 and vl = 〈v, el〉. Thus we also have

〈B[u, v], ei〉 =
∑
k≤m

∑
l≤p

Bi
klukvl =

∑
k≤m

∑
l≤p

Bi
kl〈u, ek〉〈v, el〉.

Therefore in the Leibniz rule, the entries of D(B[f, g])(x) are

Dj(B[f, g])i(x) =
〈
D(B[f, g])(x)ej , ei

〉
=
〈
B[Df(x)ej , g(x)] +B[f(x), Dg(x)ej ], ei

〉
=
〈
B[Djf(x), g(x)] +B[f(x), Djg(x)], ei

〉
=
∑
k≤m

∑
l≤p

Bi
kl

(
Djfk(x)gl(x) + fk(x)Djgl(x)

)
.

Note that 〈Djf(x), ek〉 = Djfk(x), and 〈Djg(x), el〉 = Djgl(x).

Example 7.22. Some particular cases of the Leibniz rule are when the bilinear
pairing is the standard inner product on Rm, or the exterior product on R3. An
interesting particular case is when m = pq, and the bilinear pairing is the action of
the q × p matrix f(x) on the p -dimensional vector g(x).

Chain Rule. Suppose U ⊂ Rn is an open set containing a point x, and f : U → Rm
is differentiable at x. Also suppose V is a neighborhood of f(x), and g : V → Rp is
differentiable at f(x). Then g ◦ f is differentiable at x and

D(g ◦ f)(x) = Dg(f(x))Df(x).

Remark. On the right hand side of the above formula we have the product of two
matrices. When we think in terms of the linear maps defined by these matrices,
their product is just the matrix of the composition of those linear maps. In other
words, the chain rule says that the derivative of the composition of two functions
is the composition of their derivatives.

Remark. If we use xj for the coordinates of Rn and yk for the coordinates of Rm,
then the ijth entry of the product matrix in the chain rule is

∂

∂xj
(g ◦ f)i =

m∑
k=1

∂gi
∂yk

∂fk
∂xj

,

which is the familiar form of chain rule from Calculus courses.



CHAPTER 7. MULTIVARIABLE DIFFERENTIAL CALCULUS 203

Proof. Let A = Df(x) and B = Dg(f(x)). Also let R, s be the remainders in
the differentiability relations of f, g, respectively. Then we have

g(f(x) + h̃) = g(f(x)) +Bh̃+ |h̃|s(h̃).

Now by substituting h̃ with Ah+R(h) we get

g(f(x+ h)) = g
(
f(x) +Ah+R(h)

)
= g(f(x)) +B(Ah) +B(R(h)) + |Ah+R(h)| s(Ah+R(h)).

We have to show that the last two terms are sublinear. For the first one we have
B(R(h))

|h|
= B

(R(h)

|h|

)
−→
h→0

B(0) = 0.

Now for the last term, let CA be a positive constant such that |Ah| ≤ CA|h|. Then

1

|h|
|Ah+R(h)||s(Ah+R(h))| ≤

(
CA +

|R(h)|
|h|

)
|s(Ah+R(h))|

−→
h→0

(CA + 0)|s(0)| = 0.

Note that |s| is continuous at zero. Hence we get the desired result by the squeeze
theorem. �

Theorem 7.23. Suppose U, V ⊂ Rn are open, and f : U → V is invertible. If f
is differentiable at x and f−1 is differentiable at f(x), then Df(x) is an invertible
matrix and we have

Df−1(f(x)) = (Df(x))−1.

Proof. Note that f−1 ◦ f = idU , and D(idU )(x) = I where I is the identity
matrix. Then the chain rule implies that

Df−1(f(x))Df(x) = I.

Hence the theorem follows. �

Theorem 7.24. Suppose U ⊂ Rn is an open set that contains the closed line
segment joining the two points a, b, i.e.

I := {a+ t(b− a) : t ∈ [0, 1]} ⊂ U.

Also suppose f : U → Rm is differentiable at every point of I, and its partial
derivatives are bounded on I. Then we have

|f(b)− f(a)| ≤M |b− a|,

where M := sup
x∈I

(∑
i,j
|Djfi(x)|2

) 1
2 .
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Proof. First note that f is continuous on I since it is differentiable there. Let

g(t) := [f(b)− f(a)] · [f(a+ t(b− a))− f(a)].

Then g is a real-valued function of a single variable t ∈ [0, 1] that satisfies the
conditions of the mean value theorem. Thus for some τ ∈ (0, 1) we have

|f(b)− f(a)|2 = g(1)− g(0) = g′(τ)

= [f(b)− f(a)] · [Df(a+ τ(b− a))(b− a)]

≤ |f(b)− f(a)| |Df(a+ τ(b− a))(b− a)|.

If f(b)− f(a) = 0 then the estimate holds trivially. Otherwise for θ := a+ τ(b− a)
we have

|f(b)− f(a)| ≤ |Df(θ)(b− a)|

=
( m∑
i=1

(
Dfi(θ) · (b− a)

)2) 1
2 ≤

( m∑
i=1

(
|Dfi(θ)| |b− a|

)2) 1
2

= |b− a|
( m∑
i=1

|Dfi(θ)|2
) 1

2
= |b− a|

( m∑
i=1

n∑
j=1

|Djfi(θ)|2
) 1

2

≤M |b− a|. �

Theorem 7.25. Suppose U ⊂ Rn is an open set that contains the closed line
segment joining the two points a, b, i.e.

I := {a+ t(b− a) : t ∈ [0, 1]} ⊂ U.

Also suppose f : U → Rm is differentiable at every point of I, and its partial
derivatives are continuous on I. Then we have

f(b)− f(a) =

∫ 1

0
Df
(
a+ t(b− a)

)
(b− a) dt.

Remark. Let v := b−a. Note that the integrand in the above formula is the vector
Df(a+ tv)v = Dvf(a+ tv). Also note that as shown in Theorem 8.9, the integral
of a vector-valued function is the vector whose ith component is the integral of the
ith component of the function.

Proof. Let g(t) := f(a + t(b − a)). Then g is a function of a single variable t,
whose domain is an open interval containing [0, 1]. Also, due to the chain rule,
g is differentiable at every point of [0, 1]. Let v := b − a. Then we have g′(t) =
Df(a + tv)v. Thus for every i ≤ m we have g′i(t) =

∑
j≤nDjfi(a + tv)vj . So g′i
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is continuous on [0, 1], since the partial derivatives of f are continuous on the line
segment I. Hence by the fundamental theorem of calculus we have

gi(1)− gi(0) =

∫ 1

0
g′i(t)dt.

Therefore

f(b)− f(a) = g(1)− g(0) =

∫ 1

0
g′(t)dt =

∫ 1

0
Df(a+ tv)v dt. �

Remark. Note that Df is an m×n matrix, which can be considered as a vector in
Rmn. Thus by Theorem 8.9, A :=

∫ 1
0 Df(a+ tv) dt is also an m× n matrix whose

ijth entry is
∫ 1

0 Djfi(a+ tv) dt. Now, in the above theorem we can also write∫ 1

0
Dfi(a+ tv)v dt =

∫ 1

0

∑
j≤n

Djfi(a+ tv)vj dt =
∑
j≤n

vj

∫ 1

0
Djfi(a+ tv) dt.

Hence we have
∫ 1

0 Df(a+ tv)v dt = Av. Therefore we get

f(b)− f(a) =

∫ 1

0
Df(a+ tv)v dt = Av =

(∫ 1

0
Df(a+ t(b− a)) dt

)
(b− a).

Finally, let us mention that we can think of
∫ 1

0 Df(a + tv) dt as the mean of Df
along the line segment I.

Theorem 7.26. Suppose U ⊂ Rn is an open set that contains V × [a, b] where
V ⊂ Rn−1 is open. Also suppose that f : U → R is continuous, and for some i < n,
Dif is continuous. Let g : V → R be given by

g(x1, . . . , xn−1) :=

∫ b

a
f(x1, . . . , xn−1, xn) dxn.

Then Dig exists and we have

Dig(x1, . . . , xn−1) =

∫ b

a
Dif(x1, . . . , xn−1, xn) dxn.

Remark. In other words, this theorem says that under suitable conditions we can
change the order of differentiation and integration, or as it is commonly referred
to, we can differentiate under the integral sign.
Remark. For simplicity of the notation, we assumed that we are integrating with
respect to xn; but similar results hold when we integrate with respect to xj , provided
that j 6= i. Of course, when j = i, i.e. when we are integrating and differentiating
with respect to the same variable, we can use the fundamental theorem of calculus,
since every other variable is fixed in this process.
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Proof. We fix every variable other than xi and xn, and will suppress them in the
notation. Let

r(xi, h) :=
1

h

(
g(xi + h)− g(xi)− h

∫ b

a
Dif(xi, xn) dxn

)
.

We need to show that limh→0 r(xi, h) = 0. First note that for some δ0 > 0 we have

K := {(x1, . . . , xi−1)} × [xi − δ0, xi + δ0]× {(xi+1, . . . , xn−1)} × [a, b] ⊂ U,

since (x1, . . . , xi, . . . , xn−1) ∈ V , and V is open. Also note that K is compact. Now
for |h| ≤ δ < δ0 we have

|r(xi, h)| =
∣∣∣∣1h(g(xi + h)− g(xi)− h

∫ b

a
Dif(xi, xn) dxn

)∣∣∣∣
=

∣∣∣∣1h
∫ b

a
f(xi + h, xn)− f(xi, xn)− hDif(xi, xn) dxn

∣∣∣∣
≤ b− a
|h|

max
|h|≤δ, xn∈[a,b]

∣∣f(xi + h, xn)− f(xi, xn)− hDif(xi, xn)
∣∣,

since f(xi + h, xn)− f(xi, xn)− hDif(xi, xn) is continuous on the compact set K,
and hence it is bounded on K.

Next, for some fixed values of h, xi, xn, we consider the real-valued function
p(t) := f(xi+ th, xn) of one variable t. Then by the mean value theorem there exist
τ ∈ (0, 1) such that

f(xi + h, xn)− f(xi, xn) = p(1)− p(0) = p′(τ) = hDif(xi + τh, xn).

Since τ can depend on h, xn, we denote it by τ(h, xn). Note that the dependence of
τ on xi does not concern us at this moment, because we want to estimate r(xi, h)
when h→ 0 and xi is fixed. By combining the above relations we get

|r(xi, h)| ≤ b− a
|h|

max
|h|≤δ, xn∈[a,b]

∣∣hDif(xi + τ(h, xn)h, xn)− hDif(xi, xn)
∣∣

= (b− a) max
|h|≤δ, xn∈[a,b]

∣∣Dif(xi + τ(h, xn)h, xn)−Dif(xi, xn)
∣∣.

But the distance of the two points (xi + τ(h, xn)h, xn) and (xi, xn) is at most δ,
since τ ∈ (0, 1) and |h| < δ. On the other hand, Dif is continuous on the compact
set K. Therefore it is uniformly continuous on K. Hence for a given ε > 0 there
exists δ < δ0, such that for all |h| < δ and xn ∈ [a, b] we have∣∣Dif(xi + τ(h, xn)h, xn)−Dif(xi, xn)

∣∣ < ε.

Thus r(xi, h) → 0 as h → 0; and consequently, g has the required ith partial
derivative. �
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Exercise 7.27. In the above theorem, it can be shown that Dig is also continuous.
More generally, suppose U ⊂ Rn contains V ×[a, b] where V ⊂ Rn−1, and f : U → R
is continuous. Also suppose φ, ψ : V → [a, b] are continuous functions with φ ≤ ψ.
Show that the function f̃ : V → R given by

f̃(x1, . . . , xn−1) :=

∫ ψ(x1,...,xn−1)

φ(x1,...,xn−1)
f(x1, . . . , xn−1, xn) dxn

is continuous.

Exercise 7.28. Let

f(x, y) =


x
|x|y 0 < y ≤

√
|x|,

x
|x|(−y + 2

√
|x|) 0 <

√
|x| ≤ y ≤ 2

√
|x|,

0 otherwise.

Show that d
dx

∫ 1
−1 f(x, y)dy 6=

∫ 1
−1

∂
∂xf(x, y)dy at x = 0.

7.3 Higher Derivatives

Definition 7.29. Let U ⊂ Rn be an open set and f : U → Rm. The kth order
partial derivatives of f are inductively defined to be the partial derivatives of the
(k− 1)th order partial derivatives of f . Note that the first order partial derivatives
of f are just the partial derivatives of f . The kth order partial derivatives are also
called the partial derivatives of order k. We denote them by

Dk
i1i2...ik

fj =
∂kfj

∂xi1∂xi2 . . . ∂xik
:= Di1(Di2(. . . (Dikfj))).

Notation. Since the order of a partial derivative is apparent from the number of
indices in it, we also denote the above partial derivative simply by Di1i2...ikfj .

Definition 7.30. We say a function f is of class Ck if it is continuous, and has
continuous partial derivatives of orders 1, 2, . . . , k on its domain. The function f is
called infinitely differentiable or smooth or of class C∞ if it is continuous, and
has continuous partial derivatives of all orders on its domain. Finally, we consider
the 0th order partial derivative of f to be f itself, and we say f is of class C0 if
it is continuous on its domain.

Remark. Note that the (k + 1)th order partial derivatives of a function f are the
kth order partial derivatives of the partial derivatives of f . This can be proved by
an easy induction on k. Consequently, a function f is Ck+1 if and only if its partial
derivatives are Ck. Note that a function whose partial derivatives are continuous,
is differentiable, and therefore is continuous too. Also, it is trivial that a function
f is Ck if and only if each component of f is Ck.
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Remark. Suppose U ⊂ Rn is open and f : U → Rm is differentiable. Then for
every x ∈ U , Df(x) is an m × n matrix, i.e. Df : U → Rm×n. But Rm×n as a
normed space is equivalent to Rmn. Thus we can talk about the continuity and
differentiability of the matrix-valued map Df . For example we can say f is C1 if
Df is continuous. But this implies that the entries of the matrix Df are continuous
functions, i.e. the partial derivatives of f are continuous. On the other hand if the
partial derivatives of f are continuous then we know that f is differentiable. In
addition we know that Df is continuous since its entries are continuous. Thus the
two definitions of C1 functions are equivalent.

Let us also check the equivalence of the two definitions when k = 2, i.e. for C2

functions. We can say f is twice differentiable if Df is differentiable. Then we can
think of the 2nd derivative at every point as anmn×nmatrix, i.e. D2f : U → Rmn2 .
Now we can say f is C2 if D2f is continuous. Since we assumed that Df is
differentiable, we know that the 2nd partial derivatives of f exist. It can also be
checked easily that the 2nd partial derivatives are the entries of D2f . Hence the
2nd partial derivatives of f are also continuous, and f is C2 with respect to the
first definition. Conversely, if f is C2 with respect to the first definition then the
2nd partial derivatives of f are continuous. But the 2nd partial derivatives are the
partial derivatives of Df , so Df is differentiable. Finally D2f is continuous since
its entries i.e. the 2nd partial derivatives are continuous.

Definition 7.31. Let U ⊂ Rn be an open set, and suppose f : U → R has partial
derivatives of the second order at some point x ∈ U . Then the Hessian matrix of
f at x is the n× n matrix

D2f(x) := [Dijf(x)] =


D11f(x) D12f(x) . . . D1nf(x)
D21f(x) D22f(x) . . . D2nf(x)

...
...

. . .
...

Dn1f(x) Dn2f(x) . . . Dnnf(x)

.
Theorem 7.32. Suppose U ⊂ Rn is open and f : U → R. If Dif and Djf exist
on U , and they are both differentiable at a point a ∈ U , then

Dijf(a) = Djif(a).

Remark. Thus when the partial derivatives of f are differentiable at a, the Hessian
matrix of f at a is symmetric.

Remark. When f : U → Rm we can obviously apply this theorem to every com-
ponent of f . The same is true for the next theorem.

Proof. For small h ∈ R let

A(h) := f(a+ hei + hej)− f(a+ hei)− f(a+ hej) + f(a),
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where ei, ej are the elements of the standard basis of Rn. Consider the function

g(t) := f(a+ hei + thej)− f(a+ thej)

of a real variable t. Then by the mean value theorem for some τ ∈ (0, 1) we have

A(h) = g(1)− g(0) = g′(τ)

= hDjf(a+ hei + τhej)− hDjf(a+ τhej).

Note that τ may depend on h. Now the differentiability of Djf at a implies that
for any small h̃ ∈ Rn we have

Djf(a+ h̃) = Djf(a) +DDjf(a)h̃+R(h̃),

where R is a sublinear function. If we replace h̃ with hei + τhej and τhej , and
subtract the two equations we obtain

A(h)

h
= Djf(a+ hei + τhej)−Djf(a+ τhej)

= DDjf(a)(hei + τhej) +R(hei + τhej)−DDjf(a)(τhej)−R(τhej)

= DDjf(a)(hei) +R(hei + τhej)−R(τhej)

= hDiDjf(a) +R(hei + τhej)−R(τhej).

In addition note that∣∣R(hei + τhej)−R(τhej)
∣∣

|h|
≤
√

1 + τ2

∣∣R(hei + τhej)
∣∣∣∣h√1 + τ2

∣∣ + |τ |
∣∣R(τhej)

∣∣
|τh|

≤ 2

∣∣R(hei + τhej)
∣∣∣∣hei + τhej
∣∣ +

∣∣R(τhej)
∣∣∣∣τhej∣∣ −→
h→0

0,

since R is sublinear. Thus we get

lim
h→0

A(h)

h2
= DiDjf(a) + lim

h→0

R(hei + τhej)−R(τhej)

h

= DiDjf(a) + 0 = Dijf(a).

Finally, by switching the role of i, j we similarly get limh→0
A(h)
h2

= Djif(a). Hence
we obtain the desired result, because the value of the limit is unique. �

Example 7.33. The differentiability of the first order partial derivatives of f is
essential for the equality of its mixed second order partial derivatives. For example
let

f(x, y) :=

{
xy(x2−y2)
x2+y2

(x, y) 6= (0, 0),

0 (x, y) = (0, 0).



CHAPTER 7. MULTIVARIABLE DIFFERENTIAL CALCULUS 210

Then for (x, y) 6= (0, 0) we have

D1f(x, y) =
(3x2y − y3)(x2 + y2)− 2x(x3y − xy3)

(x2 + y2)2
=
x4y + 4x2y3 − y5

(x2 + y2)2
,

D2f(x, y) =
(x3 − 3xy2)(x2 + y2)− 2y(x3y − xy3)

(x2 + y2)2
=
x5 − 4x3y2 − xy4

(x2 + y2)2
.

And

D1f(0, 0) = lim
t→0

1

t
[f(t, 0)− f(0, 0)] = 0,

D2f(0, 0) = lim
t→0

1

t
[f(0, t)− f(0, 0)] = 0.

Therefore

D12f(0, 0) = lim
t→0

1

t
[D2f(t, 0)−D2f(0, 0)] = lim

t→0

1

t
t = 1,

D21f(0, 0) = lim
t→0

1

t
[D1f(0, t)−D1f(0, 0)] = lim

t→0

1

t
(−t) = −1.

Hence D12f(0, 0) 6= D21f(0, 0). In addition, note that for (x, y) 6= (0, 0) we have

D12f(x, y) =
(5x4 − 12x2y2 − y4)(x2 + y2)− 4x(x5 − 4x3y2 − xy4)

(x2 + y2)3

=
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
= D21f(x, y).

Therefore although D12f , D21f exist everywhere and are equal at every point other
than (0, 0), they are not continuous at (0, 0).

Theorem 7.34. Let U ⊂ Rn be an open set, and f : U → R. Suppose the
(k−1)th order partial derivatives Dj2...jkf and Di2...ikf exist on U , and they are both
differentiable at a ∈ U . Also suppose that j1, . . . , jk is a permutation of i1, . . . , ik.
Then we have

Dj1...jkf(a) = Di1...ikf(a).

Proof. For a function like f and a real number h ∈ R we define the function Dhi f
as follows

Dhi f(x) := f(x+ hei)− f(x).

We can think of Dhi as a discrete differentiation operator in the ith direction. Note
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that for any two indices i, j we have(
Dhj (Dhi f)

)
(x) = Dhi f(x+ hej)− Dhi f(x)

= f(x+ hej + hei)− f(x+ hej)−
(
f(x+ hei)− f(x)

)
= f(x+ hej + hei)− f(x+ hej)− f(x+ hei) + f(x)

= f(x+ hei + hej)− f(x+ hei)−
(
f(x+ hej)− f(x)

)
= Dhj f(x+ hei)− Dhj f(x) =

(
Dhi (Dhj f)

)
(x).

Therefore Dhi and Dhj commute. We also have

Dj(D
h
i f)(x) = Dj

(
f(x+ hei)− f(x)

)
= Djf(x+ hei)−Djf(x) = Dhi (Djf)(x).

Thus Dhi and Dj commute too. In addition note that Dhi D
h
j f equals A(h) in the

proof of last theorem. We are going to use a higher-dimensional version of that
proof here. Note that for any function like g we have

Dhj g(x) = g(x+ hej)− g(x) = hDjg(x+ τhej)

for some τ ∈ (0, 1), provided that Djg exists on a neighborhood of x, and h is small
enough.

Now consider Dhik(Dhik−1
(. . . (Dhi1f))). Let g := Dhik−1

(. . . (Dhi1f)). We have

Dhik(Dhik−1
(. . . (Dhi1f)))(a) = Dhikg(a)

= g(a+ heik)− g(x) = hDikg(a+ τkheik)

= hDik(Dhik−1
(. . . (Dhi1f)))(a+ τkheik)

= hDhik−1
(. . . (Dhi1(Dikf)))(a+ τkheik),

where τk ∈ (0, 1). If we repeat the above computation with Dikf instead of f and
a+ τkheik instead of a we get

Dhik−1
(. . . (Dhi1(Dikf)))(a+ τkheik)

= hDhik−2
(. . . (Dhi1(Dik−1ikf)))(a+ τkheik + τk−1heik−1

).

Hence we can continue inductively and obtain

Dhik(Dhik−1
(. . . (Dhi1f)))(a) = hk−1Dhi1(Di2...ikf)(a+ θ),

where θ = τkheik + · · · + τ2hei2 for some τk, . . . , τ2 ∈ (0, 1). Note that |θ| ≤ |h|.
Now by using the differentiability of Di2...ikf at a we have

Dhi1(Di2...ikf)(a+ θ) = Di2...ikf(a+ θ + hei1)−Di2...ikf(a+ θ)

= Di2...ikf(a) +DDi2...ikf(a)(θ + hei1) +R(θ + hei1)

−Di2...ikf(a)−DDi2...ikf(a)(θ)−R(θ)

= DDi2...ikf(a)(hei1) +R(θ + hei1)−R(θ)

= hDi1i2...ikf(a) +R(θ + hei1)−R(θ),
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where R is a sublinear remainder. Therefore we get

1

hk
Dhik(Dhik−1

(. . . (Dhi1f)))(a) =
1

h
Dhi1(Di2...ikf)(a+ θ)

= Di1i2...ikf(a) +
R(θ + hei1)−R(θ)

h
.

Thus
lim
h→0

1

hk
Dhik(Dhik−1

(. . . (Dhi1f)))(a) = Di1i2...ikf(a),

since |θ| ≤ |h|, |θ + hei1 | ≤ |h|, and R is sublinear.
However note that Dhi and Dhj commute for any i, j. So by rearranging i1, . . . , ik

we get
Dhik(Dhik−1

(. . . (Dhi1f))) = Dhjk(Dhjk−1
(. . . (Dhj1f))).

Hence we have

Di1i2...ikf(a) = lim
h→0

1

hk
Dhik(Dhik−1

(. . . (Dhi1f)))(a)

= lim
h→0

1

hk
Dhjk(Dhjk−1

(. . . (Dhj1f)))(a) = Dj1...jkf(a),

as desired. �

Remark. Note that the above proof works because Dhi ,D
h
j commute for any i, j.

However, in the previous theorem we have shown that Di, Dj commute too. So
we must be able to prove the above theorem by rearranging Di1 . . . Dik to ob-
tain Dj1 . . . Djk . But this requires strengthening the assumptions of the theorem,
because the commutativity of Di, Dj holds under some assumptions, unlike the
commutativity of Dhi ,D

h
j , which is a mere algebraic property and does not require

special differentiability assumptions to hold.
Nevertheless, it is instructive to see how the other approach works. Let us try

to show that Dijkf(a) = Djkif(a). First note that we have

Dijkf(a) = DijDkf(a) = DjiDkf(a) = Djikf(a)

provided that Djkf,Dikf are differentiable at a. Next we need to show that
Djikf(a) and Djkif(a) are equal. We know that Dkif = Dikf if the partial deriva-
tives of f are differentiable. And if we differentiate both sides of this equality we
get the desired. But in order to differentiate both sides of Dkif = Dikf we need
to know that it holds on a neighborhood of a. Hence in this approach we need to
assume that partial derivatives of f are differentiable on a neighborhood of a and
2nd order partial derivatives of f are differentiable at a to conclude the symmetry
of the 3rd order partial derivatives of f at a. But as we have seen in the above
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proof, we can obtain the symmetry of the 3rd order partial derivatives of f by
merely assuming the differentiability of the 2nd order partial derivatives of f at a,
and no differentiability assumption on a neighborhood of a is necessary. �

Theorem 7.35. Suppose U ⊂ Rn is open. Let f : U → Rm and g : U → Rp be
Ck functions for some 1 ≤ k ≤ ∞. Let V ⊂ Rm be an open set containing f(U),
and suppose F : V → Rq is a Ck function. Also suppose B : Rm × Rp → Rq is a
bilinear map, and c1, c2 ∈ R. Then
(i) If p = m then c1f + c2g is a Ck function.
(ii) B[f, g] and F ◦ f are Ck functions.
(iii) If p = m = 1 then fg is a Ck function. If in addition g 6= 0 on U , then f

g is
also a Ck function.

Proof. Let Bi
κl be the components of B, as defined in the remark after the Leibniz

rule. Then we have

Dj(c1f + c2g)i = c1Djfi + c2Djgi,

Dj(B[f, g])i =
∑

κ≤m
∑

l≤pB
i
κl

(
glDjfκ + fκDjgl

)
, (∗)

Dj(F ◦ f)i =
∑

l≤m(Djfl)((DlFi) ◦ f).

For 1 ≤ k < ∞, the proof is by induction on k. When k = 1 we know that
the components of f, g, F and their partial derivatives, are continuous. Therefore
c1f+c2g, B[f, g], and F ◦f are continuous, and have continuous partial derivatives
by (∗). Because the sum, the product, and the composition of continuous functions
are continuous. Note that constant functions and bilinear maps are continuous.
Also the function x 7→ (f(x), g(x)) from U into Rm × Rp is continuous.

Now suppose the theorem is true for some k < ∞. Then we have to prove
the theorem for k + 1. Let f, g, F be Ck+1 functions. Then we know that the
components of f, g, F and their partial derivatives, are Ck functions. Hence by the
induction hypothesis we know that the partial derivatives of c1f + c2g, B[f, g], and
F ◦f are Ck functions. Because by (∗), their partial derivatives can be expressed as
a linear combination of Ck functions. (Note that these functions are either Ck, or
they are the product of two Ck functions, or they are the product of a Ck function
and a function which is the composition of two Ck functions. Also, note that the
multiplication of two real numbers is a bilinear map.) Notice that here we are using
the induction hypothesis applied to linear combinations with more than two terms;
but this more general case follows by an easy induction on the number of terms,
from the case of linear combinations with only two terms. Therefore c1f + c2g,
B[f, g], and F ◦ f are Ck+1 functions.

Finally if the functions f, g, F are C∞ functions, then they are Ck functions for
all k <∞. Therefore c1f + c2g, B[f, g], and F ◦ f are Ck functions for all k <∞.
Hence they are also C∞ functions.
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Part (iii) follows easily from the previous two parts. We only need to note
that the multiplication of real numbers is a bilinear map. Also if g 6= 0 then 1

g

is Ck. Because the map x 7→ x is obviously a C∞ function from R − {0} into R.
Hence x 7→ 1

x is also a C∞ function by the one-dimensional version of this theorem,
i.e. Theorem 4.11. Therefore the composition of x 7→ 1

x and g, i.e. 1
g , is a Ck

function. �

Definition 7.36. A multi-index is a vector α = (α1, . . . , αn) ∈ Zn which has
nonnegative components, i.e. αi ≥ 0. The order of α is

|α| := α1 + · · ·+ αn.

We also define
α! := α1! · · ·αn!.

For h ∈ Rn we define
hα := hα1

1 · · ·h
αn
n ,

where we interpret 00 = 1. Also for a function f defined on an open set in Rn we
define

Dαf := Dα1
1 · · ·D

αn
n f,

where Dk
i =

k times︷ ︸︸ ︷
DiDi · · ·Di. When α = 0 = (0, . . . , 0) we use the convention D0f = f .

Definition 7.37. Suppose U ⊂ Rn is open and f : U → Rm has partial derivatives
up to order k at x ∈ U . The kth order Taylor polynomial of f at x is

P (h) =
∑
|α|≤k

1

α!
Dαf(x)hα,

and the kth order Taylor remainder is R(h) = f(x+ h)− P (h).

Remark. In fact the kth order Taylor polynomial is∑
j≤k

[ ∑
i1≤n
· · ·
∑
ij≤n

1

j!
Di1...ijf(x)hi1 · · ·hij

]
.

But because of the symmetry of mixed partial derivatives we can see that for any
multi-index α with |α| = j there are j!

α! partial derivatives of order j which are
equal to Dαf(x). Hence we arrive at the initial formula for the Taylor polynomial.

Exercise 7.38. Show that a multivariable polynomial

p(x1, . . . , xn) =
∑
ki≤mi

ck1...knx
k1
1 · · ·x

kn
n ,
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is a C∞ function from Rn to R. In addition, show that

ck1...kn =
1

k1! · · · kn!
Dk1

1 · · ·D
kn
n p.

This also proves that the coefficients of a multivariable polynomial are uniquely
determined by the polynomial.

Theorem 7.39. Let U ⊂ Rn be an open set, and f : U → Rm. Suppose all the
partial derivatives of f of orders less than or equal to k − 1 exist on U , and they
are all differentiable at some x ∈ U . Let R be the kth order Taylor remainder of f
at x. Then

lim
h→0

R(h)

|h|k
= 0.

Remark. Note that the kth order partial derivatives of f at x exist too. Also note
that by Theorem 7.34 all the mixed partial derivatives of f at x up to order k are
symmetric.

Remark. It is actually sufficient to just assume that all the (k−1)th order partial
derivatives of f are differentiable at x. Since then their continuity at x implies the
differentiability of the (k − 2)th order partial derivatives at x, and so on.

Proof. We only need to prove the limit is zero for each component of f , so we
assume that m = 1. We proceed by induction on k. When k = 1 the assumption is
that the 0th order partial derivative of f , i.e. f itself, is differentiable at x. Hence

R(h) = f(x+ h)− f(x)−
∑
i

Dif(x)hi = f(x+ h)− f(x)−Df(x)h

is sublinear as desired. Next, for the induction step, suppose the theorem is true for
some k. Note that the induction hypothesis is that the conclusion of the theorem
holds for any function (not just f) that satisfies theorem’s assumptions for this
particular value of k. And in fact we are going to apply the induction hypothesis
to the derivatives of f .

Let f be a function whose partial derivatives up to order k exist on U , and they
are all differentiable at x. Then the (k + 1)th order Taylor remainder of f at x is

R(h) = f(x+ h)−
∑
|α|≤k+1

1

α!
Dαf(x)hα.

Since the right hand side is differentiable, R is differentiable too. Thus if we differ-
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entiate with respect to hj we obtain

DjR(h) = Djf(x+ h)−
∑
|α|≤k+1

1

α!
Dαf(x)

∂

∂hj
(hα)

= Djf(x+ h)−
∑
|α|≤k+1

1

α!
Dαf(x)αjh

α−ej .

Here ej ∈ Zn is the vector whose jth component is 1 and its other components are
zero. If αj = 0 then the term containing Dαf(x) vanishes. So the above sum is
actually a sum over those multi-indices α for which we have αj 6= 0. For such an
α let β := α − ej . Note that as α runs through all multi-indices of order at most
k + 1 with αj 6= 0, β runs through all multi-indices of order at most k. Hence we
have

DjR(h) = Djf(x+ h)−
∑
|β|≤k

1

β!
DβDjf(x)hβ.

Note that here we used the facts that αj
α! = 1

β! , and D
αf(x) = DβDjf(x) due to the

symmetry of mixed partial derivatives of order at most k + 1 at x. Therefore DjR
is the kth order Taylor remainder of Djf at x. Hence by the induction hypothesis
we have

lim
h→0

DjR(h)

|h|k
= 0.

Let us define rj(h) := |DjR(h)|/|h|k for h 6= 0, and rj(0) := 0. Then rj is con-
tinuous at h = 0. Now let yj := (h1, . . . , hj , 0, . . . , 0). Then, by the mean value
theorem, for some tj ∈ (0, 1) we have

R(h) = R(h)−R(0) =
n∑
j=1

R(yj)−R(yj−1)

=

n∑
j=1

hjDjR(h1, . . . , hj−1, tjhj , 0 . . . , 0).

Let θj := (h1, . . . , hj−1, tjhj , 0 . . . , 0). Then |θj | ≤ |h|. Hence

|R(h)|
|h|k+1

≤
∑ |hj |
|h|
|DjR(θj)|
|h|k

≤
∑ |DjR(θj)|

|h|k
=
∑ rj(θj)|θj |k

|h|k
≤
∑

rj(θj).

But θj → 0 as h→ 0, because |θj | ≤ |h|. Thus we get

lim
h→0

rj(θj) = lim
θj→0

rj(θj) = 0 =⇒ lim
h→0

∑
rj(θj) = 0.

Hence limh→0
|R(h)|
|h|k+1 = 0 as required. �
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7.4 Extrema of Multivariable Functions

Theorem 7.40. Suppose U ⊂ Rn is an open connected set and f : U → Rm is
differentiable on U . If Df = 0 on U then f is constant.

Remark. If U is disconnected then f can have different constant values on different
components of U , so the connectedness of U is essential in the theorem.

Proof. It suffices to show that each component of f is constant; so we assume
that m = 1. Let c be a value in the image of f . Then as f is continuous, the set

A := {x ∈ U : f(x) = c}

is closed in U . If we show that A is also open in U , then as A is obviously nonempty
we must have A = U , and consequently f is constant. To do this let a ∈ A be an
arbitrary point. Since U is open there is an open ball Br(a) ⊂ U . Let b ∈ Br(a),
and consider the function g(t) := f(a+ t(b− a)). Then for some τ ∈ (0, 1) we have

f(b)− f(a) = g(1)− g(0) = g′(τ) = Df(a+ τ(b− a))(b− a) = 0.

Hence f(b) = c too. Thus Br(a) ⊂ A, and A is open. �

Definition 7.41. Suppose X is a metric space, and f : X → R is a function. We
say f has a local maximum at y ∈ X if f(y) ≥ f(x) for all x in a neighborhood
of y. Similarly, we say f has a local minimum at y ∈ X if f(y) ≤ f(x) for all x
in a neighborhood of y. A local extremum of f , is either a local maximum of f ,
or a local minimum of f .

Theorem 7.42. Suppose f is a real-valued function defined on an open neighbor-
hood of a ∈ Rn, and it is differentiable at a. If f has a local maximum or minimum
at a, then Df(a) = 0.

Proof. For a fixed v ∈ Rn and small t ∈ R, let g(t) := f(a + tv). Then it is
obvious that g has a local extremum at t = 0. Hence

0 = g′(0) = Dvf(a) = Df(a)v.

Since v is arbitrary we must have Df(a) = 0. �

Second Derivative Test. Suppose f is a real-valued function defined on an open
neighborhood of x ∈ Rn. Also suppose f has first order partial derivatives around
x, and its partial derivatives are differentiable at x.
(i) Suppose Df(x) = 0. If the Hessian matrix D2f(x) is positive definite then

f has a local minimum at x, and if D2f(x) is negative definite then f has a
local maximum at x.
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(ii) If f has a local minimum at x then D2f(x) is positive semi-definite, and if f
has a local maximum at x then D2f(x) is negative semi-definite.

Proof. First note that as the partial derivatives Dif are differentiable at x, they
are also continuous at x. Hence f is differentiable at x, and Df(x) exists. Also
note that by our hypothesis A := D2f(x) is a symmetric n×n matrix. Hence there
is an orthonormal basis v1, . . . , vn for Rn consisting of the eigenvectors of A with
corresponding eigenvalues λ1, . . . , λn, i.e. we have

〈vi, vj〉 =

{
1 i = j

0 i 6= j
, and Avi = λivi.

Here 〈 , 〉 is the standard inner product of Rn. The positive definiteness of A means
that λi > 0 for all i. Similarly A is negative definite, positive semi-definite, or
negative semi-definite if respectively all λi’s are negative, nonnegative, or nonposi-
tive. Let h = (h1, . . . , hn) be an arbitrary vector in Rn, and let (l1, . . . , ln) be the
coordinates of h in the eigenvectors basis, i.e. h = l1v1 + · · ·+ lnvn. Then we have∑

i,j

Aijhihj =
∑
i

hi(Ah)i = 〈Ah, h〉

=
〈∑

i

liAvi,
∑
j

ljvj

〉
=
∑
i,j

λililj〈vi, vj〉 =
∑
i

λil
2
i .

We also have

|h|2 =
∑
i

h2
i = 〈h, h〉 =

〈∑
i

livi,
∑
j

ljvj

〉
=
∑
i,j

lilj〈vi, vj〉 =
∑
i

l2i .

In the following we give the proofs for the case of a minimum, the case of a maximum
is similar.

(i) Suppose h ∈ Rn and |h| is small. We use the above notations for the
coordinates of h. Let R be the second order Taylor remainder of f at x. Then by
Theorem 7.39 we have (note that we are not using the multi-index notation here)

f(x+ h)− f(x) = Df(x)h+
1

2

∑
i,j

Dijf(x)hihj +R(h)

=
1

2

∑
i,j

Aijhihj +R(h)

=
1

2

∑
i

λil
2
i +R(h) ≥ 1

2
λ1|h|2 +R(h),
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where λ1 is the smallest eigenvalue. Now since limh→0
|R(h)|
|h|2 = 0, when |h| is small

enough we have |R(h)|
|h|2 < 1

4λ1. Hence

f(x+ h)− f(x)

|h|2
≥ 1

2
λ1 −

1

4
λ1 > 0.

Thus f(x+ h) > f(x) when |h| is small enough. Therefore f has a local minimum
at x.

(ii) Since f has a local minimum at x we know that Df(x) = 0. Similarly to
the above we have

1

2

∑
λil

2
i +R(h) = f(x+ h)− f(x) ≥ 0

Let us set h = 1
kvj , where k is a large integer. That is we set lj = 1

k , and all other
li’s equal to 0. Then we have

1

2
λj ≥ −

R( 1
kvj)
1
k2

= −
R( 1

kvj)
1
k2
|vj |2

= −R(h)

|h|
.

Now as k →∞ we have h→ 0; so the right hand side of the above inequality goes
to zero. Therefore λj ≥ 0 as desired. �

Example 7.43. Positive semi-definiteness of the Hessian matrix is not sufficient
to ensure that we have a local minimum. For example g(t) = t3 does not have a
local minimum at t = 0, even though its first derivative vanishes at t = 0 and its
second derivative is nonnegative there. A more interesting example is the function

f(x, y) = (y − x2)(y − 2x2).

It is easy to see that Df(0, 0) = 0 and D2f(0, 0) is positive semi-definite. But f
does not have a local minimum at the origin, because it is negative on the region
between the two parabolas y = x2 and y = 2x2 in its domain, and is positive outside
of that region. However, the restriction of f to every line passing through the origin
has a local minimum at the origin. Because the two parabolas are tangent to the
line y = 0 at the origin; so, near the origin, no other line passing through the origin
can stay in the region between the two parabolas. And this is also true for the line
y = 0 itself.
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7.5 The Inverse and Implicit Function Theorems

Inverse Function Theorem. Suppose U ⊂ Rn is open, and f : U → Rn is Ck for
some 1 ≤ k ≤ ∞. Also suppose that for some a ∈ U the matrix Df(a) is invertible.
Then there is an open set V containing a such that
(i) f

∣∣
V

is one-to-one, and
(ii) f(V ) is open.

Furthermore, if g : f(V )→ V is the inverse of f
∣∣
V
, then

(iii) g is Ck, and for z ∈ f(V ) we have

Dg(z) =
(
Df(g(z))

)−1
.

Proof. We break the proof into several parts to make it more comprehensible,
although the parts are intertwined.

(i) First let us show that f is one-to-one on a neighborhood of a. Let A :=
Df(a). Then by our assumption A is an invertible matrix. Let C be a positive
constant such that |A−1h| ≤ C|h| for every h ∈ Rn. Let

F (x) := x−A−1f(x).

Then F is differentiable, and we haveDF (x) = I−A−1Df(x). SoDF is continuous
since Df is continuous. In addition we have

DF (a) = I −A−1Df(a) = I −A−1A = 0.

Hence, when r is small enough, for x ∈ Br(a) we must have
(∑

i,j |DjFi(x)|2
) 1

2 ≤ 1
2 .

Thus by Theorem 7.24 we have

|F (x)− F (y)| ≤ 1

2
|x− y|,

for x, y ∈ Br(a) (note that the line segment joining x, y is also inside Br(a)).
Therefore we obtain

|A−1(f(x)− f(y))| = |x− y − (F (x)− F (y))|

≥ |x− y| − |F (x)− F (y)| ≥ |x− y| − 1

2
|x− y| = 1

2
|x− y|.

Hence we get

|f(x)− f(y)| ≥ 1

C
|A−1(f(x)− f(y))| ≥ 1

2C
|x− y|, (∗)

for every x, y ∈ Br(a). The above relation clearly implies that f |Br(a) is one-to-one,
because from f(x) = f(y) we can conclude that |x− y| = 0, and thus x = y.
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(ii) Next note that Df(x) is also invertible when x is near a. Because we know
that detDf(a) 6= 0. Therefore we must have detDf(x) 6= 0 for x close to a, since
det and Df are continuous functions. Thus we can assume that r is small enough
so that Df(x) is invertible for x ∈ Br(a).

Now let us show that the image of f |Br(a) contains an open ball Bs(f(a)) around
f(a). Fix a point y0 ∈ Bs(f(a)), and consider the function ϕ : B r

2
(a)→ R defined

by
ϕ(x) := |f(x)− y0|2.

Then the continuous function ϕ attains its minimum on its compact domain B r
2
(a)

at some point x0. Now note that by (∗) for x ∈ ∂B r
2
(a) we have

|f(x)− f(a)| ≥ 1

2C
|x− a| = r

4C
.

Hence

ϕ(x) = |f(x)− y0|2 ≥
(
|f(x)− f(a)| − |f(a)− y0|

)2 ≥ ( r
4C
− s
)2
.

On the other hand, ϕ(a) = |f(a) − y0|2 < s2. Thus if we have s < r
4C − s, or

equivalently s < r
8C , then ϕ(a) < ϕ(x). Hence ϕ does not attain its minimum on

∂B r
2
(a). So we must have x0 ∈ B r

2
(a). Therefore ϕ has a local minimum at x0, and

consequently we get Dϕ(x0) = 0. But ϕ(x) = |f(x)− y0|2 = 〈f(x)− y0, f(x)− y0〉,
where 〈 , 〉 is the standard inner product of Rn. Hence by Leibniz rule we get

Djϕ(x) = 2〈Djf(x), f(x)− y0〉.

Thus for every j we have(
Df(x0)T(f(x0)− y0)

)
j

= 〈Djf(x0), f(x0)− y0〉 = 0.

However, the matrix Df(x0) is invertible, so its transpose is also invertible. There-
fore we must have f(x0)− y0 = 0, i.e. f(x0) = y0. Hence when s is small enough,
Bs(f(a)) is in the image of f |Br(a), as desired.

Now let V := Br(a) ∩ f−1(Bs(f(a))). Then V is open since f is continuous.
Also f(V ) = Bs(f(a)), since Bs(f(a)) is contained in the image of f |Br(a). Thus
f(V ) is open. In addition, f |V is one-to-one because f |Br(a) is one-to-one. Hence
parts (i) and (ii) of the theorem are proved.

(iii) Next let us show that g, the inverse of f |V , is Ck. Let z, w ∈ f(V ). Then
we have z = f(x) and w = f(y) for some x, y ∈ V . Equivalently we have g(z) = x
and g(w) = y. Hence by (∗) we get

|g(w)− g(z)| = |y − x| ≤ 2C|f(y)− f(x)| = 2C|w − z|.
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Therefore g is continuous. In addition, we know that

f(y)− f(x) = Ã(y − x) +R(y − x),

where Ã = Df(x), and R is sublinear. Thus we get

g(w)− g(z)− Ã−1(w − z) = y − x− Ã−1
(
f(y)− f(x)

)
= y − x− Ã−1

(
Ã(y − x) +R(y − x)

)
= y − x− (y − x)− Ã−1

(
R(y − x)

)
= −Ã−1

(
R(g(w)− g(z))

)
.

Let C̃ be a positive constant such that |Ã−1h| ≤ C̃|h| for every h ∈ Rn. Then by
(∗) we obtain∣∣Ã−1

(
R(g(w)− g(z))

)∣∣
|w − z|

≤ C̃
∣∣R(g(w)− g(z))

∣∣
|w − z|

= C̃

∣∣R(y − x)
∣∣

|f(y)− f(x)|
≤ 2CC̃

∣∣R(y − x)
∣∣

|y − x|
−→
y→x

0.

However when w → z we also have y → x, because by (∗) we have |y−x| ≤ 2C|w−z|.
Hence −Ã−1

(
R(g(w)−g(z))

)
is sublinear, and therefore g is differentiable at z. We

also have
Dg(z) = Ã−1 =

(
Df(x)

)−1
=
(
Df(g(z))

)−1
,

as desired. Now note that Df(g(z)) is continuous in z, since g,Df are continuous.
In addition, due to Cramer’s rule, the entries of the inverse of an invertible matrix
are rational functions (i.e. quotients of polynomials) of the entries of the matrix.
Thus

(
Df(g(z))

)−1 is continuous in z. Therefore Dg is continuous, and g is C1.
Finally we show by induction that for finite k, g is Ck when f is Ck. The case of

k = 1 is already proved. Suppose the claim holds for k−1. Let f be Ck. Then f is
also Ck−1; so by induction hypothesis g is Ck−1. Since the entries of the inverse of
an invertible matrix are rational functions of the entries of the matrix, and rational
functions are smooth, Dg = (Df(g))−1 is Ck−1. Therefore g is Ck, as desired. At
the end note that when f is C∞ then it is Ck for every finite k. Hence g is Ck for
every finite k. Thus g is also C∞. �

In the next theorem we identify Rn+m with Rn × Rm; so we denote the points
of Rn+m by (x, y) where x ∈ Rn and y ∈ Rm.

Implicit Function Theorem. Suppose U ⊂ Rn+m is open, and f : U → Rm is
Ck for some 1 ≤ k ≤ ∞. Let (a, b) ∈ U , and suppose f(a, b) = c. Consider the
level set

Γ := {(x, y) ∈ U : f(x, y) = c}.
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Suppose the m×m matrix [
∂fi
∂yj

(a, b)

]
is invertible. Then
(i) There is an open set V in Rn+m containing (a, b), an open set W in Rn

containing a, and a unique function g : W → Rm such that

Γ ∩ V = {(x, g(x)) : x ∈W}.

(ii) Furthermore, g is a Ck function that satisfies g(a) = b, and for every x ∈W
we have f(x, g(x)) = c, and

Dg(x) = −
[
∂fi
∂yj

(x, g(x))

]−1 [ ∂fi
∂xj

(x, g(x))

]
.

Remark. In other words, near the point (a, b) the level set Γ = {f = c} is the
graph of a Ck function g.

Alternatively, we can say that near (a, b) we can solve the equation f(x, y) = c
for y to obtain y = g(x).

Proof. Consider the function F : U → Rn × Rm which is defined by

F (x, y) := (x, f(x, y)).

It is obvious that F is Ck, since its components are Ck. Now we have

DF =

[
I 0

Dxf Dyf

]
,

where I is the n×n identity matrix, 0 is the n×m zero matrix, and Dxf,Dyf are
the m× n and m×m matrices [

∂fi
∂xj

]
,

[
∂fi
∂yj

]
,

respectively. Hence we have detDF = det I · detDyf = detDyf . Therefore
detDF 6= 0 at (a, b); so DF is invertible at (a, b). Thus we can apply the in-
verse function theorem to conclude that there is an open set V containing (a, b)
such that F

∣∣
V
is one-to-one, F (V ) is open, and G, the inverse of F

∣∣
V
, is Ck. Note

that we have F (a, b) = (a, f(a, b)) = (a, c). So G(a, c) = (a, b). We also know that

(x, y) = F (G(x, y)) =
(
G1(x, y), . . . , Gn(x, y), f(G(x, y))

)
. (∗)

Thus the first n components of G(x, y) is simply x, i.e. we have

G(x, y) = (x,H(x, y)),
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for some Ck function H : F (V )→ Rm. Hence we get

(x, y) = G(F (x, y)) = G(x, f(x, y)) = (x,H(x, f(x, y))).

Therefore we must have
H(x, f(x, y)) = y, (∗∗)

for every (x, y) ∈ V .
Now note that

W := {x : (x, c) ∈ F (V )}

is open, because it is the inverse image of the open set F (V ) under the continuous
function x 7→ (x, c). We also have a ∈ W , since (a, c) = F (a, b) ∈ F (V ). Now
suppose f(x, y) = c for some (x, y) ∈ V . Then by (∗∗) we have H(x, c) = y.
Keeping this in mind, for x ∈W we define

g(x) := H(x, c).

Then when (x, y) ∈ Γ ∩ V , i.e. when f(x, y) = c, we have

(x, c) = (x, f(x, y)) = F (x, y) ∈ F (V );

so x ∈ W . And we also have y = H(x, c) = g(x). On the other hand, for x ∈ W
we have (x, g(x)) = (x,H(x, c)) = G(x, c) ∈ V , and

f(x, g(x)) = f(x,H(x, c)) = f(G(x, c)) = c, (∗ ∗ ∗)

due to (∗). Hence we have shown that

Γ ∩ V = {(x, g(x)) : x ∈W}.

This equality also implies that g is unique, because it says that Γ ∩ V is the graph
of the function g, and the graph of a function uniquely determines the function. It
is obvious too that g is Ck, since it is the composition of the Ck functions H and
x 7→ (x, c). Furthermore, by (∗∗) we have g(a) = H(a, c) = H(a, f(a, b)) = b.

Finally, if by using chain rule we differentiate the equation (∗ ∗ ∗), we obtain

Df(x, g(x))Dĝ(x) = Dc = 0,

where ĝ(x) := (x, g(x)). The above equality can be rewritten as

0 =
[
Dxf(x, g(x)) Dyf(x, g(x))

] [ I
Dg(x)

]
= Dxf(x, g(x)) +Dyf(x, g(x))Dg(x),

which implies the desired formula for Dg(x). Note that as we have shown in the
proof of inverse function theorem, we can assume that DF is invertible on V , which
implies that Dyf is invertible on V , since detDF = detDyf . Hence Dyf(x, g(x))
is invertible for x ∈W , because as we have shown above (x, g(x)) ∈ V . �
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7.6 Lagrange Multipliers

Theorem 7.44. Let U ⊂ Rn be an open set, and f : U → R be a C1 function.
Also, let g : U → Rk be a C1 function, where k < n. Consider the level set

Γ := {x ∈ U : g(x) = 0}.

If f |Γ has a local extremum at a ∈ Γ, and Dg(a) has full rank k, then we must have

Df(a) = λ1Dg1(a) + · · ·+ λkDgk(a),

for some constants λ1, . . . , λk ∈ R.

Remark. The constants λ1, . . . , λk are called Lagrange multipliers.

Proof. Since the k × n matrix Dg(a) has rank k, it must have k linearly inde-
pendent columns. To simplify the notation let us assume that the last k columns
of Dg(a) are linearly independent. Also let us denote the points in Rn by (z, y),
where z ∈ Rn−k and y ∈ Rk. In this notation we denote a = (b, c). Then the k × k
matrix

Dyg(a) :=

[
∂gi
∂yj

(a)

]
1≤i,j≤k

is invertible, since its columns are linearly independent. Hence by the implicit
function theorem, there is an open set V ⊂ Rn containing a, an open setW ⊂ Rn−k
containing b, and a unique C1 function h : W → Rk such that

Γ ∩ V = {(z, h(z)) : z ∈W}.

Note that h(b) = c, and

Dh(b) = −
(
Dyg(a)

)−1
Dzg(a).

Now consider the function φ : W → R defined by φ(z) := f(z, h(z)). Then φ has a
local extremum at b. Thus we must have

0 = Dφ(b) = Dzf(b, h(b)) +Dyf(b, h(b))Dh(b)

= Dzf(a)−Dyf(a)
(
Dyg(a)

)−1
Dzg(a).

Hence we have Dzf(a) = Dyf(a)
(
Dyg(a)

)−1
Dzg(a). In addition, we have

Dyf(a) = Dyf(a)I = Dyf(a)
(
Dyg(a)

)−1
Dyg(a).

Therefore Df(a) = Dyf(a)
(
Dyg(a)

)−1
Dg(a), since the columns of Df,Dg, i.e.

Dzif,Dyjf , Dzig,Dyjg, satisfy this equation. Now note that Dyf is a 1× k matrix
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and (Dyg)−1 is a k × k matrix; so Dyf(Dyg)−1 is a 1 × k matrix. Let us denote
the 1× k matrix Dyf(Dyg)−1 by

[
λ1 . . . λk

]
. Then we get

Df(a) =
[
λ1 . . . λk

]
Dg(a) =

[
λ1 . . . λk

] Dg1(a)
...

Dgk(a)

,
which gives the desired. �

When k = 1 we must have

Df(a) = λDg(a)

for some λ ∈ R, under the assumption Dg(a) 6= 0. Let us present another proof for
this case, which provides a geometric intuition for why the theorem holds. Note
that in this case h : W → R for some open set W ⊂ Rn−1, and Γ is the graph of
h. Suppose to the contrary that Df(a) is not a multiple of Dg(a). Then the idea
is that since the projection of Df(a) on Γ is nonzero, if on Γ we move along the
direction of the projection of Df(a) and its opposite direction, the value of f will
increase and decrease; and therefore f |Γ cannot have a local extremum at a.

Now since g(z, h(z)) = 0, for j < n we have

Djg +DngDjh = 0 =⇒ Dg · (ej , Djh) = 0.

We intuitively know that the vectors (ej , Djh) are tangent to Γ at a, and so Dg(a)
is normal to its level set Γ at a (for more details see Section 9.3). Let us simplify
the notation by setting

u :=
(
Dg(a)

)T
, v :=

(
Df(a)

)T
.

Then v·u
|u|2u is the orthogonal projection of v on u. Thus

w := v − v · u
|u|2

u

is the orthogonal projection of v on the (n− 1)-dimensional plane tangent to Γ at
a. Note that since we assumed that v is not a multiple of u, we have w 6= 0. Also
note that w is orthogonal to u; so u · w = 0.

Let us denote a vector in Rn like w by (w̃, wn), where w̃ ∈ Rn−1. Now consider
the points bt := b+ tw̃, which for small t lie in W . Then (bt, h(bt)) ∈ Γ. Remember
that φ(·) = f(·, h(·)). So for some sublinear function ρ we have

φ(bt) = φ(b) +Dφ(b)(bt − b) + ρ(bt − b)

= φ(b) +
(
Dzf(a)−Dyf(a)

(
Dyg(a)

)−1
Dzg(a)

)
(bt − b) + ρ(bt − b)

= f(a) + t(ṽ − vn
un
ũ) · w̃ + ρ(tw̃).
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Note that ũ · w̃ = u · w − unwn = 0− unwn = −unwn. Hence

(ṽ − vn
un
ũ) · w̃ = ṽ · w̃ − vn

un
ũ · w̃ = ṽ · w̃ + vnwn = v · w > 0,

because v · w = |v|2 − (v·u)2

|u|2 ≥ 0 by Cauchy-Schwarz inequality; and v · w 6= 0,
since otherwise we would get w · w = 0 (note that we also have w · u = 0), which
would have implied w = 0, contrary to our assumption. Finally since ρ is sublinear,
for small t we have |ρ(tw̃)| < |t|(ṽ − vn

un
ũ) · w̃. Therefore f(bt, h(bt)) = φ(bt) will

be larger and smaller than f(a) for positive and negative values of t, respectively.
Hence f cannot have a local extremum at a.

7.7 Holomorphic Functions and Cauchy-Riemann
Equations

Definition 7.45. Suppose U ⊂ C is open. A function f : U → C is complex
differentiable at z ∈ U if

f ′(z) := lim
w→z

f(w)− f(z)

w − z
exists. f ′(z) is called the (complex) derivative of f at z.

Remark. The proof of the following three theorems goes along the same lines as
their corresponding theorems regarding functions of one real variable.

Theorem 7.46. The complex derivative of a constant function equals zero every-
where. Also for n ∈ N, the functions f(z) = zn from C to C are complex differ-
entiable with f ′(z) = nzn−1. In addition, g(z) = 1

z from C − {0} to C is complex
differentiable with g′(z) = −1

z2
.

Theorem 7.47. Suppose f is complex differentiable at z, then f is continuous at
z.

Theorem 7.48. Suppose f, g are complex differentiable at z, F is complex dif-
ferentiable at f(z), and c1, c2 ∈ C. Then c1f + c2g, fg and F ◦ f are complex
differentiable at z with derivatives

(c1f + c2g)′(z) = c1f
′(z) + c2g

′(z),

(fg)′(z) = f ′(z)g(z) + f(z)g′(z),

(F ◦ f)′(z) = F ′(f(z))f ′(z).

If in addition g 6= 0, then f
g is also complex differentiable at z and

(f
g

)′
(z) =

g(z)f ′(z)− g′(z)f(z)

(g(z))2
.
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Example 7.49. A polynomial function p(z) = a0 + a1z + · · · + anz
n is complex

differentiable at every point, and we have p′(z) = a1 + 2a2z + · · ·+ nanz
n−1.

Theorem 7.50. Suppose f is a function from an open subset of C into C. We can
also regard f as a function from an open subset of R2 into R2. Then, f is complex
differentiable at a point z, with f ′(z) = a+ ib for some a, b ∈ R, if and only if f is
differentiable at z with

Df(z) =

[
a −b
b a

]
.

Proof. Let h = c+ id be a complex number. We know that h is the same as the
vector (c, d) in R2. Now we have

f ′(z)h = (a+ ib)(c+ id) = ac− bd+ i(ad+ bc)

= (ac− bd, ad+ bc) =

[
a −b
b a

][
c
d

]
= Df(z)h.

Thus we have∣∣∣∣f(z + h)− f(z)−Df(z)h

|h|

∣∣∣∣ =

∣∣∣∣f(z + h)− f(z)− f ′(z)h
h

∣∣∣∣.
Hence when h → 0, one of the above expressions goes to zero if and only if the
other one goes to zero, and therefore we get the desired result. �

Cauchy-Riemann Equations. Suppose the function f = u + iv is complex dif-
ferentiable at the point c+ id, where c, d ∈ R and u, v are real-valued. Then

ux(c, d) = vy(c, d), uy(c, d) = −vx(c, d).

Proof. By the previous theorem we know that f = u + iv = (u, v) is also dif-
ferentiable at c + id = (c, d). In addition, we know that if f ′(c + id) = a + ib
then [

ux(c, d) uy(c, d)
vx(c, d) vy(c, d)

]
= Df(c, d) =

[
a −b
b a

]
.

Hence we must have ux(c, d) = a = vy(c, d), and uy(c, d) = −b = −vx(c, d), as
desired. �

Theorem 7.51. Suppose the function f = u + iv is complex differentiable at the
point z, where u, v are real-valued. Then

f ′(z) = ux(z) + ivx(z) = vy(z)− iuy(z).
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Proof. By Theorem 7.50 we know that f = u + iv = (u, v) is also differentiable
at z. In addition, we know that if f ′(z) = a+ ib then[

ux(z) uy(z)
vx(z) vy(z)

]
= Df(z) =

[
a −b
b a

]
.

Hence we must have a = ux(z) = vy(z), and b = vx(z) = −uy(z). Therefore we get
the desired formulas for f ′(z). �

Definition 7.52. Suppose U ⊂ C is open. A function f : U → C is holomorphic
on U if it is complex differentiable at every point of U . We denote by f ′, the
function from U into C that takes z 7→ f ′(z).

Remark. It is an obvious consequence of Theorem 7.48 that if f, g are holomorphic
on an open set U ⊂ C, and F is holomorphic on an open set containing f(U), then
c1f + c2g, fg, and F ◦ f are holomorphic on U . If in addition g 6= 0 on U , then f

g
is also holomorphic on U .

Theorem 7.53. A function on an open set with continuous partial derivatives
satisfying Cauchy-Riemann equations, is holomorphic.

Proof. Having continuous partial derivatives implies differentiability, and satis-
fying the Cauchy-Riemann equations implies complex differentiability by Theorem
7.50. �

Theorem 7.54. Suppose U, V are open subsets of C, and f : U → V is an invertible
function. If f has a nonzero complex derivative at a, and f−1 is continuous at f(a),
then f−1 is complex differentiable at f(a) and

(f−1)′(f(a)) =
1

f ′(a)
.

Proof. Let b = f(a), and z = f−1(b + h), where h is small enough so that
b+ h ∈ V . Then we have

f−1(b+ h)− f−1(b)

h
=
f−1(b+ h)− a
b+ h− b

=
z − a

f(z)− f(a)
=

1

f(z)− f(a)

z − a

.

When h is small, z = f−1(b+h) is close to f−1(b) = a, since f−1 is continuous at b =
f(a). Hence the above fraction is close to 1

f ′(a) , and therefore f−1 is differentiable
at b with the desired derivative. �



CHAPTER 7. MULTIVARIABLE DIFFERENTIAL CALCULUS 230

Example 7.55. The function ez is holomorphic on C, and we have (ez)′ = ez. To
see this note that for z = x+ iy we have

ez = ex cos y + iex sin y =: u+ iv.

Therefore ux = ex cos y = vy, and uy = −ex sin y = −vx. So the Cauchy-Riemann
equations are satisfied. Since the partial derivatives of ez are obviously continuous,
ez is holomorphic. Furthermore we have (ez)′ = ux + ivx = ez, as desired.

Theorem 7.56. A holomorphic function f with zero complex derivative on an open
connected set, is constant on that set.

Proof. If f ′ = 0 then Df = 0. Hence f is constant by Theorem 7.40. �



Chapter 8

Multiple Integrals

8.1 Multiple Riemann Integrals

Definition 8.1. A closed rectangle in Rn is a product of n bounded closed
intervals, i.e. it is a set of the form

[a1, b1]× · · · × [an, bn] ⊂ Rn.

Similarly, an open rectangle in Rn is a product of n bounded open intervals, i.e.
it is a set of the form

(a1, b1)× · · · × (an, bn) ⊂ Rn.
In general, a rectangle R in Rn is a product of n bounded intervals, i.e. there are
bounded intervals I1, I2, . . . , In ⊂ R such that

R := I1 × I2 × · · · × In ⊂ Rn.

Each interval Ii can be closed, open, or half-open. The intervals Ii are called the
edges of R. Let ai, bi be the left endpoint and the right endpoint of Ii respectively.
Then bi − ai is the length of the interval Ii. The rectangle R is called a cube if
bi−ai = b1−a1 for all i ≤ n. When n = 2, cubes are called squares. The volume
of the rectangle R is the positive real number

|R| := (b1 − a1) · · · (bn − an).

When n = 1, 2, the volume is called the length or the area, respectively. The
points (c1, . . . , cn) where each ci is either ai or bi, are called the vertices of the
rectangle R.

Remark. Note that a closed rectangle is closed, being a product of closed sets; and
an open rectangle is open, being a product of open sets. Let R be the rectangle in
the above definition. Then we have

R = [a1, b1]× · · · × [an, bn], R◦ = (a1, b1)× · · · × (an, bn).

231
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To see this let O,C denote the above open rectangle and closed rectangle respec-
tively. Then O is open, C is closed, and O ⊂ R ⊂ C. Hence O ⊂ R◦ and R ⊂ C.
Also, it is easy to see that each point of C −O is the limit of a sequence of points
of O, and is also the limit of a sequence of points of Cc. Therefore C ⊂ O ⊂ R,
and (C − O) ∩ R◦ = ∅. Hence R = C, and R◦ = O, as desired. In other words,
the closure of a rectangle is a closed rectangle, and the interior of a rectangle is an
open rectangle. As a result we also have

∂R = R−R◦ =
⋃
i≤n

[a1, b1]× · · · × {ai, bi} × · · · × [an, bn].

Definition 8.2. A partition P of an interval [a, b] ⊂ R is a finite set of points
{c0, . . . , cm} such that

a = c0 < c1 < · · · < cm = b.

The interval [ci−1, ci] is called the ith subinterval of the partition P . The mesh
of the partition P is

‖P‖ := max
i≤m
|ci − ci−1|.

Definition 8.3. A partition of the closed rectangle

R = [a1, b1]× · · · × [an, bn],

is a cartesian product P := P1×· · ·×Pn, where each Pi is a partition of the interval
[ai, bi]. Suppose [ci, di] is a subinterval of the partition Pi, then the closed rectangle

[c1, d1]× · · · × [cn, dn]

is called a subrectangle of the partition P . If Pi divides [ai, bi] intoNi subintervals,
then P divides R into N1 · · ·Nn subrectangles. We denote these subrectangles by
Rα, where α is the multi-index (α1, . . . , αn) such that 1 ≤ αi ≤ Ni. In this notation,
Rα denotes the subrectangle Iα1 × · · · × Iαn , where Iαi is the αith subinterval of
Pi. We sometimes abuse the notation and write P = {Rα}.

The mesh of the partition P is

‖P‖ :=
(
‖P1‖2 + · · ·+ ‖Pn‖2

) 1
2 ,

i.e. ‖P‖ is the largest diameter of the subrectangles of P . A tagged partition is
a partition P = {Rα} with a finite sequence T = (xα) of tags

xα ∈ Rα.

We say a partition Q is a refinement of a partition P if Pi ⊂ Qi for each i. The
common refinement of two partitions P, P ∗ is

(P1 ∪ P ∗1 )× · · · × (Pn ∪ P ∗n).
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Remark. It is easy to see that for a refinement Q of P we have ‖Q‖ ≤ ‖P‖.

Theorem 8.4. Let R ⊂ Rn be a closed rectangle.
(i) Suppose P = {Rα} is a partition of R. Then we have

|R| =
∑
|Rα|.

(ii) Suppose R1, . . . , Rm ⊂ R are closed rectangles that have pairwise disjoint
interiors, i.e. R◦i ∩R◦k = ∅ for every i 6= k. Then∑

|Ri| ≤ |R|.

Proof. Let R = [a1, b1]× · · · × [an, bn].
(i) Suppose P = P1 × · · · × Pn. Let us denote the subrectangles of P by

Rα = Iα1 × · · · × Iαn , where Iαi is a subinterval of Pi and 1 ≤ αi ≤ Ni. Then we
have

∑
|Rα| =

N1∑
α1=1

· · ·
Nn∑
αn=1

|Iα1 | · · · |Iαn | =
n∏
i=1

( Ni∑
αi=1

|Iαi |
)

=

n∏
i=1

(bi − ai) = |R|.

(ii) Suppose
Ri = [ai1, bi1]× · · · × [ain, bin].

Let Qj be a partition of [aj , bj ] that contains aij , bij for all i ≤ m. Then for a fixed
i, Qj ∩ [aij , bij ] is a partition of [aij , bij ]. Now Q =

∏
j≤nQj is a partition of R that

contains all the vertices of every Ri. Then note that

Q ∩Ri =
(∏
j≤n

Qj

)⋂(∏
j≤n

[aij , bij ]
)

=
∏
j≤n

(Qj ∩ [aij , bij ])

is a partition of Ri. Suppose {Sα} is the set of subrectangles of Q. Then the set of
subrectangles of Q ∩Ri is

{Sα : Sα ⊂ Ri}.

To see this note that each subinterval of Qj ∩ [aij , bij ] is also a subinterval of Qj .
Thus the subrectangles of Q ∩ Ri belong to the set {Sα}. The subrectangles of
Q ∩Ri are also obviously subsets of Ri, so they belong to {Sα : Sα ⊂ Ri}. On the
other hand, if Sα is a subrectangle of Q such that Sα =

∏
j≤n Iαj ⊂ Ri, then Iαj is

a subinterval of Qj ∩ [aij , bij ]. Therefore Sα is a subrectangle of Q ∩Ri as desired.
As a result we have ∑

Sα⊂Ri

|Sα| = |Ri|.
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In addition, for i 6= k we have

{Sα : Sα ⊂ Ri} ∩ {Sα : Sα ⊂ Rk} = ∅.

Because if Sα ⊂ Ri then S◦α ⊂ R◦i . Hence S◦α∩R◦k = ∅. So we cannot have Sα ⊂ Rk,
since S◦α is nonempty. Therefore we finally get

m∑
i=1

|Ri| =
m∑
i=1

∑
Sα⊂Ri

|Sα| ≤
∑
all α

|Sα| = |R|.

Note that in the left hand side of the above inequality, no |Sα| can appear more
than once. �

Remark. Similarly to the above theorem we can show that if R,R1, . . . , Rm are
closed rectangles in Rn such that R ⊂

⋃
Ri, then we have

|R| ≤
∑
|Ri|.

Note that this fact is nontrivial even when n = 1. If in addition R1, . . . , Rm have
pairwise disjoint interiors, i.e. R◦i ∩ R◦k = ∅ for every i 6= k; and if R =

⋃
Ri, then

we have
|R| =

∑
|Ri|.

We should mention that we do not use these facts in the development of multiple
Riemann integrals.

Definition 8.5. Let R be a closed rectangle in Rn, and let f : R → Rm. The
Riemann sum of f corresponding to the tagged partition P = {Rα}, T = (xα) of
R is

R(f, P, T ) :=
∑
α

f(xα)|Rα|.

Definition 8.6. Let R be a closed rectangle in Rn, and let f : R→ Rm. We say f
is Riemann integrable (on R), if there exists I ∈ Rm so that ∀ε > 0 ∃δ > 0 such
that for all tagged partitions P, T with ‖P‖ < δ we have

|I −R(f, P, T )| < ε.

Note that by the next theorem I is unique. We call I the Riemann integral of f
(over R) and denote it by∫

R
f(x)dx =

∫
R
f(x1, . . . , xn) dx1 . . . dxn.

In this notation, the function f is also referred to as the integrand.
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Remark. Note that in this definition, if a partition P satisfies ‖P‖ < δ, then for
any choice of tags T for P we have |I − R(f, P, T )| < ε. In other words, for a
partition with small enough mesh, the choice of tags does not affect the closeness
of the Riemann sum to the integral of a Riemann integrable function.

Remark. When n = 1 and R is the closed interval [a, b], we use the usual notation∫ b
a instead of

∫
[a,b].

Theorem 8.7. The integral of an integrable function is unique.

Proof. Suppose there are two vectors I, J ∈ Rm satisfying the above definition.
Then for each ε > 0 there is a tagged partition P, T such that

|I − J | ≤ |I −R(f, P, T )|+ |J −R(f, P, T )| < ε+ ε = 2ε.

Hence we must have I − J = 0. �

Theorem 8.8. A Riemann integrable function is bounded.

Proof. Suppose to the contrary that f is an unbounded Riemann integrable func-
tion on the rectangle R. Then there is δ > 0 such that for all tagged partitions
P, T with ‖P‖ < δ we have

|I −R(f, P, T )| < 1. (∗)

Let P = {Rα}, T = (xα) be a tagged partition with ‖P‖ < δ. Since f is unbounded,
it is unbounded on at least one of the subrectangles Rβ . Let x′α = xβ for α 6= β.
Then we can find x′β ∈ Rβ such that for T ′ = (x′α) we have

|R(f, P, T ′)−R(f, P, T )| = |f(x′β)− f(xβ)||Rβ| > 2.

But this contradicts (∗). �

Theorem 8.9. Let R be a closed rectangle in Rn, and let f = (f1, . . . , fm) : R →
Rm. Then f is Riemann integrable if and only if each fi is Riemann integrable,
and in this case we have∫

R
f(x)dx =

(∫
R
f1(x)dx, . . . ,

∫
R
fm(x)dx

)
.

Proof. For each tagged partition P, T of R we have

R(f, P, T ) =
(
R(f1, P, T ), . . . , R(fm, P, T )

)
.

Thus R(f, P, T ) is close to I = (I1, . . . , Im) if and only if each R(fi, P, T ) is close
to Ii. �
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Remark. By the above theorem, in the remainder of this chapter we can assume
that m = 1 without any loss of generality.

Theorem 8.10. Let R be a closed rectangle in Rn, and let f, g : R→ R be Riemann
integrable. Then for c, c1, c2 ∈ R we have
(i) The constant function c is Riemann integrable and

∫
R c dx = c|R|.

(ii) c1f + c2g is Riemann integrable and∫
R

[c1f(x) + c2g(x)]dx = c1

∫
R
f(x)dx+ c2

∫
R
g(x)dx.

(iii) If f ≤ g then ∫
R
f(x)dx ≤

∫
R
g(x)dx.

(iv) If |f | ≤M then ∣∣∣∣∫
R
f(x)dx

∣∣∣∣ ≤M |R|.
Proof. (i) The Riemann sums of the constant function c corresponding to a
partition P = {Rα} are all equal to

∑
c|Rα| = c|R|, because of Theorem 8.4.

Hence the Riemann sums converge to c|R|.
(ii) First note that for any tagged partition P, T we have

R(c1f + c2g, P, T ) = c1R(f, P, T ) + c2R(g, P, T ).

Now let I, J be the integrals of f, g respectively. Let δ be small enough so that for
all tagged partitions P, T with ‖P‖ < δ we have

|I −R(f, P, T )| < ε

2|c1|+ 2
, |J −R(g, P, T )| < ε

2|c2|+ 2
.

Then

|c1I + c2J −R(c1f + c2g, P, T )|
= |c1I + c2J − c1R(f, P, T )− c2R(g, P, T )|
≤ |c1||I −R(f, P, T )|+ |c2||J −R(g, P, T )| < ε.

(iii) First note that for all tagged partitions P, T we have

R(f, P, T ) ≤ R(g, P, T ).

Now let I, J be the integrals of f, g respectively. Suppose to the contrary that
J < I. Let δ be small enough so that for all tagged partitions P, T with ‖P‖ < δ
we have

|I −R(f, P, T )| < I − J
2

, |J −R(g, P, T )| < I − J
2

.

Then we must have R(f, P, T ) > R(g, P, T ), which is a contradiction.
(iv) We have −M ≤ f ≤M . Now the result follows from parts (i) and (iii). �
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Example 8.11. Consider the characteristic function of Qn, i.e.

χQn(x) :=

{
1 x ∈ Qn,
0 x /∈ Qn.

Then for any partition P of a rectangle R we can choose a sequence T of tags with
rational coordinates, and a sequence T ′ of tags with irrational coordinates so that

R(χQn , P, T ) = |R|, R(χQn , P, T
′) = 0.

Hence χQn is not Riemann integrable on any rectangle R. It should also be noted
that χQn is not continuous at any point. (why?)

Definition 8.12. A subset A of Rn has measure zero if for every ε > 0 there
exist a countable family of open cubes in Rn, {Qi}, such that A ⊂

⋃
i≥1Qi, and∑

i≥1

|Qi| < ε.

We say a property holds almost everywhere, abbreviated a.e., if it holds for all
points outside a set of measure zero.

Remark. Remember that a countable set is either finite or countably infinite.

Remark. An obvious consequence of the definition is that if A has measure zero
and B ⊂ A, then B has measure zero too.

Proposition 8.13. A set A ⊂ Rn has measure zero if and only if for every ε > 0
there exist a countable family of open rectangles in Rn, {Ri}, such that A ⊂

⋃
i≥1Ri,

and ∑
i≥1

|Ri| < ε.

Proof. If A has measure zero, then for every positive ε there is obviously a family
of open rectangles with the desired properties, namely the family of open cubes in
the definition of zero measure. Conversely, suppose that for every positive ε there is
a family of open rectangles {Ri} that covers A, such that

∑
i≥1 |Ri| < ε. Consider

a fixed i, and suppose we have

Ri = (a1, b1)× · · · × (an, bn).

Let lj := bj − aj , and let l be a positive number less than minj≤n lj . Then we have
kj := b ljl c ∈ N. We also have kjl ≤ lj < (kj + 1)l = kjl+ l. Now consider the open
rectangle

Si = (a1, a1 + k1l + l)× · · · × (an, an + knl + l).
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Obviously we have Ri ⊂ Si. In addition we have

|Si| =
∏
j≤n

(kjl + l) ≤
∏
j≤n

(lj + l) ≤
∏
j≤n

2lj = 2n|Ri|.

Now each interval [aj , aj + kjl + l] has a partition with kj + 1 closed subintervals
of length l. Then we get a partition of Si with Ni :=

∏
j≤n(kj + 1) subrectangles,

which are all closed cubes with volume ln. Note that by Theorem 8.4, the volume
of Si is the sum of the volumes of these closed cubes; hence |Si| = |Si| = Nil

n. We
can cover each of these closed cubes by an open cube whose volume is 2ln. Call
these open cubes Qij , where j ≤ Ni. Then we have

∑
j≤Ni |Qij | = 2|Si|.

We can repeat the above construction for every i, to get a countable family {Si}
of open rectangles that covers A, such that∑

i≥1

|Si| ≤
∑
i≥1

2n|Ri| < 2nε.

Now {Qij : i ≥ 1, j ≤ Ni} is a family of open cubes that covers A; and it is also
countable, since it is the union of countably many finite families. We consider this
family with the order

Q11, Q12, . . . , Q1N1 , Q21, . . . , Q2N2 , . . . , Qm1, . . . , QmNm , . . . .

Let us denote the kth cube in this sequence by Qk. Then for N ≤ N1 + · · ·+ Nm

we have
N∑
k=1

|Qk| ≤
m∑
i=1

∑
j≤Ni

|Qij | = 2
m∑
i=1

|Si| ≤ 2
∑
i≥1

|Si| < 2n+1ε.

By taking the limit as N →∞ we obtain
∑

k≥1 |Qk| ≤ 2n+1ε. Now as ε is arbitrary,
we get the desired result. �

Definition 8.14. Let {Ri}i≥1 be a countable family of rectangles in Rn. The
series

∑
i≥1 |Ri| is called the total volume of the family. When n = 1, 2, the total

volume is called the total length or the total area, respectively. Note that the
order of rectangles has no effect on the total volume of the family, since the volume
of each rectangle is positive and therefore the series of the total volume is absolutely
convergent.

Remark. Note that the concept of zero measure depends on the dimension n. For
example the interval [0, 1] does not have measure zero as a subset of R, but if we
regard it as the subset [0, 1] × {0} of R2, it has measure zero. To see this, notice
that

[0, 1]× {0} ⊂ R := (−1, 2)× (−ε, ε),

and |R| = 6ε.
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Theorem 8.15. Let {Ak} be a countable family of subsets of Rn that have measure
zero. Then

⋃
k Ak has measure zero. In particular, every countable subset of Rn

has measure zero.

Proof. Let ε > 0 be given. Then we can cover Ak with a countable family of
open rectangles {Rki}i≥1 such that∑

i≥1

|Rki| <
ε

2k
.

Then {Rki}i,k≥1 is a countable family of open rectangles that covers
⋃
k Ak, and∑

i,k≥1

|Rki| <
∑
k≥1

ε

2k
≤ ε.

The final statement of the theorem follows from the trivial fact that a set with one
element has measure zero. �

Remark. If we want to be completely rigorous in the above proof, we have to
arrange the family of rectangles {Rki}i,k≥1 into a sequence. Note that different
arrangements does not change the total volume of the family, since the volume of
each rectangle is positive and therefore the series of the total volume is absolutely
convergent. Now suppose we have arranged the family as the sequence {Rj}j≥1.
Then for any N ∈ N there is M ∈ N such that

{Rj}1≤j≤N ⊂ {Rki}1≤i,k≤M .

Then we have ∑
j≤N
|Rj | ≤

∑
k≤M

∑
i≤M
|Rki| <

∑
k≤M

ε

2k
< ε.

Now by taking the limit as N →∞ we get
∑

j≥1 |Rj | ≤ ε as desired.

Proposition 8.16. Let a ∈ R. Then the (n− 1)-dimensional plane

{x ∈ Rn : xi = a}

has measure zero in Rn. Also, for every rectangle R ⊂ Rn, ∂R has measure zero.

Proof. Let P be the described plane. Then we have P ⊂
⋃
j≥1Rj , where Rj is

the rectangle
∏
k≤n Ik in which Ik = (−2j−1, 2j−1) for k 6= i, and

Ii = (a− ε2−nj−1, a+ ε2−nj−1).
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Now we have |Rj | = ε2−nj2j(n−1) = ε2−j . Hence∑
j≥1

|Rj | = ε
∑
j≥1

2−j = ε.

Therefore P has measure zero, since ε is arbitrary. Finally note that ∂R is contained
in the union of finitely many planes, so it has measure zero. �

Definition 8.17. Let R be a subset of Rn, and let f : R → R. We define the
oscillation of f at a point x ∈ R as

oscxf := lim
r→0

sup{ |f(z)− f(y)| : z, y ∈ Br(x) ∩R}.

Remark. Note that the supremums in the above expression decrease as r → 0,
hence the limit exists.

Remark. The oscillation at a point is a measure of the size of the discontinuity
at that point. In particular, we can easily see that oscxf = 0 if and only if f is
continuous at x.

Riemann-Lebesgue Theorem (Rectangular Domains). Let R be a closed
rectangle in Rn, and let f : R→ R. Then f is Riemann integrable if and only if it
is bounded and its set of discontinuities has measure zero.

Proof. Let D be the set of discontinuities of f . Suppose D has measure zero.
Also suppose that |f | ≤ M for some M > 0. We want to show that f is Riemann
integrable. The idea is to show that the Riemann sums of f satisfy a Cauchy
criterion. Let ε > 0 be given. Then there are countably many open rectangles Ak
such that

D ⊂
⋃
Ak,

∑
|Ak| < ε.

Now, f is continuous at each point of K := R−
⋃
Ak. So for every x ∈ K there is

an open rectangle Ix containing x such that |f(x)− f(y)| < ε whenever y ∈ Ix ∩R.
Then the collection

U := {Ak}k≥1 ∪ {Ix}x∈K
is an open covering of the compact set R. Thus it has a Lebesgue number δ > 0,
i.e. for every z ∈ R there is U ∈ U such that Bδ(z) ⊂ U .

Let P = {Rα}, T = (xα) be a tagged partition of R, with ‖P‖ < δ. Let
P ′ = {R′β} be a refinement of P , and let T ′ = (x′β) be a choice of tags for P ′. Then
we have

R(f, P, T ) =
∑
α

f(xα)|Rα| =
∑
α

(
f(xα)

∑
R′β⊂Rα

|R′β|
)

=
∑
β

f(xβ)|R′β|,
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where xβ := xα if R′β ⊂ Rα. Note that |Rα| =
∑

R′β⊂Rα
|R′β|, since {R′β : R′β ⊂ Rα}

is a partition of Rα.
Let

J := {β : R′β ⊂ Rα ⊂ Ix for some x ∈ K}.

Then if β ∈ J we have xβ, x′β ∈ Ix for some x ∈ K, and therefore |f(xβ)−f(x′β)| <
2ε. Now note that for any α and any z ∈ Rα we have

Rα ⊂ Bδ(z) ⊂ U

for some U ∈ U . Hence if β /∈ J we must have

R′β ⊂ Rα ⊂ Ak

for some k. Thus ∑
β/∈J

|R′β| ≤
∑
|Ak| < ε.

Note that k can be the same for several distinct β1, β2, . . . , i.e. we might have
R′βj ⊂ Ak0 for some k0, and j = 1, 2, . . . . But this does not affect the inequality,
since

∑
j |R′βj | ≤ |Ak0 |. Thus we do not need to add |Ak0 | several times in the right

hand side. Hence we have

|R(f, P, T )−R(f, P ′, T ′)| ≤
∑∣∣f(xβ)− f(x′β)

∣∣|R′β|
=
∑
β∈J

∣∣f(xβ)− f(x′β)
∣∣|R′β|

+
∑
β/∈J

∣∣f(xβ)− f(x′β)
∣∣|R′β|

< 2ε
∑
β∈J
|R′β|+ 2M

∑
β/∈J

|R′β|

< 2ε|R|+ 2Mε =: Cε.

Now let P, P ∗ be two partitions with mesh less than δ. Let Q be the common
refinement of P, P ∗. Let T, T ∗, S be choices of tags for P, P ∗, Q, respectively. Then
by the above inequality we get

|R(f, P, T )−R(f, P ∗, T ∗)| ≤ |R(f, P, T )−R(f,Q, S)|
+ |R(f, P ∗, T ∗)−R(f,Q, S)| < 2Cε.

This is the Cauchy criterion that we were looking for.
Finally let PN be the partition that divides R into Nn equal subrectangles. Let

TN be the sequence of the midpoints of these subrectangles. Then for any ε > 0 we
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can take N to be large enough so that ‖PN‖ = d
N < δ, where d is the diameter of

R. Hence we have

|R(f, PN ′ , TN ′)−R(f, PN , TN )| < 2Cε,

for N ′ ≥ N . Therefore the sequence R(f, PN , TN ) is Cauchy in R. Thus it con-
verges to some number I. Now let N be large enough so that ‖PN‖ < δ and
|I − R(f, PN , TN )| < Cε. Then for an arbitrary tagged partition P, T with mesh
less than δ, we have

|I −R(f, P, T )| ≤ |I −R(f, PN , TN )|+ |R(f, PN , TN )−R(f, P, T )| < 3Cε.

As ε is arbitrary we get the desired result. �

Proof of the Converse. Next suppose f is Riemann integrable on R, and its
integral is I. Then we know that f is bounded. Let D be the set of discontinuities
of f . We have D =

⋃
k≥1Dk where

Dk := {x ∈ R : oscxf ≥
1

k
}.

In order to show that D has measure zero, it suffices to show that each Dk has
measure zero. Now for any given ε > 0 we can find δ > 0 such that for any tagged
partition P = {Rα}, T = (xα) with ‖P‖ < δ we have

|R(f, P, T )− I| < ε.

Let S = (yα) be another sequence of tags for P . Then we have∣∣∣∑(
f(xα)− f(yα)

)
|Rα|

∣∣∣ = |R(f, P, T )−R(f, P, S)| < 2ε.

Consider some fixed k. Let J := {α : R◦α ∩Dk 6= ∅}, where R◦α is the interior of
Rα. Note that {R◦α}α∈J is a finite family of open rectangles that covers Dk, except
for its subset Dk ∩

⋃
∂Rα. But

⋃
∂Rα is the union of finitely many sets of measure

zero, so it has measure zero. Hence it can be covered by a countable family of open
rectangles whose total volume is as small as we want. Thus, in order to show that
Dk has measure zero, we only need to show that the total volume of {R◦α}α∈J is
small. Now for α ∈ J we can choose xα, yα ∈ Rα such that

f(xα)− f(yα) ≥ 1

2k
.

The reason is that there is z ∈ Dk ∩ R◦α, and since osczf ≥ 1
k , we can find points

x, y near z inside its open neighborhood R◦α such that |f(x)− f(y)| is as close to 1
k
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as we want. Then for α /∈ J we choose xα = yα ∈ Rα, so that f(xα) − f(yα) = 0.
Thus we have

1

2k

∑
α∈J
|R◦α| ≤

∑
α∈J

(
f(xα)− f(yα)

)
|Rα|

=
∑
all α

(
f(xα)− f(yα)

)
|Rα| < 2ε.

Hence
∑

α∈J |R◦α| < 4kε. Therefore Dk has measure zero as desired. �

Proposition 8.18. The closed and open rectangles in Rn do not have measure zero.

Proof. Let
R = [a1, b1]× · · · × [an, bn]

be a closed rectangle. Then the characteristic function of Qn restricted to R is a
bounded function whose set of discontinuities is all of R, and it is not Riemann
integrable. Therefore if the rectangle had measure zero we would have a contradic-
tion with the Riemann-Lebesgue theorem. The result for open rectangles follows
immediately, since every open rectangle contains a smaller closed rectangle. �

8.2 Multiple Darboux Integrals

Definition 8.19. Suppose R ⊂ Rn is a closed rectangle, and f : R → R is a
bounded function. Let P = {Rα} be a partition of R. The lower sum and upper
sum of f with respect to the partition P are respectively

L(f, P ) :=
∑
α

mα|Rα|, U(f, P ) :=
∑
α

Mα|Rα|,

where
mα = inf{f(x) : x ∈ Rα}, Mα = sup{f(x) : x ∈ Rα}.

Remark. It is obvious that for any choice of tags T we have

L(f, P ) ≤ R(f, P, T ) ≤ U(f, P ).

Definition 8.20. Suppose R ⊂ Rn is a closed rectangle, and f : R → R is a
bounded function. The lower integral and upper integral of f are respectively∫

R
f(x)dx := sup

P
L(f, P ),

∫
R
f(x)dx := inf

P
U(f, P ).
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Here, P ranges over all partitions of R. We say f is Darboux integrable (on R)
if ∫

R
f(x)dx =

∫
R
f(x)dx,

and in this case we denote this common value by
∫
R f(x)dx and call it theDarboux

integral of f (over R).

Proposition 8.21. Suppose P is a partition of the closed rectangle R ⊂ Rn, and
Q is a refinement of P . Then for any bounded function f : R→ R we have

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Proof. Suppose P = P1 × · · · × Pn, and for some k we have Pk = {a0, . . . , am}.
It suffices to prove the claim for a refinement Q = Q1 × · · · × Qn, where Qi = Pi
for i 6= k, and Qk = Pk ∪ {b}. The general case then follows by an easy induction.
Suppose aj−1 < b < aj . Then the subrectangles of P and Q are the same except for
those subrectangles of P whose kth factor is [aj−1, aj ]. These subrectangles split
into two subrectangles of Q with the kth factor [aj−1, b] and [b, aj ]. Let {Rα}α∈I
be the set of all such subrectangles of P . For α ∈ I set

m′α := inf{f(x) : x ∈ Rα, aj−1 ≤ xk ≤ b},
m′′α := inf{f(x) : x ∈ Rα, b ≤ xk ≤ aj}.

Then we have m′α,m′′α ≥ mα = inf{f(x) : x ∈ Rα}. Note that for each α ∈ I, the
volume of the two subrectangles of Q that are obtained from Rα are

|Rα|
b− aj−1

aj − aj−1
, |Rα|

aj − b
aj − aj−1

.

Hence we have

L(f,Q)− L(f, P ) =
∑
α∈I

(
m′α|Rα|

b− aj−1

aj − aj−1
+m′′α|Rα|

aj − b
aj − aj−1

−mα|Rα|
)

≥
∑
α∈I

(
mα|Rα|

b− aj−1

aj − aj−1
+mα|Rα|

aj − b
aj − aj−1

−mα|Rα|
)

= 0.

The case of upper sums is similar. �

Remark. Suppose P, P ∗ are two partitions ofR; andQ is their common refinement.
Then the above proposition implies that

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ∗).
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Thus any lower sum is less than or equal to any upper sum. As a result for any
bounded function f we have ∫

R
f(x)dx ≤

∫
R
f(x)dx.

Exercise 8.22. Suppose R ⊂ Rn is a closed rectangle, and f, g : R → R are
bounded functions such that f ≤ g. Show that for any partition P of R we have

L(f, P ) ≤ L(g, P ), U(f, P ) ≤ U(g, P ).

Also show that ∫
R
f(x)dx ≤

∫
R
g(x)dx,

∫
R
f(x)dx ≤

∫
R
g(x)dx.

Theorem 8.23. Let R ⊂ Rn be a closed rectangle. A bounded function f : R→ R
is Darboux integrable if and only if for all ε > 0 there exists a partition P of R such
that

U(f, P )− L(f, P ) < ε.

Proof. Suppose f is Darboux integrable. So we have
∫
Rf(x)dx =

∫
Rf(x)dx. Let

ε > 0 be given. Since the upper integral is the infimum of the upper sums and the
lower integral is the supremum of the lower sums, there are partitions P, P ∗ such
that

U(f, P )−
∫
R
f(x)dx <

ε

2
,

∫
R
f(x)dx− L(f, P ∗) <

ε

2
.

Therefore we have U(f, P ) − L(f, P ∗) < ε. Now let Q be the common refinement
of P, P ∗. Then we have

U(f,Q)− L(f,Q) ≤ U(f, P )− L(f, P ∗) < ε,

because refining a partition causes the upper sum to decrease and the lower sum
to increase.

Next suppose f satisfies the specified property in the theorem. Then for all
ε > 0 we have 0 ≤

∫
Rf(x)dx−

∫
Rf(x)dx < ε. Thus

∫
Rf(x)dx =

∫
Rf(x)dx, and f

is Darboux integrable. �

Theorem 8.24. Let R ⊂ Rn be a closed rectangle. A function f : R → R is
Riemann integrable if and only if it is Darboux integrable. In this case, the Riemann
integral of f is the same as its Darboux integral.
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Proof. First suppose f is Riemann integrable and I is its Riemann integral. Then
f is bounded. Suppose ε > 0 is given. There is δ > 0 such that if P is a partition of
R with ‖P‖ < δ then |R(f, P, T )− I| < ε

4 for any choice of tags T . Let P = {Rα}
be such a partition, and let mα,Mα be respectively the infimum and supremum of
f over Rα. Then we can choose tags T ′ = (xα) such that 0 ≤ f(xα) −mα <

ε
4|R| .

Then we have

0 ≤ R(f, P, T ′)− L(f, P ) =
∑

(f(xα)−mα)|Rα| <
ε

4|R|
∑
|Rα| =

ε

4
.

Similarly we can choose tags T ′′ so that

0 ≤ U(f, P )−R(f, P, T ′′) <
ε

4
.

Therefore we have

U(f, P )− L(f, P ) = U(f, P )−R(f, P, T ′′) +R(f, P, T ′′)− I
+ I −R(f, P, T ′) +R(f, P, T ′)− L(f, P ) < ε.

Hence f is Darboux integrable. Finally note that we also have |U(f, P ) − I| < ε
2 .

Therefore
∣∣∫
Rf(x)dx − I

∣∣ ≤ ε
2 . Thus the Darboux integral of f is the same as its

Riemann integral, since ε is arbitrary.
Next suppose f is Darboux integrable. Then f is bounded. Suppose ε > 0 is

given. Then there is a partition P such that U(f, P ) − L(f, P ) < ε. Since any
Riemann sum is between the upper sum and the lower sum, for any choices of tags
T, S for P we have

|R(f, P, T )−R(f, P, S)| < ε.

Now we can repeat the argument given at the end of the proof of Riemann-Lebesgue
theorem to conclude that the set of discontinuities of f has measure zero. Hence
f is Riemann integrable. Therefore the Riemann integral of f is the same as its
Darboux integral as we proved in the last paragraph. �

Exercise 8.25. Prove that a Darboux integrable function is Riemann integrable,
without using the Riemann-Lebesgue theorem.

Theorem 8.26. Let R ⊂ Rn be a closed rectangle. A bounded function f : R→ R
is Riemann integrable if and only if for all ε > 0 there exists a partition P of R
such that

U(f, P )− L(f, P ) < ε.

Proof. This is a consequence of the previous two theorems. �
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8.3 Integration over General Domains

Definition 8.27. A set S ⊂ Rn is called Jordan measurable if it is bounded,
and its boundary, ∂S, has measure zero.

Proposition 8.28. A bounded set S ⊂ Rn is Jordan measurable if and only if its
characteristic function

χS(x) :=

{
1 x ∈ S
0 x /∈ S

is Riemann integrable over some closed rectangle R containing S.

Proof. First we show that the set of discontinuities of χS is ∂S. To see this note
that if a point x belongs to the interior of S or the interior of Sc, then χS is constant
1 or 0 on a neighborhood of x, hence χS is continuous at x. Otherwise, every open
neighborhood of x must intersect both S and Sc, which means x ∈ ∂S. Then x
is the limit of some sequence in S and some sequence in Sc, since ∂S = S ∩ Sc.
Therefore χS cannot be continuous at x.

Now as χS is bounded, we conclude that χS is Riemann integrable if and only
if its set of discontinuities, i.e. ∂S, has measure zero. �

Definition 8.29. When S ⊂ Rn is Jordan measurable we set

|S| :=
∫
R
χS(x)dx,

where R is a closed rectangle containing S. We call |S| the (Jordan) content or
the volume of S. When n = 1, 2, the volume is called the length or the area,
respectively.

Definition 8.30. Suppose S ⊂ Rn is Jordan measurable, and f : S → R. We
say f is Riemann integrable over S if for some closed rectangle R containing S the
function

F (x) :=

{
f(x) x ∈ S
0 x ∈ R− S

is Riemann integrable over R. If this happens, we define the Riemann integral of f
over S to be ∫

S
f(x)dx :=

∫
R
F (x)dx.

Remark. It must be checked that the above two definitions do not depend on the
choice of the rectangle R. First note that by the generalized Riemann-Lebesgue
theorem proved below (whose proof does not rely on the independence of these
notions from R), the integrability of f over S is completely determined by the
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behavior of f over S. Hence the integrability of f does not depend on R. We
should mention that the fact that ∂S has measure zero is needed in the proof of
the generalized Riemann-Lebesgue theorem.

Next, to show that the value of the integral is independent of R, it suffices to
consider two rectangles R1 ⊂ R2. Because for any two arbitrary rectangles we can
choose a larger rectangle containing both of them, and then we can compare the
integral over each rectangle to the integral over the larger rectangle. Let Fi be the
extension of f by zero to Ri. Consider a sequence of partitions Pj of R2 whose
meshes approach zero, and they all contain the vertices of R1. Let Tj be a choice of
tags for Pj that has no intersection with ∂R1. Then they induce tagged partitions
of R1, which we continue to denote them by Pj , Tj . Now we have

R(F1, Pj , Tj) = R(F2, Pj , Tj),

since F2 is zero at the points of Tj that are outside R1. As j → ∞ the Riemann
sums converge to the corresponding integrals, hence we get the desired equality of
the integrals.

Finally note that the volume of a Jordan measurable set S is independent of the
rectangle R containing S, since the value of the integral

∫
R χS(x)dx is independent

of R.

Remark. Another issue that we must be careful about, when we generalize a
notion, is that the new definition is compatible with the old one. Here we have to
check that the new definitions of integrability, integral, and volume, are the same
as the old definitions, when S is a closed rectangle. First note that rectangles
are obviously Jordan measurable, so the old notions are special cases of the new
notions. Now we can take the R in the new definitions to be the same as S, as we
have showed that we can change R freely. Then we have retrieved the old definitions
of integrability and integral. For the volume of the closed rectangle S we have

|S|new =

∫
S
χS(x)dx =

∫
S

1 dx = |S|old.

Finally, when S is an open rectangle, its volume has been defined to be the same
as the volume of its closure S, which is a closed rectangle. Let Ri be an increasing
sequence of closed rectangles inside S that converge to S. Then we have

|S| =
∫
S
χS(x)dx ≥

∫
S
χS(x)dx = |S|new

≥
∫
S
χRi(x)dx = |Ri| → |S|.

Note that here we have used the continuity of the volume of closed rectangles, which
is evident from its old definition.
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Example 8.31. Let A = Q ∩ [0, 1] ⊂ R. Then A is not Jordan measurable, since

∂A = Ā−A◦ = [0, 1]− ∅ = [0, 1]

does not have measure zero. On the other hand, the Cantor set C ⊂ R is Jordan
measurable, since

∂C = C − C◦ = C − ∅ = C

has measure zero.

Remark. There are open subsets of Rn that are not Jordan measurable, i.e. their
boundaries have positive measure.
Remark. Let S be a Jordan measurable subset of Rn, and let R be a closed
rectangle containing S. Let P = {Rα} be a partition of R. We know that the
Jordan content of S is given by

|S| =
∫
R
χS(x)dx.

The lower and upper sums for the above integral with respect to the partition P
are respectively

L(χS , P ) =
∑
α

mα|Rα|, U(χS , P ) =
∑
α

Mα|Rα|,

where
mα = inf{χS(x) : x ∈ Rα}, Mα = sup{χS(x) : x ∈ Rα}.

If Rα ⊂ S then χS is 1 over it; so mα = Mα = 1. And if Rα ∩ S = ∅ then
mα = Mα = 0. But if Rα intersects both S and R − S, we have mα = 0 and
Mα = 1. Hence the above lower and upper sums can be written as

L(χS , P ) =
∑
Rα⊂S

|Rα|, U(χS , P ) =
∑

Rα∩S 6=∅

|Rα|.

Since an integral is between its lower and upper sums we have∑
Rα⊂S

|Rα| ≤ |S| ≤
∑

Rα∩S 6=∅

|Rα|.

We also know that the lower and upper sums converge to |S| as ‖P‖ → 0 (see
the proof of Theorem 8.24). Therefore to compute the volume of S we can either
approximate it from below with the volume of finitely many disjoint rectangles
inside S, or approximate it from above with the volume of finitely many rectangles
covering S. Also note that for the integral to exist, or equivalently, for S to be
Jordan measurable, the difference between upper and lower sums must go to zero
as the partition P becomes finer. In other words, for S to be Jordan measurable,
the difference between the approximations of its volume from outside and inside
must go to zero.
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Theorem 8.32. Let S be a Jordan measurable subset of Rn, and let f, g : S → R
be Riemann integrable. Then for c, c1, c2 ∈ R we have
(i) The constant function c is Riemann integrable over S and

∫
S c dx = c|S|.

(ii) c1f + c2g is Riemann integrable over S and∫
S

[c1f(x) + c2g(x)]dx = c1

∫
S
f(x)dx+ c2

∫
S
g(x)dx.

(iii) If f ≤ g then ∫
S
f(x)dx ≤

∫
S
g(x)dx.

(iv) If |f | ≤M then ∣∣∣∣∫
S
f(x)dx

∣∣∣∣ ≤M |S|.
Remark. As a result, if |S| = 0 then

∫
S f(x)dx = 0.

Proof. Suppose R is a closed rectangle that contains S. Let F,G be the exten-
sions of f, g by zero to R, respectively. Then by the assumption we know that F,G
are integrable over R.

(i) The integrability of c over S is equivalent to the integrability of cχS over R,
which is equivalent to Jordan measurability of S. Then we have∫

S
c dx =

∫
R
c χS dx = c

∫
R
χS dx = c|S|.

(ii) The integrability of c1f + c2g over S is equivalent to the integrability of
c1F + c2G over R, since c1F + c2G is the extension of c1f + c2g by zero to R. Then
we have ∫

S
[c1f(x) + c2g(x)]dx =

∫
R

[c1F (x) + c2G(x)]dx

= c1

∫
R
F (x)dx+ c2

∫
R
G(x)dx

= c1

∫
S
f(x)dx+ c2

∫
S
g(x)dx.

(iii) It is obvious that F ≤ G on R. Thus∫
S
f(x)dx =

∫
R
F (x)dx ≤

∫
R
G(x)dx =

∫
S
g(x)dx.

(iv) We have −M ≤ f ≤M . Now the result follows from parts (i) and (iii). �
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Riemann-Lebesgue Theorem (General Domains). Let S be a Jordan mea-
surable subset of Rn, and let f : S → R. Then f is Riemann integrable if and only
if f is bounded on S, and its set of discontinuities in the interior of S has measure
zero.

Remark. Since S ⊂ S = S◦ ∪ ∂S, and ∂S has measure zero, the set of discontinu-
ities of f in S◦ has measure zero if and only if the set of discontinuities of f in S
has measure zero.

Proof. Suppose R is a closed rectangle that contains S. Let F be the extension
of f by zero to R. Then by definition, f is integrable over S if and only if F
is integrable over R. Since F is zero outside S, the boundedness of F on R is
equivalent to the boundedness of f on S. Let D be the set of discontinuities of f
in the interior of S, and let Z be the set of discontinuities of F in R.

First suppose D has measure zero, and f is bounded. Then F is bounded. Let
x ∈ Z. Then x cannot belong to R − S, since R − S is an open set in R, and F
is zero (and hence continuous) over it. Thus either x ∈ S◦, or x ∈ ∂S. If x ∈ S◦
then F = f on a neighborhood of x, hence f is also discontinuous at x. Therefore
we have Z ⊂ D ∪ ∂S. Thus Z has measure zero too, since S is Jordan measurable.
Hence F is integrable, and by definition f is integrable too.

Now suppose f is integrable. Then F is integrable. Therefore F is bounded,
and Z has measure zero. Thus f is bounded too. Let y ∈ D. Then y ∈ S◦, and
F = f on a neighborhood of y; hence F is also discontinuous at y. Therefore we
have D ⊂ Z. Thus D has measure zero as desired. �

Remark. In the remark after the Theorem 8.4 we stated that if R,R1, . . . , Rk are
closed rectangles in Rn, and R ⊂

⋃
Ri, then

|R| ≤
∑
|Ri|.

An interesting proof of this fact, using the Riemann integral, is as follows. First
note that χR ≤

∑
χRi . Because if χR(x) = 1 then x ∈ R. Thus x ∈ Ri for some

i. Hence
∑
χRi(x) ≥ 1. Now let R̂ be a closed rectangle containing R and Ri’s.

Then χR and χRi ’s are integrable over R̂, since rectangles are Jordan measurable.
Hence we have

|R| =
∫
R̂
χR(x)dx ≤

∑∫
R̂
χRi(x)dx =

∑
|Ri|.

Theorem 8.33. Continuous functions on a compact Jordan measurable set are
Riemann integrable.

Proof. A continuous function on a compact set is bounded, and its set of discon-
tinuities is empty. �
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Theorem 8.34. Suppose S ⊂ Rn is Jordan measurable, and f, g : S → R are
Riemann integrable. Then their product, fg, is Riemann integrable.

Proof. First note that fg is bounded on S, since f, g are bounded. Let Z(f), Z(g)
be the set of discontinuities of f, g, respectively. Then Z(f) and Z(g) have measure
zero. But for Z(fg), the set of discontinuities of fg, we have

Z(fg) ⊂ Z(f) ∪ Z(g),

since fg is continuous at the points where both f, g are continuous. Thus Z(fg)
has measure zero too. Hence fg is Riemann integrable. �

Theorem 8.35. Suppose S ⊂ Rn is Jordan measurable, and f : S → R is Riemann
integrable. Also suppose that f(S) ⊂ [a, b], and φ : [a, b] → R is continuous. Then
φ ◦ f is Riemann integrable.

Proof. First note that φ is bounded, since it is continuous. Hence φ◦f is bounded.
Let Z(f), Z(φ ◦ f) be the set of discontinuities of f, φ ◦ f , respectively. Then Z(f)
has measure zero. As φ is continuous we have Z(φ ◦ f) ⊂ Z(f), since φ ◦ f is
continuous at the points where f is continuous. Thus Z(φ ◦ f) has measure zero
too. Therefore φ ◦ f is Riemann integrable. �

Theorem 8.36. Suppose S ⊂ Rn is Jordan measurable, and f : S → Rm is
Riemann integrable. Then |f | is Riemann integrable and we have∣∣∣∣∫

S
f(x)dx

∣∣∣∣ ≤ ∫
S
|f(x)|dx.

Proof. Suppose f = (f1, . . . , fm). Then each fi is integrable. Thus |f | =√
f2

1 + · · ·+ f2
m is integrable, since the functions t 7→ t2,

√
t are continuous. When

m = 1, the inequality for the integrals follows from the monotonicity of the integral
and −|f | ≤ f ≤ |f |. For the case of m > 1 let z :=

∫
S f(x)dx. Then for each i we

have zi =
∫
S fi(x)dx. Now we have

|z|2 =
∑
i≤m

z2
i =

∑
i≤m

zi

∫
S
fi(x)dx =

∫
S

∑
i≤m

zifi(x)dx

=

∫
S
z · f(x)dx ≤

∫
S
|z||f(x)| dx = |z|

∫
S
|f(x)| dx.

Therefore if |z| 6= 0 we get
∣∣ ∫
S f(x)dx

∣∣ = |z| ≤
∫
S |f(x)| dx. And if |z| = 0 we have∫

S |f(x)| dx ≥
∫
S 0 dx = 0 = |z|. �

Remark. The above theorem is one of the few results in this chapter in which the
case of m > 1 does not follow trivially form the case of m = 1. The reason is that
the dependence of |f | on |fi|’s is not linear.
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Theorem 8.37. Suppose S ⊂ Rn is Jordan measurable, and f, g : S → R are
Riemann integrable functions such that f = g a.e. on S. Then we have∫

S
f(x)dx =

∫
S
g(x)dx.

Proof. Let R be a closed rectangle containing S, and let F,G be the extensions
of f, g by zero to R. Then we have F = G a.e. on R, since F,G are zero on R− S.
Consider a sequence of partitions Pj = {Rj,α} of R whose meshes approach zero.
Let Tj = (xj,α) be a choice of tags for Pj such that for any tag xj,α in Tj we have
F (xj,α) = G(xj,α). Note that this is possible since F = G outside a set of measure
zero, and the subrectangles of Pj do not have measure zero. So each subrectangle
Rj,α contains a point at which F,G are equal. Therefore we have

R(F, Pj , Tj) =
∑
α

F (xj,α)|Rj,α| =
∑
α

G(xj,α)|Rj,α| = R(G,Pj , Tj).

Then as j →∞ the Riemann sums converge to the corresponding integrals, hence
we get ∫

S
f(x)dx =

∫
R
F (x)dx =

∫
R
G(x)dx =

∫
S
g(x)dx. �

Remark. The assumption of Riemann integrability of both f, g is critical in the
above theorem, since for example the characteristic function of Qn is a.e. zero but
it is not Riemann integrable.

Theorem 8.38. Suppose S ⊂ Rn is Jordan measurable, and f : S → R is a
Riemann integrable function such that

∫
S f(x)dx = 0 and f ≥ 0. Then f = 0 a.e.

on S.

Proof. Suppose to the contrary that the set C = {x ∈ S : f(x) 6= 0} does
not have measure zero. We claim that f is continuous at some point of C ∩ S◦.
Otherwise we would have C ⊂ Z∪∂S, where Z is the set of discontinuities of f . But
both Z, ∂S have measure zero, so this implies that C has measure zero, contrary to
our assumption. Now let a ∈ C ∩ S◦ be a point at which f is continuous. Suppose
for example that f(a) > 0. Then by continuity, f ≥ ε > 0 on a rectangle R ⊂ S◦

that has a in its interior. We also have f ≥ fχR, since f ≥ 0. Hence∫
S
f(x)dx ≥

∫
S
f(x)χR dx =

∫
R
f(x)dx ≥ ε|R| > 0,

which is a contradiction. So C must have measure zero as desired. Note that the
equality in the above formula follows from extending fχR by zero to a closed rect-
angle containing S, and observing that the extended function is also the extension
of f |R. �
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Theorem 8.39. Suppose S ⊂ Rn is Jordan measurable. Then S has measure zero
if and only if |S| = 0.

Proof. Let R be a closed rectangle containing S. Note that R is Jordan mea-
surable, and χS is Riemann integrable over R. Now if S has measure zero, then
χS = 0 a.e. on R. Hence we have

|S| =
∫
R
χS dx =

∫
R

0 dx = 0.

Conversely suppose |S| = 0. Then
∫
R χS dx = 0. But χS ≥ 0, so we must have

χS = 0 a.e. on R. Therefore S has measure zero, since χS is nonzero on S. �

Remark. A set of measure zero is not necessarily Jordan measurable. For example
Q ∩ [0, 1] has measure zero in R, but it is not Jordan measurable. Because its
boundary is all of [0, 1], which does not have measure zero.

Theorem 8.40. Suppose S1, S2 ⊂ Rn are Jordan measurable. Then S1∪S2, S1∩S2,
and S2 − S1 are Jordan measurable too. We also have

|S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2|.

In addition, if S1 ⊂ S2 then we have |S1| ≤ |S2|, and

|S2 − S1| = |S2| − |S1|.

Remark. As a result we have

|S1 ∪ S2| ≤ |S1|+ |S2|.

By an easy induction, we can show that the union and the intersection of finitely
many Jordan measurable sets are Jordan measurable, and the above inequality also
holds for more than two Jordan measurable sets.

Proof. Let R be a closed rectangle containing both S1, S2. Then R will also
contain S1 ∪ S2, S1 ∩ S2, and S2 − S1. So these sets are bounded. It is easy to
see that χS1∩S2 = χS1χS2 . Since χS1 , χS2 are Riemann integrable over R, χS1∩S2 is
also Riemann integrable over R. Thus S1 ∩ S2 is Jordan measurable. Similarly we
can easily show that

χS1∪S2 = χS1 + χS2 − χS1∩S2 , χS2−S1 = χS2 − χS1∩S2 .

Hence S1 ∪ S2 and S2 − S1 are Jordan measurable too, since their characteristic
functions are Riemann integrable. Now if we integrate the equation involving χS1∪S2
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we get

|S1 ∪ S2| =
∫
R
χS1∪S2dx

=

∫
R
χS1dx+

∫
R
χS2dx−

∫
R
χS1∩S2dx

= |S1|+ |S2| − |S1 ∩ S2|.

To prove the final statement in the theorem, note that if S1 ⊂ S2 then we have

S1 ∪ (S2 − S1) = S2, S1 ∩ (S2 − S1) = ∅.

So we get |S2| = |S1|+ |S2 − S1| − |∅| = |S1|+ |S2 − S1|. Hence we obtain

|S2| − |S1| = |S2 − S1| ≥ 0,

as desired. �

Exercise 8.41. For two Jordan measurable sets S1, S2 ⊂ Rn prove that S1 ∪
S2, S1 ∩ S2, and S1 − S2 are Jordan measurable, by showing directly that their
boundaries have measure zero.

Exercise 8.42. Suppose S is Jordan measurable. Show that S, S◦, and ∂S are
also Jordan measurable.

Theorem 8.43. Suppose S1, S2 ⊂ Rn are Jordan measurable sets that have disjoint
interiors, i.e. S◦1 ∩S◦2 = ∅. Then a function f : S1 ∪S2 → R is Riemann integrable
if and only if f

∣∣
S1
, f
∣∣
S2

are Riemann integrable. Also, in this case we have∫
S1∪S2

f(x)dx =

∫
S1

f(x)dx+

∫
S2

f(x)dx.

Remark. As we will see in the following proof, the above additivity property of
integral with respect to the domain of integration follows from the additivity of
integral with respect to the integrand.
Remark. By an easy induction, this theorem can be generalized to the case of
more than two Jordan measurable sets S1, . . . , Sk with pairwise disjoint interiors.
(Note that under this assumption, S◦k cannot intersect

(S1 ∪ · · · ∪ Sk−1)◦ ⊂ S1 ∪ · · · ∪ Sk−1 ⊂ (S◦1 ∪ · · · ∪ S◦k−1) ∪ (∂S1 ∪ · · · ∪ ∂Sk−1).

Since otherwise S◦k would have to intersect ∂Sj for some j, which implies that S◦k
would intersect S◦j .) In particular, if we set f = 1 we obtain

|S1 ∪ · · · ∪ Sk| = |S1|+ · · ·+ |Sk|,

when S1, . . . , Sk are Jordan measurable sets with pairwise disjoint interiors.
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Proof. First note that S1∪S2 is Jordan measurable. Also note that f is bounded
on S1 ∪ S2 if and only if it is bounded on both S1, S2. Now let Zi be the set of
discontinuities of f

∣∣
Si

in Si, and let Z be the set of discontinuities of f in S1 ∪ S2.
Then

Zi ⊂ ∂Si ∪ Z.

Because if x ∈ Zi−∂Si then x ∈ S◦i , and we have f
∣∣
Si

= f on an open neighborhood
of x. So x ∈ Z. Now when f is integrable, Z has measure zero. Then Zi has
measure zero too, since Si is Jordan measurable and its boundary has measure
zero. Therefore f

∣∣
Si

is integrable. Similarly, we can show that

Z ⊂ Z1 ∪ Z2 ∪ ∂S1 ∪ ∂S2.

Thus when f
∣∣
S1
, f
∣∣
S2

are integrable, Z1, Z2 have measure zero. Then Z has measure
zero too, since S1, S2 are Jordan measurable and their boundaries have measure
zero.

Next let R be a closed rectangle containing S1 ∪S2, and let F be the extension
of f by zero to R. Then the extension of f

∣∣
Si

by zero to R equals FχSi . It is easy
to see that

χS1∪S2 = χS1 + χS2 − χS1∩S2 .

Note that S1 ∩ S2 is Jordan measurable. In addition, by the theorem’s hypothesis
we have S1 ∩ S2 ⊂ ∂S1 ∪ ∂S2. Because if x ∈ S1 ∩ S2 − ∂S1 then x ∈ S◦1 . Thus
x /∈ S◦2 , and we must have x ∈ ∂S2. Therefore S1 ∩ S2 has measure zero. Hence
χS1∩S2 = 0 a.e. Now we have∫

S1∪S2

f(x)dx =

∫
R
F (x)dx =

∫
R
F (x)χS1∪S2 dx

=

∫
R
F (x)χS1 dx+

∫
R
F (x)χS2 dx−

∫
R
F (x)χS1∩S2 dx

=

∫
S1

f(x)dx+

∫
S2

f(x)dx,

as desired. Note that all the functions in the above formula are Riemann integrable.
Also we have used the fact that FχS1∩S2 = 0 a.e., so its integral is zero. �

Remark. Note that if f ≥ 0 then
∫
S f(x)dx ≥

∫
S 0 dx = 0. Now if S1 ⊂ S2, by

the above theorem we get∫
S1

f(x)dx ≤
∫
S1

f(x)dx+

∫
S2−S1

f(x)dx =

∫
S2

f(x)dx.

So, the integral of a nonnegative integrable function is nonnegative, and it increases
as we enlarge the domain of integration.
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8.4 Iterated Integrals

Fubini’s Theorem. Suppose R1 ⊂ Rn, R2 ⊂ Rm are closed rectangles, and f :
R1 × R2 → R is Riemann integrable. We denote the elements of R1 × R2 by
(x, y) where x ∈ R1, y ∈ R2. For each y ∈ R2 let fy : R1 → R be defined by
fy(x) := f(x, y). Then the two functions

F (y) :=

∫
R1

fy(x)dx =

∫
R1

f(x, y)dx, F (y) :=

∫
R1

fy(x)dx =

∫
R1

f(x, y)dx,

are Riemann integrable over R2, and we have∫
R1×R2

f(x, y)dxdy =

∫
R2

F (y)dy =

∫
R2

F (y)dy.

Proof. Let P = {Rα} and Q = {Sβ} be partitions of R1, R2 respectively. Then
P ×Q = {Rα × Sβ} is a partition of R1 ×R2. For any y0 ∈ Sβ we have

mαβ := inf{f(x, y) : (x, y) ∈ Rα × Sβ} ≤ inf{f(x, y0) : x ∈ Rα} =: mα(y0).

Hence by the definition of lower integral we have∑
α

mαβ|Rα| ≤
∑
α

mα(y0)|Rα| = L(fy0 , P ) ≤
∫
R1

f(x, y0)dx = F (y0).

Since y0 is arbitrary we get
∑

αmαβ|Rα| ≤ infSβ F . Therefore

L(f, P ×Q) =
∑
α,β

mαβ|Rα × Sβ| =
∑
β

(∑
α

mαβ|Rα|
)
|Sβ|

≤
∑
β

(
inf
Sβ
F
)
|Sβ| = L(F ,Q) ≤

∫
R2

F (y)dy.

If we take the supremum over all partitions P ×Q we obtain∫
R1×R2

f(x, y)dxdy ≤
∫
R2

F (y)dy. (∗)

Note that by definition every partition of R1 × R2 is of the form P × Q, so the
supremum is indeed over all partitions of R1 ×R2. Similarly we can show that∫

R2

F (y)dy ≤ U(f, P ×Q).
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But F ≤ F , so ∫
R2

F (y)dy ≤
∫
R2

F (y)dy ≤ U(f, P ×Q).

Now if we take the infimum over all partitions P ×Q, and combine the result with
inequality (∗), we obtain∫

R1×R2

f(x, y)dxdy ≤
∫
R2

F (y)dy ≤
∫
R2

F (y)dy ≤
∫
R1×R2

f(x, y)dxdy.

Therefore F is integrable over R2, and its integral equals the integral of f over
R1 ×R2. The same is true for F by a similar reasoning. �

Remark. Since
∫
R2
F (y)dy =

∫
R2
F (y)dy, and F ≤ F , we must have F (y) = F (y)

for a.e. y ∈ R2. In other words f(x, y) is an integrable function of x over R1 for
a.e. fixed y ∈ R2.

Remark. When f is continuous, f(x, y) is an integrable function of x over R1 for
every fixed y ∈ R2. Hence

F (y) = F (y) =

∫
R1

f(x, y)dx,

for all y ∈ R2. We can also switch the role of x, y, and apply the Fubini’s theorem
twice to obtain∫

R1×R2

f(x, y)dxdy =

∫
R2

(∫
R1

f(x, y)dx
)
dy =

∫
R1

(∫
R2

f(x, y)dy
)
dx.

The two integrals on the right hand side of the above formula are called iterated
integrals. Note that as a result of Fubini’s theorem, we can change the order of
integration in iterated integrals, when f is continuous on the rectangle R1 ×R2.

Theorem 8.44. Suppose S ⊂ Rn−1 is a compact set, and ψ : S → R is a continuous
function. Then the graph of ψ i.e.

G := {(x, ψ(x)) ∈ Rn : x ∈ S}

has measure zero in Rn.

Proof. Let R be a closed rectangle containing S (note that S is bounded). We
know that ψ is uniformly continuous, since S is compact. Now for a given ε > 0
there is δ > 0 such that for x, y ∈ S with |x − y| < δ we have |ψ(y) − ψ(x)| < ε.
Let P be a partition of R whose mesh is less than δ. Then whenever x, y ∈ S
belong to the same subrectangle of P , we have |ψ(y)− ψ(x)| < ε. Let R1, . . . , Rm
be subrectangles of P that intersect S, and let xi be a point in Ri ∩ S. Let R′i be
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an open rectangle containing Ri whose volume is twice the volume of Ri. Then we
have

G ⊂
⋃
i≤m

Ri ×
(
ψ(xi)− ε, ψ(xi) + ε

)
⊂
⋃
i≤m

R′i ×
(
ψ(xi)− ε, ψ(xi) + ε

)
.

The total volume of this open covering of G is∑
i≤m

2ε|R′i| = 4ε
∑
i≤m
|Ri| ≤ 4ε|R|.

Now as ε is arbitrary we can conclude that G has measure zero. �

Remark. We can also show that the graph of a continuous function over an open
set has measure zero. First let V be a bounded open set in Rn−1. Then V is the
union of countably many compact sets Kj = V −

⋃
x∈∂V B1/j(x). To see this first

note that V =
⋃
jKj , since the distance of a point z ∈ V from the points on the

compact set ∂V has a positive minimum, and thus z must belong to some Kj . On
the other hand, Kj is closed, because for the open set B =

⋃
x∈∂V B1/j(x) we have

V ∩Bc = (V ∪ ∂V ) ∩Bc = (V ∩Bc) ∪ (∂V ∩Bc) = V ∩Bc = Kj ,

since ∂V ⊂ B. So Kj is compact, being a subset of the bounded set V . Now note
that any open set U in Rn−1 is the union of countably many bounded open sets
Vi := U ∩ Bi(0). Thus U is also the union of countably many compact sets Kij ,
since the union of countably many countable families is countable. Therefore the
graph of a continuous function ψ over U is the union of countably many graphs of
continuous functions ψ|Kij , which have measure zero; so the graph of ψ also has
measure zero.

Theorem 8.45. Suppose S ⊂ Rn−1 is a compact Jordan measurable set. Let
φ, ψ : S → R be continuous functions such that φ ≤ ψ. Then

C := {(x, y) ∈ Rn : x ∈ S, φ(x) ≤ y ≤ ψ(x)}

is a compact Jordan measurable set, and for any continuous function f : C → R
we have ∫

C
f(x, y)dxdy =

∫
S

(∫ ψ(x)

φ(x)
f(x, y)dy

)
dx.

Remark. For simplicity of the notation, we assumed that y is the nth component
of the point (x, y) ∈ Rn; but similar results hold when y is any other component.
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Proof. Suppose R ⊂ Rn−1 is a closed rectangle containing S. Since φ, ψ are
continuous on a compact set, there are m,M ∈ R such that m < φ ≤ ψ < M .
Then R × [m,M ] is a closed rectangle containing C, so C is bounded. Let F be
the extension of f by zero to this rectangle. Suppose for now that C is a compact
Jordan measurable set; then f is Riemann integrable, and by Fubini’s theorem we
have ∫

C
f(x, y)dxdy =

∫
R×[m,M ]

F (x, y)dxdy

=

∫
R

(∫ M

m
F (x, y)dy

)
dx =

∫
R

(∫ M

m
F (x, y)dy

)
dx. (∗)

Note that for every fixed x ∈ R−S, F (x, y) = 0; and for every fixed x ∈ S, F (x, y)
is at most discontinuous at two points y = φ(x) and y = ψ(x). Thus F (x, y) is a
Riemann integrable function of y for every fixed x. Also note that

∫M
m F (x, y)dy is

a Riemann integrable function of x by Fubini’s theorem. Now as R − S is Jordan
measurable, and does not intersect S, we have∫

R

∫ M

m
Fdydx =

∫
R−S

∫ M

m
Fdydx+

∫
S

∫ M

m
Fdydx =

∫
S

∫ M

m
Fdydx, (∗∗)

since
∫M
m F (x, y)dy = 0 for every fixed x ∈ R−S. In addition for every fixed x ∈ S

we have∫ M

m
F (x, y)dy =

∫ φ(x)

m
F (x, y)dy +

∫ ψ(x)

φ(x)
F (x, y)dy +

∫ M

ψ(x)
F (x, y)dy

=

∫ ψ(x)

φ(x)
f(x, y)dy,

since F (x, y) = 0 a.e. on [m,φ(x)] and a.e. on [ψ(x),M ]. Now we can integrate this
relation over S, and use (∗), (∗∗), to get the desired equation. Note that the last
term of the above formula is a Riemann integrable function of x, since it equals the
first term which is Riemann integrable.

Therefore it only remains to show that C is compact, and ∂C has measure zero.
Note that C is the image of the continuous map Φ : S × [0, 1]→ Rn defined by

Φ(x, t) =
(
x, φ(x) + t(ψ(x)− φ(x))

)
.

Therefore C is compact, since S × [0, 1] is compact. In particular C is closed, and
we have ∂C ⊂ C. Now if a ∈ S◦ and φ(a) < b < ψ(a), then (a, b) ∈ C◦. To see this
note that there is ε > 0 such that φ(a) + 2ε < b < ψ(a) − 2ε. Then there is δ > 0
such that Bδ(a) ⊂ S, and for x ∈ Bδ(a) we have φ(x) + ε < b < ψ(x) − ε due to
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continuity. Thus Bδ(a)× (b− ε, b+ ε) is an open subset of C containing (a, b), and
therefore (a, b) ∈ C◦. Hence we must have

∂C ⊂ {(x, y) : x ∈ ∂S, φ(x) ≤ y ≤ ψ(x)}
∪ {(x, φ(x)) : x ∈ S} ∪ {(x, ψ(x)) : x ∈ S}

⊂ (∂S × [m,M ]) ∪ {(x, φ(x)) : x ∈ S} ∪ {(x, ψ(x)) : x ∈ S}.

Therefore to show that ∂C has measure zero it suffices to show that ∂S × [m,M ]
has measure zero, because the graphs of continuous functions have measure zero.
But ∂S has measure zero in Rn−1. Thus for any ε > 0 there is a family of open
rectangles Ri ⊂ Rn−1 such that ∂S ⊂

⋃
i≥1Ri, and

∑
i≥1 |Ri| < ε. Then we have

∂S × [m,M ] ⊂
⋃
i≥1

Ri × (m− 1,M + 1),

and ∑
i≥1

|Ri × (m− 1,M + 1)| < ε(M −m+ 2).

Hence ∂S × [m,M ] has measure zero as desired. �

Remark. In practice, when we want to compute a multiple integral, we reduce the
dimension either by employing the Fubini’s theorem when the domain is rectangu-
lar, or by employing the above theorem when the domain is more general. Then,
after repeating this process several times, we finally arrive at one-dimensional in-
tegrals, and we can compute them by the fundamental theorem of calculus. Note
that sometimes we have to break our domain into several smaller parts in order to
be able to apply the above theorem to each part.

Example 8.46. As an example consider the three-dimensional region

C = {(x, y, z) ∈ R3 : a ≤ x ≤ b, g(x) ≤ y ≤ h(x), φ(x, y) ≤ z ≤ ψ(x, y)}.

Let S = {(x, y) ∈ R2 : a ≤ x ≤ b, g(x) ≤ y ≤ h(x)}. Suppose g, h, φ, ψ are
continuous functions satisfying g ≤ h and φ ≤ ψ. Then by the above theorem S is
a compact Jordan measurable set. We also have

C = {(x̃, z) ∈ R3 : x̃ = (x, y) ∈ S, φ(x̃) ≤ z ≤ ψ(x̃)}.

Hence, by repeatedly applying the above theorem, we obtain∫
C
f(x, y, z)dxdydz =

∫
C
f(x̃, z)dx̃dz =

∫
S

(∫ ψ(x̃)

φ(x̃)
f(x̃, z)dz

)
dx̃

=

∫
S

(∫ ψ(x,y)

φ(x,y)
f(x, y, z)dz

)
dxdy =

∫
S
f̃(x, y)dxdy
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=

∫
[a,b]

[ ∫ h(x)

g(x)
f̃(x, y)dy

]
dx

=

∫ b

a

[ ∫ h(x)

g(x)

(∫ ψ(x,y)

φ(x,y)
f(x, y, z)dz

)
dy
]
dx,

which is a familiar formula from calculus. Note that f̃(x, y) :=
∫ ψ(x,y)
φ(x,y) f(x, y, z)dz

is a continuous function by Exercise 7.27. We can similarly compute integrals over
higher-dimensional regions of the same type.

Theorem 8.47. Suppose S ⊂ Rn−1 is a compact Jordan measurable set, and ψ :
S → R is a nonnegative continuous function. Then the set under the graph of ψ
i.e.

C := {(x, y) ∈ Rn : x ∈ S, 0 ≤ y ≤ ψ(x)}

is Jordan measurable, and

|C| =
∫
S
ψ(x)dx.

In other words, the volume of the set under the graph of ψ equals the integral of ψ.

Proof. This is a particular case of the previous theorem. Let f = 1, and φ = 0
in that theorem. Then we have

|C| =
∫
C

1 dxdy =

∫
S

∫ ψ(x)

0
1 dydx =

∫
S
ψ(x)dx. �

8.5 Change of Variables

Definition 8.48. Suppose A ⊂ Rn. A function F : A → Rm is called locally
Lipschitz if for every a ∈ A there are K, r > 0 such that

|F (x)− F (y)| ≤ K|x− y|

for all x, y ∈ A ∩Br(a), where Br(a) is the open ball of radius r around a.

Remark. In other words, a function F is locally Lipschitz if every point in its
domain has a neighborhood on which F is Lipschitz.

Remark. It is easy to see that locally Lipschitz functions are continuous. It is also
obvious that a Lipschitz function is locally Lipschitz; but the converse is not true.
For example the function x 7→ x2 is a locally Lipschitz function from R to R which
is not Lipschitz.
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Example 8.49. Suppose U ⊂ Rn is open, and f : U → Rm is differentiable.
If the partial derivatives of f are locally bounded (i.e. every point in U has a
neighborhood over which the partial derivatives are bounded), then f is locally
Lipschitz. In particular, if f is C1 then it is locally Lipschitz, because continuous
partial derivatives are bounded on closed balls inside the domain. To prove the claim
let a ∈ U , and suppose the partial derivatives of f are bounded on Br(a) ⊂ U . Let

Ma = sup
x∈Br(a)

(∑
i,j

|Djfi(x)|2
) 1

2
.

Then by Theorem 7.24, for every x, y ∈ Br(a) we have

|f(x)− f(y)| ≤Ma|x− y|,

since Br(a) contains the line segment joining x, y.

Exercise 8.50. Show that the composition of locally Lipschitz functions is locally
Lipschitz.

Theorem 8.51. Suppose Z ⊂ Rn has measure zero, and F : Z → Rn is locally
Lipschitz. Then F (Z) has measure zero.

Proof. Every a ∈ Z has a neighborhood Br(a) such that F is Lipschitz on Z ∩
Br(a). Then the family {Br(a) : a ∈ Z} is an open covering of Z. By Theorem
11.57 every open covering of a subset of Rn has a countable subcovering. Let us
denote this countable subcovering by {Bi}. Then we have

F (Z) =
⋃
i≥1

F (Z ∩Bi) =
⋃
i≥1

F |Z∩Bi(Z ∩Bi).

But F |Z∩Bi is Lipschitz, and Z∩Bi has measure zero. Therefore it suffices to prove
the theorem for Lipschitz maps. Because then it follows that each F |Z∩Bi(Z ∩Bi)
has measure zero. And as F (Z) is the union of countably many sets of measure
zero, it also has measure zero as desired.

So we assume that F is Lipschitz, and Z has measure zero. We want to show
that F (Z) has measure zero. For any ε > 0 there is a family of open cubes Qi ⊂ Rn
such that Z ⊂

⋃
i≥1Qi, and

∑
i≥1 |Qi| < ε. Suppose the length of the edges of

Qi is li. It is easy to see that the diameter of Qi, i.e. the maximum distance
between points of Qi, is li

√
n. But the diameter of Z ∩Qi is less than or equal to

the diameter of Qi. Hence the diameter of F (Z ∩Qi) is at most Kli
√
n, since the

distance of two points F (x), F (y) is less than or equal to K times the distance of
x, y. Therefore F (Z∩Qi) ⊂ Ri, where Ri is an open cube whose edges are of length
3Kli

√
n, and is centered at some point z ∈ F (Z ∩Qi). Because for any other point
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z′ ∈ F (Z ∩Qi) we have |z′ − z| ≤ Kli
√
n; so the absolute value of each coordinate

of z′ − z is less than or equal to Kli
√
n, which is strictly less than 3

2Kli
√
n. Now

we have
F (Z) =

⋃
i≥1

F (Z ∩Qi) ⊂
⋃
i≥1

Ri,

and ∑
i≥1

|Ri| = 3nKn
√
nn
∑
i≥1

lni = 3nKn
√
nn
∑
i≥1

|Qi| < 3nKn
√
nnε.

Thus as ε is arbitrary, F (Z) has measure zero. �

Remark. Note that in the above proof we cannot use rectangles instead of cubes.
Because the diameter of a rectangle cannot be estimated by the volume of the
rectangle. In other words, a rectangle with small volume can have a very large
diameter.

Remark. If we merely assume that F is continuous, then F (Z) does not necessarily
have measure zero when Z has measure zero. For example the Cantor function
(Example 5.24) is a continuous function that maps the standard Cantor set, which
has measure zero, onto [0, 1].

Theorem 8.52. Suppose S1, S2 ⊂ Rn are Jordan measurable, and f : S1 → R is
Riemann integrable. Let ψ : S2 → S1 be a homeomorphism such that ψ−1 : S1 → S2

is locally Lipschitz. Then f ◦ ψ is Riemann integrable.

Proof. First note that f ◦ ψ is bounded, since f is bounded. Thus we only need
to show that Z(f ◦ ψ), the set of discontinuities of f ◦ ψ, has measure zero. Let
Z(f) be the set of discontinuities of f . Then we have

Z(f ◦ ψ) ⊂ ψ−1(Z(f)),

since f ◦ ψ is continuous at a point x if f is continuous at ψ(x). (Actually, the
above two sets are equal due to the continuity of ψ−1, but we do not use this fact).
Now, Z(f) has measure zero, and ψ−1 is locally Lipschitz. Thus ψ−1(Z(f)) has
measure zero. Therefore Z(f ◦ ψ) has measure zero too. �

Theorem 8.53. Suppose S ⊂ Rn is bounded, and U ⊂ Rn is an open set containing
S. Let φ : U → Rn be a one-to-one C1 map such that Dφ(x) is an invertible matrix
for every x ∈ U . Then we have

∂(φ(S)) = φ(∂S).

As a result, if S is Jordan measurable, φ(S) is Jordan measurable too.
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Proof. First note that φ(U) is open, and φ−1 : φ(U) → U is C1. To see this let
b ∈ φ(U). Then there is a ∈ U such that b = φ(a). Now by the inverse function
theorem a has an open neighborhood V such that φ(V ) is open, and the inverse of
φ|V , which is φ−1|φ(V ), is C1. Hence φ(V ) ⊂ φ(U) is an open neighborhood of b,
and the claim follows. Thus, in particular, φ−1 and φ have the same properties.

Now let us show that ∂(φ(S)) = φ(∂S). Consider S◦, the interior of S. Then
similarly to the above we can show that φ(S◦) is an open set, since S◦ is an open
set. In addition, we have

φ(S◦) ⊂ φ(S) ⊂ φ(S) = φ(S◦ ∪ ∂S) = φ(S◦) ∪ φ(∂S).

Thus φ(S◦) ⊂ (φ(S))◦. On the other hand note that φ(S) is closed, since S is
compact. So φ(S) ⊂ φ(S). Hence

∂(φ(S)) = φ(S)− (φ(S))◦ ⊂ φ(S)− φ(S◦) ⊂ φ(∂S).

Similarly for φ−1 we have ∂(φ−1(C)) ⊂ φ−1(∂C), where C ⊂ φ(U). Thus we get

∂S = ∂
(
φ−1(φ(S))

)
⊂ φ−1

(
∂(φ(S))

)
.

Hence we obtain φ(∂S) ⊂ ∂(φ(S)). Therefore the two sets are equal.
Finally, using the equality ∂(φ(S)) = φ(∂S), we can conclude that if S is Jordan

measurable, then ∂(φ(S)) has measure zero too; because φ is locally Lipschitz (since
it is C1), and ∂S has measure zero. In addition, S is compact, since it is bounded
as S is bounded. Thus φ(S) is compact, and therefore it is also bounded. So
φ(S) ⊂ φ(S) is bounded too. Hence φ(S) is Jordan measurable. �

Remember that any invertible matrix is the product of several elementary ma-
trices, which have one of the following forms

i-th row→
...

j-th row→


1 0 · · · 0 0
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
0 0 · · · 0 1

,


1 0 · · · 0 0
0 a · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

,


1 0 · · · 0 0
0 1 · · · c 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

,

where a, c ∈ R, and a 6= 0. So, the first matrix is obtained by interchanging the
ith row and the jth row of the identity matrix; the second matrix is obtained by
multiplying the ith row of the identity matrix by the nonzero constant a; and the
third matrix is obtained by adding c times the jth row of the identity matrix to its
ith row.
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Lemma 8.54. Suppose T : Rn → Rn is a linear map given by an elementary
matrix, and R ⊂ Rn is a closed rectangle. Then T (R) is Jordan measurable, and
we have

|T (R)| = |detT | |R|.

Proof. Remember that a linear map T between Euclidean spaces is given by the
action of a unique matrix, which we still denote by T . Let R =

∏
k≤n[ak, bk].

Suppose T is an elementary matrix of the first kind. Then we have

T (x1, . . . , xi, . . . , xj , . . . , xn) = (x1, . . . , xj , . . . , xi, . . . , xn).

Hence T (R) = [a1, b1]× · · · × [aj , bj ]× · · · × [ai, bi]× · · · × [an, bn]. Therefore

|T (R)| =
∏
k≤n

(bk − ak) = |R| = |−1| |R| = |detT | |R|.

Next suppose T is an elementary matrix of the second kind. Then we have

T (x1, . . . , xi, . . . , xn) = (x1, . . . , axi, . . . , xn).

Therefore T (R) = [a1, b1]× · · · × [aai, abi]× · · · × [an, bn] when a > 0, and T (R) =
[a1, b1]× · · · × [abi, aai]× · · · × [an, bn] when a < 0. Thus

|T (R)| = |abi − aai|
∏
k 6=i

(bk − ak) = |a|
∏
k≤n

(bk − ak) = |a| |R| = |detT | |R|.

Note that in both cases, T (R) is a closed rectangle; hence it is Jordan measurable.
Finally suppose that T is an elementary matrix of the third kind. Then we have

T (x1, . . . , xi, . . . , xn) = (x1, . . . , xi + cxj , . . . , xn) =: (y1, . . . , yn).

Note that for k 6= i we have yk = xk ∈ [ak, bk], and for each fixed yj = xj we have
yi − cyj = xi + cxj − cxj = xi ∈ [ai, bi]. Hence

T (R) = {y ∈ Rn : yk ∈ [ak, bk] for k 6= i, and yi ∈ [ai + cyj , bi + cyj ]}.

Therefore by Theorem 8.45, T (R) is Jordan measurable, and we have

|T (R)| =
∫
T (R)

1 dy1 . . . dyi−1dyidyi+1 . . . dyn

=

∫
∏
k 6=i[ak,bk]

(∫ bi+cyj

ai+cyj

1 dyi

)
dy1 . . . dyi−1dyi+1 . . . dyn

=

∫
∏
k 6=i[ak,bk]

(bi − ai) dy1 . . . dyi−1dyi+1 . . . dyn

= (bi − ai)
∏
k 6=i

(bk − ak) =
∏
k≤n

(bk − ak) = 1 |R| = |detT | |R|,

as desired. �
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Theorem 8.55. Suppose T : Rn → Rn is a linear map, and S ⊂ Rn is Jordan
measurable. Then T (S) is also Jordan measurable, and we have

|T (S)| = |detT | |S|.

Remark. This theorem provides a geometric interpretation for the (absolute value
of) determinant of a linear map, as the factor by which the linear map changes the
volume.

Remark. As a result, if detT = ±1 then T preserves the volume. In particular, if
T is an orthogonal linear map (i.e. it preserves the distance, which is equivalent to
T TT = I), then T also preserves the volume.

Proof. If T is not invertible then its image is inside an (n−1)-dimensional plane
Γ, which has measure zero in Rn. Thus T (S) has measure zero too. Note that T (S)
is Jordan measurable, since its boundary is also a subset of Γ, because Γ is closed.
Hence we have |T (S)| = 0. Therefore

0 = |T (S)| = 0 |S| = |detT | |S|,

as desired. So, in the rest of the proof, we can assume that T is invertible. Then
by Theorem 8.53, it follows that T (S) is Jordan measurable, since T is one-to-one
and C1, and its derivative, which is T itself, is invertible.

Next note that if T = T1T2 · · ·Tk, and the theorem holds for each Ti, then the
theorem also holds for T . Because we have

|T (S)| = |T1 · · ·Tk(S)| = |T1(T2 · · ·Tk(S))|
= |detT1| |T2 · · ·Tk(S)|
= |detT1| |detT2| |T3 · · ·Tk(S)|
= |detT1T2| |T3 · · ·Tk(S)|

...
= |detT1T2 · · ·Tk| |S| = |detT | |S|.

Now since any invertible matrix is the product of several elementary matrices, it
suffices to prove the theorem for linear maps given by elementary matrices.

So, let T be a linear map given by an elementary matrix. Let R be a closed
rectangle containing S, and let P = {Rα} be a partition of R. We know that the
volume of S is given by |S| =

∫
R χS(x)dx, and as we have seen in Section 8.3, the

lower and upper sums for this integral with respect to the partition P are

L(χS , P ) =
∑
Rα⊂S

|Rα|, U(χS , P ) =
∑

Rα∩S 6=∅

|Rα|,
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respectively. For a given ε > 0 we choose P so that

|S| − ε <
∑
Rα⊂S

|Rα| ≤ |S| ≤
∑

Rα∩S 6=∅

|Rα| < |S|+ ε. (∗)

Now note that Rα ⊂ S if and only if T (Rα) ⊂ T (S), and Rα ∩ S 6= ∅ if and only if
T (Rα) ∩ T (S) 6= ∅, since T is an invertible function. Thus we have⋃

Rα⊂S
T (Rα) ⊂ T (S) ⊂

⋃
Rα∩S 6=∅

T (Rα).

Therefore by Theorem 8.40 we have∣∣∣ ⋃
Rα⊂S

T (Rα)
∣∣∣ ≤ |T (S)| ≤

∣∣∣ ⋃
Rα∩S 6=∅

T (Rα)
∣∣∣ ≤ ∑

Rα∩S 6=∅

|T (Rα)|.

However, note that two different subrectangles Rα, Rβ can only intersect at their
boundaries. Hence T (Rα), T (Rβ) too can only intersect at their boundaries. Be-
cause if x ∈ T (Rα)∩T (Rβ) then T−1x ∈ Rα∩Rβ , and therefore T−1x ∈ ∂Rα∩∂Rβ .
On the other hand, by Theorem 8.53 we have ∂(T (A)) = T (∂A) for any set A. So

x ∈ T (∂Rα) ∩ T (∂Rβ) = ∂(T (Rα)) ∩ ∂(T (Rβ)),

as desired. Hence if we use f = 1 in Theorem 8.43 we get∣∣∣ ⋃
Rα⊂S

T (Rα)
∣∣∣ =

∑
Rα⊂S

|T (Rα)|.

Therefore we have shown that∑
Rα⊂S

|T (Rα)| ≤ |T (S)| ≤
∑

Rα∩S 6=∅

|T (Rα)|.

Finally note that |T (Rα)| = |detT | |Rα| by the previous lemma. Thus by (∗) we
get

|detT |(|S| − ε) < |detT |
∑
Rα⊂S

|Rα| =
∑
Rα⊂S

|detT ||Rα|

=
∑
Rα⊂S

|T (Rα)| ≤ |T (S)| ≤
∑

Rα∩S 6=∅

|T (Rα)|

=
∑

Rα∩S 6=∅

|detT ||Rα| = |detT |
∑

Rα∩S 6=∅

|Rα| < |detT |(|S|+ ε).

Hence
∣∣|T (S)| − |detT | |S|

∣∣ < |detT | ε; and since ε is arbitrary, we get the desired
result. �



CHAPTER 8. MULTIPLE INTEGRALS 269

The above theorem can also be interpreted as∫
T (S)

1 dy = |T (S)| = |detT | |S| =
∫
S
|detT | dx =

∫
S

1 ◦ T |detT | dx,

which is the change of variables theorem for the constant function f = 1 and the
linear change of variables φ = T . In general, suppose S ⊂ Rn is Jordan measurable,
and U ⊂ Rn is an open set containing S. Let φ : U → Rn be a one-to-one C1 map
such that Dφ(x) is an invertible matrix for every x ∈ U . We have seen that φ(S)
is a Jordan measurable set. Let f : φ(S) → R be a Riemann integrable function.
Then the function (f ◦ φ) |detDφ| is also Riemann integrable, and the change of
variables theorem says that∫

φ(S)
f(y)dy =

∫
S

(f ◦ φ)(x) |detDφ(x)| dx.

Let us provide a heuristic argument for the validity of the above equality. For
simplicity suppose S is a rectangle. Let P = {Rα}, {xα} be a tagged partition
of S. Then {φ(Rα)} is a partition of φ(S) into deformed rectangles (which are
still Jordan measurable). And the points yα = φ(xα) are tags for this deformed
partition. Consider the linear functions

φα(x) := φ(xα) +Dφ(xα)(x− xα).

Then φα approximates φ over Rα, provided that ‖P‖ is small enough. We denote
this by writing φα ≈ φ. Note that by the above theorem we have |φα(Rα)| =
|detDφ(xα)||Rα|, since translation by the constant vector φ(xα) does not change
the volume. Now if we approximate integrals by (deformed) Riemann sums we get∫

φ(S)
f(y)dy ≈

∑
f(yα)|φ(Rα)|

≈
∑

f(yα)|φα(Rα)|

=
∑

f(φ(xα)) |detDφ(xα)||Rα|

≈
∫
S

(f ◦ φ)(x) |detDφ(x)| dx,

as wanted.

Lemma 8.56. Suppose S ⊂ Rn is Jordan measurable, and U ⊂ Rn is an open
set containing S. Let φ : U → Rn be a one-to-one C1 map such that Dφ(x) is an
invertible matrix for every x ∈ U . Then φ(S) is also Jordan measurable, and its
volume satisfies

|φ(S)| ≤
∫
S
|detDφ(x)| dx.
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Remark. In fact, the change of variables theorem will imply that |φ(S)| is equal
to the above integral.

Proof. We have already shown in Theorem 8.53 that φ(S) is Jordan measurable.
Also, as we have seen in the proof of Theorem 8.53, φ−1 is C1 due to the inverse
function theorem. Thus both φ, φ−1 are locally Lipschitz. We break the proof into
several parts to make it more comprehensible, although the parts are intertwined.

(i) Let Q be a closed cube containing S, and let P = {Qα} be a partition of Q
into smaller cubes. (Note that in this proof we work with cubes, not rectangles.)
We know that the volume of S is given by |S| =

∫
Q χS(x)dx, and as we have seen in

Section 8.3, the upper sum for this integral with respect to the partition P satisfies

|S| ≤ U(χS , P ) =
∑

Qα∩S 6=∅

|Qα|.

Now note that by Exercise 2.111, the distance between the points of ∂U and S has
a positive lower bound, since they are disjoint sets, ∂U is closed, and S is compact.
Therefore when ‖P‖ is small enough, Qα ∩ S 6= ∅ implies that Qα ⊂ U . Let us
assume that this holds for the partition P .

Next note that by Theorem 8.53 each φ(Qα) is Jordan measurable. In addition,
Qα ∩ S 6= ∅ if and only if φ(Qα)∩ φ(S) 6= ∅, since φ is a one-to-one function. Thus
we have

φ(S) ⊂
⋃

Qα∩S 6=∅

φ(Qα).

Therefore by Theorem 8.40 we have

|φ(S)| ≤
∣∣∣ ⋃
Qα∩S 6=∅

φ(Qα)
∣∣∣ ≤ ∑

Qα∩S 6=∅

|φ(Qα)|. (∗)

Thus it suffices to estimate φ(Qα) when Qα is a closed cube with small diameter.
Let xα be the center point of the cube Qα. We claim that for every small enough
r > 0 there is δ > 0 such that if ‖P‖ < δ, then independently of α we have

|φ(Qα)| ≤ (1 + r)n|detDφ(xα)||Qα|. (∗∗)

To prove (∗∗), it suffices to show that

φ(Qα) ⊂ φα
(
(1 + r)Qα

)
, (∗∗∗)

where φα(x) := φ(xα) + Dφ(xα)(x − xα), and cQα is the closed cube with center
xα whose edges’ length is c times the length of the edges of Qα. It is easy to see
that |cQα| = cn|Qα|. Then by Theorem 8.55, φα

(
(1 + r)Qα

)
is Jordan measurable,

and we get

|φ(Qα)| ≤
∣∣φα((1 + r)Qα

)∣∣ = (1 + r)n|detDφ(xα)||Qα|,
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as desired.
(ii) Now let us prove (∗∗∗). First, for z ∈ Rn we define

|z|∞ := max
i≤n
|zi|.

Note that |z|∞ is the distance from z to 0 with respect to the metric defined by
taking the maximum of the distances of the components. Thus in particular, the
triangle inequality |z + w|∞ ≤ |z|∞ + |w|∞ holds. It is also easy to see that

|z|∞ ≤ |z| ≤
√
n |z|∞.

Let x ∈ Qα. Note that we have |x− xα|∞ ≤ s/2, where s is the length of the edges
of Qα. In addition, note that the line segment joining x, xα is inside Qα. Hence by
Theorem 7.25 we have

φ(x)− φ(xα)−Dφ(xα)(x− xα)

=

∫ 1

0
Dφ
(
xα + t(x− xα)

)
(x− xα) dt−Dφ(xα)(x− xα)

=

∫ 1

0

(
Dφ
(
xα + t(x− xα)

)
−Dφ(xα)

)
(x− xα) dt.

Let Aα := Dφ(xα). Then we have

A−1
α

(
φ(x)− φ(xα)

)
− (x− xα)

=

∫ 1

0
A−1
α

(
Dφ
(
xα + t(x− xα)

)
−Dφ(xα)

)
(x− xα) dt,

since Aα does not depend on t, and integration commutes with forming linear
combinations. Next note that due to Cramer’s rule, the entries of the inverse of an
invertible matrix are rational functions (i.e. quotients of polynomials) of the entries
of the matrix. Thus (Dφ)−1 is continuous. Hence there exists C > 0 such that on
the compact set

⋃
Qα∩S 6=∅Qα ⊂ U we have

(∑
i,j |(Dφ)−1

ij |2
) 1

2 ≤ C. Then it easily
follows that for every z we have |(Dφ)−1z| ≤ C|z| (see the proof of Theorem 7.24).
Hence we have |A−1

α z| ≤ C|z|, independently of α.
On the other hand, we have xα(t) := xα + t(x− xα) ∈ Qα. Therefore

|xα(t)− xα| ≤ ‖P‖ < δ.

Also, since Dφ is continuous on the compact set
⋃
Qα∩S 6=∅Qα ⊂ U , it is uniformly

continuous there. Thus we can choose δ small enough so that(∑
i,j

|Dφi(xα(t))−Dφi(xα)|2
) 1

2 ≤ ε,



CHAPTER 8. MULTIPLE INTEGRALS 272

independently of α. Then it follows that∣∣∣(Dφ(xα(t)
)
−Dφ(xα)

)
(x− xα)

∣∣∣ ≤ ε|x− xα| ≤ ε√n |x− xα|∞.
Hence we can conclude that∣∣A−1

α

(
φ(x)− φ(xα)

)
− (x− xα)

∣∣
∞

≤
∣∣A−1

α

(
φ(x)− φ(xα)

)
− (x− xα)

∣∣
=

∣∣∣∣∫ 1

0
A−1
α

(
Dφ
(
xα(t)

)
−Dφ(xα)

)
(x− xα) dt

∣∣∣∣
≤
∫ 1

0

∣∣∣A−1
α

(
Dφ
(
xα(t)

)
−Dφ(xα)

)
(x− xα)

∣∣∣ dt
≤
∫ 1

0
C
∣∣∣(Dφ(xα(t)

)
−Dφ(xα)

)
(x− xα)

∣∣∣ dt
≤
∫ 1

0
Cε
√
n |x− xα|∞ dt = Cε

√
n |x− xα|∞ ≤ r|x− xα|∞

for ε ≤ r/(C
√
n). Then we get∣∣A−1

α

(
φ(x)− φ(xα)

)∣∣
∞ − |x− xα|∞ ≤ r|x− xα|∞,

since |w|∞ − |z|∞ ≤ |w − z|∞ due to the triangle inequality. Thus we have shown
that for x ∈ Qα we have∣∣A−1

α

(
φ(x)− φ(xα)

)∣∣
∞ ≤ (1 + r)|x− xα|∞,

where r does not depend on α. Finally, let y = φ(x) ∈ φ(Qα). Then we have∣∣xα +A−1
α

(
y − φ(xα)

)
− xα

∣∣
∞ ≤ (1 + r)|x− xα|∞ ≤ (1 + r)s/2,

where s is the length of the edges of Qα. So x̃ := xα+A−1
α

(
y−φ(xα)

)
∈ (1+ r)Qα.

Thus

y = Aαx̃−Aαxα + φ(xα)

= φ(xα) +Dφ(xα)(x̃− xα) = φα(x̃) ∈ φα
(
(1 + r)Qα

)
.

Therefore we have shown that the inclusion (∗∗∗) holds.
(iii) Finally, if we use the estimate (∗∗) in the bound (∗) we get

|φ(S)| ≤
∑

Qα∩S 6=∅

|φ(Qα)| ≤ (1 + r)n
∑

Qα∩S 6=∅

|detDφ(xα)||Qα|.
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Note that for a given r > 0 and partition P , the above bound holds provided that
‖P‖ < δ for some small enough δ. Now note that the rightmost term above looks
like (1+r)n times a Riemann sum for the integral

∫
S |detDφ(x)| dx, with respect to

the tagged partition P, (xα). However, in order for this to be true we must have xα ∈
S ∩Qα (which might not be true); because we are actually integrating χS |detDφ|
over the cube Q. But |detDφ| is continuous on the compact set

⋃
Qα∩S 6=∅Qα ⊂ U ;

so it is uniformly continuous there. Thus for a given ε̃ > 0 we can choose δ small
enough so that for x ∈ Qα we have∣∣|detDφ(x)| − |detDφ(xα)|

∣∣ ≤ ε̃,
independently of α. Let x̃α ∈ S ∩Qα. Then we have

|φ(S)| ≤ (1 + r)n
∑

Qα∩S 6=∅

|detDφ(xα)||Qα|

≤ (1 + r)n
∑

Qα∩S 6=∅

(
|detDφ(x̃α)|+ ε̃

)
|Qα|

= (1 + r)n
∑

Qα∩S 6=∅

|detDφ(x̃α)||Qα|+ (1 + r)nε̃
∑

Qα∩S 6=∅

|Qα|

≤ (1 + r)nR
(
χS |detDφ|, P, (x̃α)

)
+ (1 + r)nε̃|Q|,

where R is the Riemann sum for the integral
∫
S |detDφ(x)| dx, with respect to

the tagged partition P, (x̃α). Hence as ‖P‖ goes to zero, the Riemann sum must
converge to the integral, since |detDφ| is Riemann integrable and S is Jordan
measurable. Therefore we get

|φ(S)| ≤ (1 + r)n
∫
S
|detDφ(x)| dx+ (1 + r)nε̃|Q|.

In addition, r, ε̃ are arbitrary small positive numbers. So if we let r, ε̃ → 0 we get
the desired bound for |φ(S)|. �

In the following proof, we need to first consider the case of nonnegative functions,
and then use that to deduce the result for general functions. To that end, for a
real-valued function f we set

f+ := max{f, 0} =

{
f if f ≥ 0,

0 if f < 0,
f− := −min{f, 0} =

{
0 if f ≥ 0,

−f if f < 0.

Note that both f+, f− ≥ 0, and we have f = f+ − f−. In addition, note that if
f is Riemann integrable, then both f± are also Riemann integrable. Because we
have f+ = x+ ◦ f and f− = x− ◦ f , where

x+ := max{x, 0} =

{
x if x ≥ 0,

0 if x < 0,
x− := −min{x, 0} =

{
0 if x ≥ 0,

−x if x < 0,
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and both x± are continuous functions. Other useful properties of f±, which we are
not going to employ now, are that |f | = f+ + f− and f± ≤ |f |.

Change of Variables. Suppose S ⊂ Rn is Jordan measurable, and U ⊂ Rn is
an open set containing S. Let φ : U → Rn be a one-to-one C1 map such that
Dφ(x) is an invertible matrix for every x ∈ U . Then φ(S) is a Jordan measurable
set. Moreover, for every Riemann integrable function f : φ(S) → R the function
(f ◦ φ) |detDφ| is Riemann integrable on S, and we have∫

φ(S)
f(y)dy =

∫
S

(f ◦ φ)(x) |detDφ(x)| dx.

Proof. We have already shown in Theorem 8.53 that φ(S) is Jordan measurable.
Also, as we have seen in the proof of Theorem 8.53, due to the inverse function
theorem, φ(U) is open, and φ−1 is C1. Thus in particular, both φ, φ−1 are locally
Lipschitz. Furthermore, f ◦ φ is Riemann integrable on S, since φ : S → φ(S) is a
homeomorphism, and φ−1 is locally Lipschitz. In addition, |detDφ| is a continuous
function on the compact set S. Thus it is continuous and bounded on S, and
therefore it is Riemann integrable on S. Hence (f◦φ) |detDφ| is Riemann integrable
on S.

First let us assume that f ≥ 0. Let R be a closed rectangle containing φ(S), and
let P = {Rα} be a partition of R. Then the lower sum for the integral

∫
φ(S) f(y)dy

with respect to the partition P is

L(χφ(S)f, P ) =
∑
α

mα|Rα|, where mα = inf
Rα

χφ(S)f.

If Rα ∩ φ(S) = ∅ then χφ(S) = 0 over Rα; so mα = 0. Hence the lower sum can be
written as

L =
∑

Rα∩φ(S) 6=∅

mα|Rα|.

Now note that by Exercise 2.111, the distance between the points of ∂(φ(U)) and
φ(S) has a positive lower bound, since they are disjoint sets, ∂(φ(U)) is closed, and
φ(S) is compact. Therefore when ‖P‖ is small enough, Rα ∩ φ(S) 6= ∅ implies that
Rα ⊂ φ(U). Let us choose a partition P so that this holds.

Next note that by Theorem 8.53 each φ−1(Rα) is Jordan measurable. Also,
Rα ∩ φ(S) 6= ∅ if and only if φ−1(Rα) ∩ S 6= ∅, since φ is a one-to-one function. In
addition we have S ⊂

⋃
Rα∩φ(S)6=∅ φ

−1(Rα), because φ(S) ⊂
⋃
Rα. Furthermore,

two different subrectangles Rα, Rβ can only intersect at their boundaries. Hence,
similarly to the proof of Theorem 8.55, we can show that φ−1(Rα), φ−1(Rβ) too
can only intersect at their boundaries. Thus φ−1(Rα) ∩ S and φ−1(Rβ) ∩ S have
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disjoint interiors. Hence, by Theorem 8.43, for any integrable function g we get∫
S
g dx =

∑
Rα∩φ(S)6=∅

∫
φ−1(Rα)∩S

g dx =
∑

Rα∩φ(S)6=∅

∫
φ−1(Rα)

χSg dx,

because χSg vanishes on the Jordan measurable set φ−1(Rα) − S. Also note that
if x ∈ φ−1(Rα) then φ(x) ∈ Rα; so mα ≤ (χφ(S)f)(φ(x)). Now, by the previous
lemma, and the fact that mα ≥ 0, we have

L =
∑

Rα∩φ(S) 6=∅

mα|Rα| =
∑

Rα∩φ(S)6=∅

mα|φ(φ−1(Rα))|

≤
∑

Rα∩φ(S) 6=∅

mα

∫
φ−1(Rα)

|detDφ(x)| dx

=
∑

Rα∩φ(S) 6=∅

∫
φ−1(Rα)

mα|detDφ| dx

≤
∑

Rα∩φ(S) 6=∅

∫
φ−1(Rα)

(χφ(S)f)(φ(x)) |detDφ| dx

=
∑

Rα∩φ(S)6=∅

∫
φ−1(Rα)

χS(f ◦ φ) |detDφ| dx =

∫
S

(f ◦ φ) |detDφ| dx.

Note that we have used the fact that χφ(S)(φ(x)) = χS(x). Therefore we obtain∫
φ(S)

f dy = sup
P
L ≤

∫
S

(f ◦ φ) |detDφ| dx.

On the other hand, note that φ−1 : φ(U)→ U is also a one-to-one C1 map such
that Dφ−1(y) =

(
Dφ(φ−1(y))

)−1 is an invertible matrix for every y ∈ φ(U). In
addition, φ(S) ⊂ φ(S) ⊂ φ(U), since φ(S) is a compact set containing φ(S). Hence
we can apply the above inequality to the Riemann integrable and nonnegative
function (f ◦ φ) |detDφ| on the Jordan measurable set S = φ−1(φ(S)), and obtain∫

S
(f ◦ φ)(x) |detDφ(x)| dx

=

∫
φ−1(φ(S))

(f ◦ φ)(x) |detDφ(x)| dx

≤
∫
φ(S)

(f ◦ φ)(φ−1(y)) |detDφ(φ−1(y))| |detDφ−1(y)| dy

=

∫
φ(S)

f(y) |det I| dy =

∫
φ(S)

f dy.
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Thus we get the desired equality when f ≥ 0.
Finally, in general, when f is not necessarily a nonnegative function, we can

write f = f+ − f−. Remember that f± are nonnegative Riemann integrable func-
tions. So, by what we have proved so far, we get∫

φ(S)
f(y)dy =

∫
φ(S)

f+(y)dy −
∫
φ(S)

f−(y)dy

=

∫
S

(f+ ◦ φ) |detDφ| dx−
∫
S

(f− ◦ φ) |detDφ| dx

=

∫
S

(
(f+ − f−) ◦ φ

)
|detDφ| dx =

∫
S

(f ◦ φ) |detDφ| dx,

as desired. �

Remark. We can also deduce the change of variables theorem for a general function
f from the case of nonnegative functions as follows. First note that since f is
Riemann integrable it is bounded, so we have f ≥ −M for some M ≥ 0. Hence the
change of variables theorem can be applied to f +M ≥ 0. Thus we have∫

φ(S)
fdy +

∫
φ(S)

Mdy =

∫
φ(S)

f +M dy =

∫
S

(
(f +M) ◦ φ

)
|detDφ| dx

=

∫
S

(f ◦ φ) |detDφ| dx+

∫
S

(M ◦ φ) |detDφ| dx

=

∫
S

(f ◦ φ) |detDφ| dx+M

∫
S
|detDφ| dx.

But
∫
φ(S)M dy = M

∫
φ(S) 1 dy = M

∫
S |detDφ| dx, because the change of variables

theorem holds for the constant nonnegative function 1. Therefore we obtain the
desired result for f .

8.6 Improper Integrals

Remember that for a function f : [a, b) → R, which is unbounded and/or has
an unbounded domain (and hence is not Riemann integrable), we can define its
improper integral by using limits:∫ b

a
f(x)dx := lim

c→b−

∫ c

a
f(x)dx,

provided that the limit exists. Let us rewrite this definition as follows∫
[a,b)

f(x)dx = lim
c→b−

∫
[a,c]

f(x)dx.
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In other words, if as we enlarge the domain of integration the values of the integrals
converge to a limit, then that limit will by definition be the value of the integral over
the limiting domain. We can use the same idea in higher dimensions, to define the
improper integral of functions which are not Riemann integrable in the proper sense.
Note that in higher dimensions, unlike integrals over intervals, there is another way
that a function can cease to be Riemann integrable: when the domain of integration
is not Jordan measurable. For example, there are open sets which are not Jordan
measurable. (Such open sets also exist in one dimension, but they are less likely
to be encountered.) So the need for an extended notion of integration in higher
dimensions is at least as essential as in one dimension, if not even more.

In higher dimensions we can also use limits to define improper integrals. How-
ever, unlike intervals, there is no canonical way to approximate a domain in higher
dimensions using smaller domains. For example, to approximate a square in two
dimensions, we can use smaller squares inside that square, or we can use smaller
squares with round corners. Depending on the application, either of these approxi-
mation methods can be preferable. To overcome this difficulty, we have to show that
different methods of approximating the domain of integration result in the same
value for the improper integral. Although it is possible to show this for a suitable
class of functions, an easier approach is to use supremums instead of limits. Let us
consider the one-dimensional improper integral again. This time let us first assume
that f ≥ 0. Then it is easy to see that∫

[a,b)
f(x)dx = lim

c→b−

∫
[a,c]

f(x)dx = sup
[a,c]⊂[a,b)

∫
[a,c]

f(x)dx,

because the values of the integrals of a nonnegative function increase as we enlarge
the domain of integration. This observation motivates the following definition.

Definition 8.57. Let A ⊂ Rn and f : A → R. Suppose f is Riemann integrable
on every compact Jordan measurable set S ⊂ A. When f ≥ 0, provided that the
following supremum is finite, the improper Riemann integral of f over A is∫

A
f(x)dx := sup

S⊂A

∫
S
f(x)dx,

where the supremum is over all compact Jordan measurable subsets of A.
In general, when f is not necessarily nonnegative, the improper Riemann

integral of f : A→ R is∫
A
f(x)dx :=

∫
A
f+(x)dx−

∫
A
f−(x)dx,

provided that the improper integrals of f+, f− exist. If the improper Riemann
integral of f exists we say f is integrable over A.
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Remark. Remember that f± = max{±f, 0} are nonnegative functions such that
f = f+ − f−. Hence, Riemann integrability of f± on every compact Jordan mea-
surable set S ⊂ A implies Riemann integrability of f on them. Conversely, since
f± = x± ◦f and x± = max{±x, 0} are continuous functions, Riemann integrability
of f on every compact Jordan measurable set S ⊂ A implies Riemann integrability
of f± on them.

Notation. When f ≥ 0 and the above supremum is infinite we set
∫
A f(x)dx =∞.

In general, if only one of the integrals of f± is infinite and the other one is finite, we
set
∫
A f(x)dx = ±∞, where the sign of ∞ is determined based on the one integral

which is infinite. (And if both the integrals of f± are infinite, we do not assign any
value to the integral of f , since the difference of two infinities has no well-defined
value.) But, keep in mind that these assignments are mere notational conventions,
and when we talk about the integrability of a function we mean that its improper
integral exists as a finite value.

Remark. Since Jordan measurable sets are bounded, the supremum in the above
definition can also be taken over all closed Jordan measurable subsets of A. How-
ever, note that we do not take the supremum over all Jordan measurable subsets of
A. Because in that case if A happens to be Jordan measurable itself, then we would
be assuming that f is Riemann integrable over A, whereas there are functions over
Jordan measurable sets whose improper integral exists but they are not Riemann
integrable in the proper sense; see Example 8.66.

Remark. Note that we do not impose any assumptions on A. In particular, it need
not be bounded or Jordan measurable. But when A is Jordan measurable, and f
is Riemann integrable, we need to check that these new definitions of integral and
integrability are compatible with the old ones. This will be done in Theorem 8.65.

On the other hand, although the definition does not require it, to get a sensible
definition of integral we need to restrict the domain A to be a member of a suitable
class of subsets of Rn. An appropriate such class is the class of Lebesgue measurable
sets; see Section 10.2 for the definition. For example, all open sets, closed sets, or
sets with measure zero in Rn are Lebesgue measurable. Since all the sets that we
will encounter in the sequel are Lebesgue measurable, we are not going to concern
ourselves with checking this condition when we use improper integrals.

Theorem 8.58. Let A ⊂ Rn, and let f, g : A → R be integrable functions. Then
we have
(i) f + g is integrable and∫

A
[f(x) + g(x)]dx =

∫
A
f(x)dx+

∫
A
g(x)dx.
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(ii) cf is integrable for c ∈ R and we have∫
A
cf(x)dx = c

∫
A
f(x)dx.

(iii) If f ≤ g then ∫
A
f(x)dx ≤

∫
A
g(x)dx.

Proof. Let S be an arbitrary compact Jordan measurable subset of A. By as-
sumption, f, g are Riemann integrable on S. Hence f + g, cf , and |f | are all
Riemann integrable on S.

(i) First assume that f, g ≥ 0. Then f + g ≥ 0 too. We have∫
S
f(x) + g(x) dx =

∫
S
f(x)dx+

∫
S
g(x)dx

≤ sup
S⊂A

∫
S
f(x)dx+ sup

S⊂A

∫
S
g(x)dx.

Hence

sup
S⊂A

∫
S
f(x) + g(x) dx ≤ sup

S⊂A

∫
S
f(x)dx+ sup

S⊂A

∫
S
g(x)dx <∞, (∗)

and therefore f + g is integrable. It is worth noting that although the supremum
of the sum is less than or equal to the sum of the supremums, the equality does
not hold in general. But, as we will see, in this particular case the equality holds,
since the integral of a nonnegative function increases as we enlarge the domain of
integration.

Now let S0 be an arbitrary, but fixed, compact Jordan measurable subset of A.
Then for compact Jordan measurable sets S̃ satisfying S0 ⊂ S̃ ⊂ A we have∫

S0

f(x)dx+

∫
S̃
g(x)dx ≤

∫
S̃
f(x)dx+

∫
S̃
g(x)dx

=

∫
S̃
f(x) + g(x) dx ≤ sup

S⊂A

∫
S
f(x) + g(x) dx.

By taking supremum over S̃ on the left hand side we get∫
S0

f(x)dx+ sup
S0⊂S̃⊂A

∫
S
g(x)dx ≤ sup

S⊂A

∫
S
f(x) + g(x) dx.

However, note that for every S we have S ⊂ S0∪S, and S0∪S is a compact Jordan
measurable set containing S0; so∫

S
g(x)dx ≤

∫
S0∪S

g(x)dx ≤ sup
S0⊂S̃⊂A

∫
S̃
g(x)dx.
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Thus supS⊂A
∫
S g(x)dx ≤ supS0⊂S̃⊂A

∫
S̃ g(x)dx, and therefore the two supremums

are equal. Hence we have shown that∫
S0

f(x)dx+ sup
S⊂A

∫
S
g(x)dx ≤ sup

S⊂A

∫
S
f(x) + g(x) dx.

Now by taking supremum over S0 we obtain

sup
S0⊂A

∫
S0

f(x)dx+ sup
S⊂A

∫
S
g(x)dx ≤ sup

S⊂A

∫
S
f(x) + g(x) dx,

which together with (∗) implies that

sup
S⊂A

∫
S
f(x) + g(x) dx = sup

S⊂A

∫
S
f(x)dx+ sup

S⊂A

∫
S
f(x)dx,

or equivalently ∫
A
f(x) + g(x) dx =

∫
A
f(x)dx+

∫
A
g(x)dx.

Hence we have proved this part for f, g ≥ 0.
Next, let us consider general f, g. We have f = f+−f− and g = g+−g−. Thus

(f + g)+ − (f + g)− = f + g = f+ − f− + g+ − g−.

So
(f + g)+ + f− + g− = f+ + g+ + (f + g)−. (∗∗)

But f±, g± ≥ 0, and they are integrable by assumption; so f+ + g+ and f− + g−

are integrable by the above argument. On the other hand we have∫
S

(f + g)±dx ≤
∫
S
|f + g| dx ≤

∫
S
|f |+ |g| dx =

∫
S
f+ + f− + g+ + g−dx

=

∫
S
f+dx+

∫
S
f−dx+

∫
S
g+dx+

∫
S
g−dx

≤
∫
A
f+dx+

∫
A
f−dx+

∫
A
g+dx+

∫
A
g−dx <∞

for every S. Hence by taking supremum over S we can see that (f + g)±, and
therefore f + g, are integrable over A. So, all the functions in the equation (∗∗) are
nonnegative and integrable; thus after integration we obtain∫

A
(f + g)+dx+

∫
A
f−dx+

∫
A
g−dx =

∫
A
f+dx+

∫
A
g+dx+

∫
A

(f + g)−dx.
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Then by rearranging the terms we get∫
A

(f + g)dx =

∫
A

(f + g)+dx−
∫
A

(f + g)−dx

=

∫
A
f+dx−

∫
A
f−dx+

∫
A
g+dx−

∫
A
g−dx =

∫
A
fdx+

∫
A
gdx,

as desired.
(ii) First assume that c > 0 and f ≥ 0. Then cf ≥ 0 too. We have∫

S
cf(x) dx = c

∫
S
f(x)dx ≤ c sup

S⊂A

∫
S
f(x)dx = c

∫
A
f(x)dx.

Hence supS⊂A
∫
S cf(x) dx ≤ c

∫
A f(x)dx < ∞, and therefore cf is integrable. In

addition we have ∫
A
cf(x)dx ≤ c

∫
A
f(x)dx.

On the other hand, by applying the above inequality to the integrable function cf
and the constant 1

c we obtain∫
A
f(x)dx =

∫
A

1

c

(
cf(x)

)
dx ≤ 1

c

∫
A
cf(x)dx =⇒ c

∫
A
f(x)dx ≤

∫
A
cf(x)dx.

Therefore
∫
A cf(x)dx = c

∫
A f(x)dx, and thus we have proved this part in this case.

Next, let us consider general c, f . We have f = f+ − f−. When c > 0 we can
easily see that (cf)± = cf±, which are integrable functions by the above argument.
Hence we have∫

A
cfdx =

∫
A

(cf)+dx−
∫
A

(cf)−dx

=

∫
A
cf+dx−

∫
A
cf−dx = c

∫
A
f+dx− c

∫
A
f−dx = c

∫
A
fdx.

Similarly, when c < 0 we can easily see that (cf)± = −cf∓, which are again
integrable functions by the above argument. Then we have∫

A
cfdx =

∫
A

(cf)+dx−
∫
A

(cf)−dx

=

∫
A
−cf−dx−

∫
A
−cf+dx = −c

∫
A
f−dx+ c

∫
A
f+dx = c

∫
A
fdx.

Finally, when c = 0 we have cf = 0, which is an integrable function. Also,∫
A 0f(x)dx = 0 = 0

∫
A f(x)dx, as desired.



CHAPTER 8. MULTIPLE INTEGRALS 282

(iii) First suppose f, g ≥ 0. Then we have∫
S
f(x)dx ≤

∫
S
g(x)dx ≤

∫
A
g(x)dx.

Hence by taking supremum over S we get
∫
A f(x)dx ≤

∫
A g(x)dx. Now for general

f, g we have
f+ − f− = f ≤ g = g+ − g−.

Hence f+ + g− ≤ g+ + f−. Then by the above argument and part (i) we obtain∫
A
f+dx+

∫
A
g−dx =

∫
A
f+ + g−dx ≤

∫
A
g+ + f−dx =

∫
A
g+dx+

∫
A
f−dx.

Hence by rearranging the terms we get∫
A
fdx =

∫
A
f+dx−

∫
A
f−dx ≤

∫
A
g+dx−

∫
A
g−dx =

∫
A
gdx,

as desired. �

Theorem 8.59. Let A ⊂ Rn, and suppose f : A → R is Riemann integrable on
every compact Jordan measurable subset of A. Then the existence of the improper
integral

∫
A f(x)dx is equivalent to the existence of the improper integral

∫
A |f(x)|dx.

And in this case we have ∣∣∣∣∫
A
f(x)dx

∣∣∣∣ ≤ ∫
A
|f(x)|dx.

Remark. In particular, if f is integrable over A then |f | is also integrable over A.
However, the integrability of |f | alone does not imply the integrability of f . As an
example, consider f : [0, 1]→ R which has value 1 on rational points, and value −1
on irrational points. Then |f | is integrable while f is not, since it is discontinuous at
every point. In comparison, what this theorem states is that under the assumption
of integrability of f on compact Jordan measurable subsets of A, the finiteness of∫
A f(x)dx is equivalent to the finiteness of

∫
A |f(x)|dx.

Remark. This result is in contrast with the properties of one-dimensional im-
proper integrals. For example, it can be shown that

∫∞
0

sin(x)
x dx exists while∫∞

0 |
sin(x)
x | dx = ∞. The difference originates from the different definitions be-

ing used: using limits in one dimension and using supremums in higher dimensions.
Although it is possible to define improper integrals in higher dimensions by using
limits, and avoid separating the case of positive functions and general ones in the
definition, the resulting theory is needlessly complicated for our purposes.
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Proof. Note that |f | is also Riemann integrable on every compact Jordan mea-
surable set S ⊂ A. First suppose

∫
A f(x)dx exists. We have f = f+ − f−, and by

assumption f± are integrable. On the other hand we know that |f | = f+ + f−.
Hence, by part (i) of the previous theorem, |f | is integrable and we have∫

A
|f(x)|dx =

∫
A
f+(x)dx+

∫
A
f−(x)dx.

Now, noting that
∫
A f
±(x)dx ≥ 0, we have∣∣∣∣∫

A
f(x)dx

∣∣∣∣ =

∣∣∣∣∫
A
f+(x)dx−

∫
A
f−(x)dx

∣∣∣∣
≤
∣∣∣∣∫
A
f+(x)dx

∣∣∣∣+

∣∣∣∣∫
A
f−(x)dx

∣∣∣∣
=

∫
A
f+(x)dx+

∫
A
f−(x)dx =

∫
A
|f(x)| dx,

as desired. Conversely, suppose
∫
A |f(x)|dx exists. We know that f± ≤ |f |, so∫

S
f±dx ≤

∫
S
|f |dx ≤ sup

S⊂A

∫
S
|f |dx =

∫
A
|f |dx <∞

for every S. Hence by taking supremum over S we can see that f±, and therefore
f , are integrable over A. �

Theorem 8.60. Let A ⊂ Rn, and suppose f, g : A → R are Riemann integrable
on every compact Jordan measurable subset of A. Suppose |f | ≤ g. If the improper
integral

∫
A g(x)dx exists then the improper integral

∫
A f(x)dx exists too, and we

have ∣∣∣∣∫
A
f(x)dx

∣∣∣∣ ≤ ∫
A
g(x)dx.

Remark. Equivalently, if the improper integral
∫
A f(x)dx does not exist, then the

improper integral
∫
A g(x)dx does not exist either (it is infinite).

Remark. As a result, if the integral
∫
A 1 dx exists (in other words, if A has finite

volume), then all bounded continuous functions are integrable over A. Because a
bounded continuous function like f is Riemann integrable on every Jordan mea-
surable subset of A, and satisfies |f | ≤ C for some constant C. In addition, the
constant function C = C · 1 is integrable over A.

Proof. We only need to show that |f | is integrable over A. Because then by the
previous theorem f is also integrable over A, and in addition we have∣∣∣∣∫

A
f(x)dx

∣∣∣∣ ≤ ∫
A
|f(x)|dx ≤

∫
A
g(x)dx.
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Now for any compact Jordan measurable set S ⊂ A we have∫
S
|f(x)|dx ≤

∫
S
g(x)dx ≤ sup

S⊂A

∫
S
g(x)dx =

∫
A
g(x)dx <∞.

So supS⊂A
∫
S |f(x)|dx is also finite, and therefore |f | is integrable over A. �

Besides its theoretical implications, the following theorem also provides a method
for computing improper integrals, as we will see in Examples 8.66 and 8.67.

Theorem 8.61. Let A ⊂ Rn and f : A→ R, and suppose f is Riemann integrable
on every compact Jordan measurable subset of A. Let Sk be a sequence of compact
Jordan measurable subsets of A such that Sk ⊂ S◦k+1 and A =

⋃
k≥1 Sk. Then the

improper integral
∫
A f(x)dx exists if and only if

sup
k≥1

∫
Sk

|f(x)|dx <∞.

And in this case we have ∫
A
f(x)dx = lim

k→∞

∫
Sk

f(x)dx.

Remark. Note the absolute value in the above condition for the existence of the
improper integral.

Remark. In fact, in this theorem we only need Sk to be a subset of the interior of
Sk+1 as a subspace of A. The interior of Sk+1 as a subspace of A can be strictly
larger than S◦k+1, which is the interior of Sk+1 in Rn. For example if A = [0, 1]2, then
the interior of [0, 1/2]2 as a subspace of A is [0, 1/2)2, since points on {0}× (0, 1/2)
and (0, 1/2)× {0} have a neighborhood in A which completely lies in [0, 1/2]2.

Proof. First let us assume that f ≥ 0. Now if the improper integral
∫
A f(x)dx

exists, we have

sup
k≥1

∫
Sk

|f(x)|dx = sup
k≥1

∫
Sk

f(x)dx ≤ sup
S⊂A

∫
S
f(x)dx =

∫
A
f(x)dx <∞, (?)

where the rightmost supremum is over all compact Jordan measurable subsets of
A. Conversely, assume that supk≥1

∫
Sk
|f(x)|dx < ∞. We have to show that

supS⊂A
∫
S f(x)dx is also finite. We will show that in fact

sup
S⊂A

∫
S
f(x)dx ≤ sup

k≥1

∫
Sk

f(x)dx. (∗)



CHAPTER 8. MULTIPLE INTEGRALS 285

Let S ⊂ A be a compact Jordan measurable set. If S ⊂ Sm for some m, we have∫
S
f(x)dx ≤

∫
Sm

f(x)dx ≤ sup
k≥1

∫
Sk

f(x)dx. (∗∗)

Suppose to the contrary that S 6⊂ Sk for any k. Then for every k there exists
xk ∈ S − Sk. The sequence xk lies in the compact set S, so it has a subsequence,
which we still denote by xk, converging to x∗ ∈ S ⊂ A ⊂

⋃
Sk. Thus there is m

such that x∗ ∈ Sm ⊂ S◦m+1. Now since x∗ is an interior point of Sm+1, an open
neighborhood B of x∗ is a subset of Sm+1. But due to the convergence of xk to
x∗, B contains every xk for large enough k. (Note that for this to be true, B only
needs to be an open neighborhood of x∗ in A, since the sequence xk and its limit
x∗ lie in A. So we only need x∗ to be an interior point of Sm+1 as a subspace of A.)
Therefore, for large enough k we get xk ∈ B ⊂ Sm+1 ⊂ Sk, which is a contradiction.
Hence we must have S ⊂ Sm for some m. And thus the inequality (∗∗) holds for
every such S. Now we can take the supremum over S in the inequality (∗∗) to
obtain (∗), as desired. Then, by combining the inequalities (?) and (∗) we get∫

A
f(x)dx = sup

S⊂A

∫
S
f(x)dx = sup

k≥1

∫
Sk

f(x)dx = lim
k→∞

∫
Sk

f(x)dx,

since f ≥ 0 and therefore the sequence of integrals
∫
Sk
f(x)dx increases and con-

verges to its finite supremum.
Next, for a general function f we have to consider f±. By the above argument,

the integrability of f± is equivalent to

sup
k≥1

∫
Sk

f±(x)dx = sup
k≥1

∫
Sk

|f±(x)|dx <∞.

Now if f is integrable then by definition f± are integrable. Hence the above two
supremums are finite. However, we have |f | = f+ + f−; so∫

Sk

|f(x)|dx =

∫
Sk

f+(x)dx+

∫
Sk

f−(x)dx

≤ sup
k≥1

∫
Sk

f+(x)dx+ sup
k≥1

∫
Sk

f−(x)dx,

which implies supk≥1

∫
Sk
|f(x)|dx < ∞, as wanted. On the other hand, if we have

supk≥1

∫
Sk
|f(x)|dx <∞, then by using the fact that f± ≤ |f | we get∫

Sk

f±(x)dx ≤
∫
Sk

|f(x)|dx ≤ sup
k≥1

∫
Sk

|f(x)|dx,
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which implies supk≥1

∫
Sk
f±(x)dx < ∞. Thus both f± are integrable. Hence, by

definition, f is integrable too. Finally, we have∫
A
f(x)dx =

∫
A
f+(x)dx−

∫
A
f−(x)dx

= lim
k→∞

∫
Sk

f+(x)dx− lim
k→∞

∫
Sk

f−(x)dx

= lim
k→∞

(∫
Sk

f+(x)dx−
∫
Sk

f−(x)dx
)

= lim
k→∞

∫
Sk

f+(x)− f−(x) dx = lim
k→∞

∫
Sk

f(x)dx,

as desired. �

The assumptions of the above theorem are in particular satisfied when the
domain of integration is open, as we will show in the next theorem. In the following
proof we will employ the distance function to the boundary

dist(x, ∂U) := inf
y∈∂U

|x− y|.

Exercise 8.62. Let U ⊂ Rn. Show that dist(x, ∂U) is a continuous function.

Solution. We will show that in fact dist is a Lipschitz function satisfying

|dist(x, ∂U)− dist(z, ∂U)| ≤ |x− z|.

To see this note that for y ∈ ∂U we have

dist(x, ∂U) ≤ |x− y| ≤ |x− z|+ |z − y|.

By taking infimum over y on the right hand side we get

dist(x, ∂U) ≤ |x− z|+ inf
y∈∂U

|z − y| = |x− z|+ dist(z, ∂U).

Now by switching the role of x, z we can deduce the desired inequality. �

Theorem 8.63. Let U ⊂ Rn be an open set. Then there is a sequence of compact
Jordan measurable sets Sk ⊂ U such that Sk ⊂ S◦k+1 and U =

⋃
k≥1 Sk.

Proof. Consider the sets

Uk := {x ∈ U : |x| < k and dist(x, ∂U) >
1

k
}.
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Since the distance function is continuous, each Uk is an open set. In addition we
have Uk ⊂ Uk+1, because for any limit point z of Uk we must have |z| ≤ k and
dist(z, ∂U) ≥ 1/k; hence z ∈ Uk+1. In addition we have

U =
⋃
k≥1

Uk.

The reason is that for each x ∈ U there is r > 0 such that Br(x) ⊂ U ; hence
dist(x, ∂U) > r. Thus if we choose k large enough so that k > 1

r and k > |x| then
we have x ∈ Uk.

However, Uk’s are not necessarily Jordan measurable. To construct Jordan
measurable subsets of U we argue as follows. For each point x ∈ Uk ⊂ Uk+1 there
is an open rectangle Rx ⊂ Uk+1 containing x, since Uk+1 is open. We can make Rx
smaller if necessary to ensure that in fact Rx ⊂ Uk+1. Now note that Uk ⊂ Bk(0) is
bounded, so Uk is compact. Hence finitely many of these open rectangles, namely
R1, . . . , Rm cover Uk. Let Sk :=

⋃m
j=1Rj . Then Sk is compact, being the union of

finitely many compact sets. Also, by Exercise 2.36, ∂Sk is contained in
⋃
j≤m ∂Rj ,

which has measure zero. So ∂Sk has measure zero too, and thus Sk is Jordan
measurable. In addition we have

Uk ⊂
m⋃
j=1

Rj ⊂ Sk ⊂ Uk+1.

Now note that we have Sk ⊂ Uk+1 ⊂ S◦k+1, since Uk+1 is an open subset of Sk+1.
Furthermore,

U =
⋃
k≥1

Uk ⊂
⋃
k≥1

Sk ⊂ U.

So U =
⋃
k≥1 Sk, as desired. �

Theorem 8.64. Suppose U ⊂ Rn is an open set and f : U → R is integrable. Then
the set of discontinuities of f in U has measure zero.

Remark. However, note that unlike the case of (proper) Riemann integrable func-
tions, here f need not be bounded.

Proof. Let Sk be a sequence of compact Jordan measurable subsets of U given
by the previous theorem. Let Zk be the set of discontinuities of f |Sk . Since f |Sk
is Riemann integrable by assumption, Zk has measure zero by Riemann-Lebesgue
theorem. Let Z be the set of discontinuities of f . Then we must have Z =

⋃
k≥1 Zk.

To see this suppose f is discontinuous at some x ∈ U =
⋃
k≥1 Sk. Then x ∈ Sj ⊂

S◦j+1 for some j. Hence f |Sj+1 is also discontinuous at x, since f and its restriction
f |Sj+1 are equal on a neighborhood of x. Conversely, if f |Sj is discontinuous at x
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for some j, then f is also discontinuous at x, because restrictions of a continuous
function are continuous. Hence Z =

⋃
k≥1 Zk, and therefore Z has measure zero,

since it is the union of countably many sets with measure zero. �

Theorem 8.65. Suppose A ⊂ Rn is Jordan measurable and f : A→ R is Riemann
integrable on A. Then the improper integral of f over A exists and is equal to the
(proper) Riemann integral of f over A.

Proof. In this proof we denote improper integrals by
r

to avoid any possible
confusions with proper integrals denoted by

∫
. Let S be an arbitrary compact

Jordan measurable subset of A. Note that f is Riemann integrable on every such
S. First suppose f ≥ 0. Then we have∫

S
f(x)dx ≤

∫
A
f(x)dx =⇒ sup

S⊂A

∫
S
f(x)dx ≤

∫
A
f(x)dx <∞. (∗)

Hence the improper integral of f over A exists, and is less than or equal to its
proper integral over A. On the other hand, we have A = A◦ ∪ ∂A, and we know
that ∂A has measure zero. In addition, by Exercise 8.42, we know that both ∂A
and A◦ are Jordan measurable. Thus we have

∫
∂A f(x)dx = 0, and therefore∫

A
f(x)dx =

∫
A◦
f(x)dx.

Next let us show that for every ε there is a compact Jordan measurable set
S ⊂ A◦ such that |A◦ − S| < ε. We know that ∂A◦ has measure zero, since A◦

is Jordan measurable. Thus for a given ε > 0 there exist a countable family of
open cubes {Qk} that covers ∂A◦, and

∑
|Qk| < ε. Since A◦ is bounded, ∂A◦ is

compact; so we can assume that the family of cubes is finite. Let

W := A◦ ∩
(⋃

Qk
)
, S := A◦ −W.

Then by Theorem 8.40, W is Jordan measurable, and its volume satisfies

|W | ≤
∣∣⋃Qk

∣∣ ≤∑ |Qk| < ε.

Therefore S is Jordan measurable too, and we have |A◦ − S| = |W | < ε. Note that
S is also closed, because W c is closed, and we have

A◦ ∩W c = (A◦ ∪ ∂A◦) ∩W c

= (A◦ ∩W c) ∪ (∂A◦ ∩W c) = (A◦ ∩W c) ∪ ∅ = A◦ −W = S,

since ∂A◦ ⊂W . Thus S is compact as it is bounded.
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Now we have∣∣∣∣∫
A◦
f(x)dx−

∫
S
f(x)dx

∣∣∣∣ =

∣∣∣∣∫
A◦−S

f(x)dx

∣∣∣∣ ≤Mε,

where M is an upper bound for the Riemann integrable function |f |. Thus, since∫
A f(x)dx =

∫
A◦ f(x)dx, we have shown that there are compact Jordan measurable

subsets of A over which the integral of f is arbitrarily close to
∫
A f(x)dx. Therefore

we must have w

A

f(x)dx = sup
S⊂A

∫
S
f(x)dx ≥

∫
A
f(x)dx.

Hence, by combining this inequality with (∗), we see that the improper integral of
the nonnegative function f over A is equal to its proper integral over A.

Finally, for a general f we have f = f+ − f−. We know that f± are also
Riemann integrable over A. Then, since f± ≥ 0, by the above argument their
improper integrals over A exist and are equal to their proper integrals. Hence the
improper integral of f over A exists, and we have

w

A

f(x)dx =
w

A

f+(x)dx−
w

A

f−(x)dx

=

∫
A
f+(x)dx−

∫
A
f−(x)dx =

∫
A
f+(x)− f−(x) dx =

∫
A
f(x)dx,

as desired. �

Example 8.66. Consider the function f(x, y) = 1√
xy on (0, 1]2 ⊂ R2. Then we

have ∫
[1/k, 1]2

f(x, y)dxdy =

∫ 1

1/k

∫ 1

1/k

1
√
xy

dx dy =

∫ 1

1/k

1
√
y
dy

∫ 1

1/k

1√
x
dx

=
(

2
√
y
∣∣∣1
y=1/k

)(
2
√
x
∣∣∣1
x=1/k

)
=
(
2− 2√

k

)2 ≤ 4.

Note that the sequence of compact sets [1/k, 1]2 satisfy the assumptions of Theorem
8.61; so f is integrable over (0, 1]2, and we have∫

(0,1]2
f(x, y)dxdy = lim

k→∞

∫
[1/k, 1]2

f(x, y)dxdy = 4.

Also, notice that (0, 1]2 is Jordan measurable, however, f is not Riemann integrable
on (0, 1]2 in the proper sense, since f is not bounded there.
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On the other hand, for f2 = 1
xy we have∫

[1/k, 1]2
f2(x, y)dxdy =

∫ 1

1/k

∫ 1

1/k

1

xy
dx dy =

∫ 1

1/k

1

y
dy

∫ 1

1/k

1

x
dx

=
(

log y
∣∣∣1
y=1/k

)(
log x

∣∣∣1
x=1/k

)
=
(

log k
)2 −→

k→∞
∞.

So f2 is not integrable over (0, 1]2. In fact we have
∫

(0,1]2 f
2(x, y)dxdy =∞, since

the supremum of integrals over all compact Jordan measurable subsets of (0, 1]2 is no
less than the supremum of integrals over the sequence of sets [1/k, 1]2. As a result,
we see that the product of two integrable functions can fail to be integrable. Also,
we see that the composition of a continuous function with an integrable function
(t 7→ t2 and f) can fail to be integrable. In both these cases, the problem is that the
integrals may become infinite after the operation (multiplication or composition).

Remark. Although the product of two integrable functions may fail to be inte-
grable, it will be integrable when one of the functions is bounded. To see this
suppose f, g are integrable over A and |g| ≤ C. Then we have |fg| ≤ C|f |. By
Theorem 8.59 we know that |f | is integrable. Thus C|f | is also integrable, and
therefore fg is integrable by Theorem 8.60.

Example 8.67. We can also integrate functions over unbounded domains using
improper integrals. For example, consider the function f(x, y) = 1

x2y2
on [1,∞)2 ⊂

R2. Then we have∫
[1, k]2

f(x, y)dxdy =

∫ k

1

∫ k

1

1

x2y2
dxdy =

∫ k

1

1

y2

(−1

x

∣∣∣k
x=1

)
dy

=

∫ k

1

1

y2

(−1

k
+ 1
)
dy =

(−1

y

∣∣∣k
y=1

)(−1

k
+ 1
)

=
(−1

k
+ 1
)2 ≤ 1.

Note that the sequence of compact sets [1, k]2 satisfy the assumptions of Theorem
8.61; so f is integrable over [1,∞)2, and we have∫

[1,∞)2
f(x, y)dxdy = lim

k→∞

∫
[1, k]2

f(x, y)dxdy = 1.

Now let us prove a version of Theorem 8.43 for improper integrals, which will
be needed in the next chapter.

Theorem 8.68. Let U1, U2, U ⊂ Rn be open sets such that U1 ∩ U2 = ∅ and
U = U1 ∪ U2 ∪ Z, where Z = U − (U1 ∪ U2) has measure zero. Suppose f : U → R
is bounded on compact subsets of U . Then f is integrable over U if and only if it
is integrable over U1, U2, and in this case we have∫

U
f(x)dx =

∫
U1

f(x)dx+

∫
U2

f(x)dx.
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Remark. This theorem can be generalized to the case where U1, U2, U are not
necessarily open, but merely Lebesgue measurable sets. However, the proof in this
more general case requires tools that are not within our reach yet.

Remark. By an easy induction, we can generalize this theorem to the case of more
than two pairwise disjoint open sets U1, . . . , Uk.

Remark. If f is integrable over U then it is automatically bounded on compact
subsets of U . Because, in this case, by definition f is Riemann integrable, and
hence bounded, on every compact Jordan measurable subset of U . Now note that
any compact subset K of U is bounded, and has a positive distance from ∂U due to
Exercise 2.111. Thus, by the construction of the sequence of compact Jordan mea-
surable subsets in the proof of Theorem 8.63, there is a compact Jordan measurable
subset of U that contains K. Therefore f is bounded on K too.

Proof. First suppose f ≥ 0. Suppose f is integrable over U . Let S1 ⊂ U1, S2 ⊂
U2, and S ⊂ U be arbitrary compact Jordan measurable sets. Then S1 ∩ S2 = ∅,
and S1 ∪ S2 is a compact Jordan measurable subset of U . Hence we have∫

S1

f(x)dx+

∫
S2

f(x)dx =

∫
S1∪S2

f(x)dx ≤ sup
S⊂U

∫
S
f(x)dx =

∫
U
f(x)dx

=⇒ sup
S1⊂U1

∫
S1

f(x)dx+ sup
S2⊂U2

∫
S2

f(x)dx ≤
∫
U
f(x)dx.

Hence f is integrable over U1, U2, and we have∫
U1

f(x)dx+

∫
U2

f(x)dx ≤
∫
U
f(x)dx. (∗)

Now suppose f is integrable over U1, U2. Then since the sets of discontinuities
of f in U1, U2 have measure zero by Theorem 8.64, and Z has measure zero, the
set of discontinuities of f in U has measure zero too. Consider a compact Jordan
measurable set S ⊂ U . Then f is Riemann integrable on S, because by assumption
f is bounded on S, and as we have seen its set of discontinuities has measure zero.
Let Kj ⊂ U1 and K̃j ⊂ U2 be sequences of compact Jordan measurable sets given
by Theorem 8.63. Then the sets S∩Kj and S∩K̃j are compact Jordan measurable
subsets of U1, U2, respectively. Hence S ∩Kj and S ∩ K̃j are disjoint, and therefore
we have ∫

S
f(x)dx =

∫
S∩Kj

f(x)dx+

∫
S∩K̃j

f(x)dx+

∫
S−(Kj∪K̃j)

f(x)dx

≤
∫
U1

f(x)dx+

∫
U2

f(x)dx+

∫
S−(Kj∪K̃j)

f(x)dx. (?)
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Let us show that as j → ∞ the last integral goes to zero. Consider the set
S ∩Z. First note that this set is closed. To see this note that Z ⊂ Z ∪∂U , because
Z ⊂ U = U ∪ ∂U = U1 ∪ U2 ∪ Z ∪ ∂U , while no limit point of Z can belong to
the open sets U1, U2 because Z does not intersect them. Thus S ∩ Z = S ∩ Z,
since S ⊂ U does not intersect ∂U as U is open. So S ∩ Z is a closed subset of
the compact set S; and thus it is compact too. In addition, S ∩ Z has measure
zero as it is a subset of Z. So, for any given ε > 0, we can cover S ∩ Z with a
finite family of open cubes Ri such that

∑
i |Ri| < ε. Note that for each of the

cubes we also have |Ri| < ε, so their diameter is also small. On the other hand,
S ∩ Z ⊂ S has a positive distance from ∂U by Exercise 2.111. Hence, for small
enough ε, all these cubes and therefore their union V :=

⋃
Ri lie in U . Also note

that V is Jordan measurable, being the union of finitely many rectangles, and we
have |V | ≤

∑
i |Ri| < ε.

Next let us show that for large enough j we have S − (Kj ∪ K̃j) ⊂ V . Suppose
to the contrary that for every j there is xj ∈ S− (Kj ∪ K̃j) such that xj /∈ V . Then
the sequence xj lies in the compact set S, so it has a subsequence, which we still
denote by xj , converging to x∗ ∈ S. Note that x∗ cannot belong to S ∩ Z ⊂ V ,
because otherwise the open set V would contain every xj for large enough j. Hence
x∗ must belong to

S − Z = S ∩ (U1 ∪ U2) = S ∩
⋃
j≥1

(Kj ∪ K̃j).

Thus x∗ belongs to S ∩ (Km ∪ K̃m) for some m; so x∗ ∈ K◦m+1 ∪ K̃◦m+1 due to the
properties of the sequences of compact sets Kj , K̃j . But then, for large enough j,
xj must belong to the open set K◦m+1 ∪ K̃◦m+1 ⊂ Kj ∪ K̃j , which is a contradiction.

Therefore, for large enough j we have∫
S−(Kj∪K̃j)

f(x)dx ≤
∣∣S − (Kj ∪ K̃j)

∣∣ sup
S
f ≤ |V | sup

S
f ≤ ε sup

S
f.

Note that f is bounded on S by our assumption. Combining this estimate with
inequality (?), we conclude that for every ε > 0 we have∫

S
f(x)dx ≤

∫
U1

f(x)dx+

∫
U2

f(x)dx+ ε sup
S
f

=⇒
∫
S
f(x)dx ≤

∫
U1

f(x)dx+

∫
U2

f(x)dx.

Therefore, by taking supremum over S, we conclude that f is integrable over U ,
and ∫

U
f(x)dx = sup

S

∫
S
f(x)dx ≤

∫
U1

f(x)dx+

∫
U2

f(x)dx,
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which combined with (∗) gives the desired equality for nonnegative f . Thus we have
shown that for f ≥ 0, the integrability of f over U is equivalent to its integrability
over U1, U2, and the desired equality holds for integrals.

Now for a general function f , by the above argument, we know that the inte-
grability of f± over U is equivalent to their integrability over U1, U2 (note that the
boundedness of f on compact subsets of U implies the boundedness of f± on them).
So, by definition, the integrability of f over U is equivalent to its integrability over
U1, U2 too. Furthermore, in this case we have∫

U
f(x)dx =

∫
U
f+(x)dx−

∫
U
f−(x)dx

=

∫
U1

f+(x)dx+

∫
U2

f+(x)dx−
∫
U1

f−(x)dx−
∫
U2

f−(x)dx

=

∫
U1

f+(x)dx−
∫
U1

f−(x)dx+

∫
U2

f+(x)dx−
∫
U2

f−(x)dx

=

∫
U1

f(x)dx+

∫
U2

f(x)dx,

as desired. �

Next we prove another version of the change of variables theorem for improper
integrals, in which we integrate over all of the domain of the change of variables
map φ. This version is in particular useful when we integrate over open sets.

Change of Variables (Open Domains). Suppose U ⊂ Rn is an open set. Let
φ : U → Rn be a one-to-one C1 map such that Dφ(x) is an invertible matrix
for every x ∈ U . Then φ(U) is an open set. Also, for every integrable function
f : φ(U)→ R the function (f ◦ φ) |detDφ| is integrable over U , and we have∫

φ(U)
f(y)dy =

∫
U

(f ◦ φ)(x) |detDφ(x)| dx.

If
∫
φ(U) f(y)dy is infinite, then the other integral is also infinite, and the equality

remains valid.

Remark. Note that in contrast to the other version of change of variables theorem,
here we do not assume that φ is defined on an open neighborhood of U ; so the
assumptions of this theorem are weaker in this respect.

Proof. As we have seen in the proof of Theorem 8.53, using inverse function
theorem we can show that φ(U) is open, and φ−1 is C1. Thus in particular, both
φ, φ−1 are locally Lipschitz. Let S ⊂ U be an arbitrary compact Jordan measurable
set. Then, by Theorem 8.53, φ(S) is a compact Jordan measurable subset of φ(U);
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so f is Riemann integrable on φ(S). Hence f ◦ φ is Riemann integrable on S,
since φ : U → φ(U) is a homeomorphism and φ−1 is locally Lipschitz. In addition,
|detDφ| is a continuous function. Therefore (f ◦ φ) |detDφ| is Riemann integrable
on S too.

Let Sk ⊂ U be a sequence of compact Jordan measurable sets given by The-
orem 8.63, which satisfy Sk ⊂ S◦k+1 and U =

⋃
k≥1 Sk. Then, by Theorem 8.53,

φ(Sk) is a sequence of compact Jordan measurable subsets of φ(U). In addition we
have φ(U) = φ

(⋃
k≥1 Sk

)
=
⋃
k≥1 φ(Sk). Furthermore, φ(Sk) ⊂ φ(S◦k+1), and as

shown in the proof of Theorem 8.53, φ(S◦k+1) ⊂ (φ(Sk+1))◦. So, by Theorem 8.61,
supk≥1

∫
φ(Sk) |f(y)|dy <∞ and∫

φ(U)
f(y)dy = lim

k→∞

∫
φ(Sk)

f(y)dy.

But, by the change of variables theorem, for every k we have∫
Sk

∣∣(f ◦ φ)(x) |detDφ(x)|
∣∣ dx =

∫
Sk

(|f | ◦ φ)(x) |detDφ(x)| dx =

∫
φ(Sk)

|f(y)|dy.

So supk≥1

∫
Sk

∣∣(f ◦ φ)(x) |detDφ(x)|
∣∣ dx < ∞, and therefore (f ◦ φ) |detDφ| is

integrable over U . In addition, by the change of variables theorem, we have∫
U

(f ◦ φ)(x) |detDφ(x)| dx = lim
k→∞

∫
Sk

(f ◦ φ)(x) |detDφ(x)| dx

= lim
k→∞

∫
φ(Sk)

f(y)dy =

∫
φ(U)

f(y)dy,

as desired.
Now suppose

∫
φ(U) f(y)dy is infinite, say

∫
φ(U) f(y)dy = −∞ (the other case is

similar). Then we have
∫
φ(U) f

+(y)dy <∞ and
∫
φ(U) f

−(y)dy =∞. Thus we must
have supk≥1

∫
φ(Sk) f

−(y)dy =∞. So, by the change of variables theorem, we have

sup
k≥1

∫
Sk

(f− ◦ φ)(x) |detDφ(x)| dx = sup
k≥1

∫
φ(Sk)

f−(y)dy =∞.

Therefore∫
U

(
(f ◦ φ)(x) |detDφ(x)|

)−
dx =

∫
U

(f− ◦ φ)(x) |detDφ(x)| dx =∞,

since the supremum of integrals over all compact Jordan measurable sets S ⊂ U is
no less than the supremum of integrals over the sequence of sets Sk. We can similarly
show that

∫
U

(
(f ◦ φ)(x) |detDφ(x)|

)+
dx <∞. So the integral of (f ◦ φ) |detDφ|

over U is also equal to −∞. �
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Example 8.69. Let us integrate f(x, y) = 1√
x2+y2

over the open half-disk

U = {(x, y) : x2 + y2 < 1, x < 0}.

Consider the polar coordinates on R2 defined by

(x, y) = φ(r, θ) = (r cos θ, r sin θ),

for r ≥ 0 and 0 ≤ θ < 2π. Then it is easy to see that U is the image of the open
rectangle V = {(r, θ) : 0 < r < 1, π

2 < θ < 3π
2 }. We have

detDφ = det

[
cos θ −r sin θ
sin θ r cos θ

]
= r.

Hence by the change of variables theorem for open domains we get∫
U

1√
x2 + y2

dxdy =

∫
V

1√
r2
rdrdθ =

∫
V
drdθ =

∫ 1

0
dr

∫ 3π
2

π
2

dθ = π.

Note that we can apply Fubini’s theorem to
∫
V drdθ, because the boundary of V

has measure zero and thus
∫
V drdθ =

∫
V drdθ. Also, notice that φ is not one-to-one

at r = 0, and its derivative is not invertible there. Therefore the previous version
of the change of variables theorem cannot be applied, since φ does not satisfy its
hypotheses on any open set containing V . In addition, note that f is not bounded
near the origin, so it is not Riemann integrable in the proper sense.

Example 8.70. We can also use the above theorem to deal with cases in which
the domain of integration is not necessarily open. Let us again consider the polar
coordinates on R2 defined by (x, y) = φ(r, θ) = (r cos θ, r sin θ) for r ≥ 0 and
0 ≤ θ < 2π. Remember that detDφ = r. Suppose we want to integrate the
bounded continuous function f(x, y) on the disk D = {x2 +y2 ≤ a2} = Ba(0). This
disk in the (x, y)-plane is the image of the rectangle R = {0 ≤ r ≤ a, 0 ≤ θ < 2π}
in the (r, θ)-plane. Let us consider the open rectangle

R◦ = {0 < r < a, 0 < θ < 2π}.

Then φ(R◦) is equal to Ba(0)−{(x, 0) : 0 ≤ x ≤ a}. Now we can apply the change
of variables theorem for open domains to get∫

φ(R◦)
f(x, y)dxdy =

∫
R◦
f(r, θ) rdrdθ.

However, we have R = R◦ t ∂R and D = φ(R◦) tA, where

A = {(x, 0) : 0 ≤ x ≤ a} ∪ ∂Ba(0).
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Note that both ∂R,A are Jordan measurable sets with measure zero; therefore
integrals over them are zero. Hence we have (noting that all integrals are in the
proper sense, since f is bounded and continuous)∫

D
f(x, y)dxdy =

∫
φ(R◦)

f(x, y)dxdy +

∫
A
f(x, y)dxdy

=

∫
φ(R◦)

f(x, y)dxdy =

∫
R◦
f(r, θ) rdrdθ

=

∫
R◦
f(r, θ) rdrdθ +

∫
∂R
f(r, θ) rdrdθ

=

∫
R
f(r, θ) rdrdθ.

We can prove similar results for spherical and cylindrical coordinates on R3 too.



Chapter 9

Integration over Surfaces and
Rectifiable Sets

9.1 Integration over a Surface Patch

In this chapter we want to define the integral of a function over a “k-dimensional
surface” in Rn. Before going into the details of what a “k-dimensional surface” is,
let us notice that we expect them to have measure zero in Rn. For example, a
curve has measure zero in R2. Therefore if we try to integrate a function over a
surface by the methods of the previous chapter we would get zero. So we need a
new definition of integral over surfaces which gives sensible results. Let us start by
defining a simple case of “k-dimensional surfaces”.

Definition 9.1. Let V ⊂ Rk be an open set, and φ : V → Rn be a function, where
k < n. Suppose
(i) φ is one-to-one.
(ii) φ is a C1 function, and Dφ(x) has rank k at every x ∈ V .
(iii) φ−1 : φ(V )→ V is continuous.
Then we say φ(V ) ⊂ Rn is a k-dimensional surface patch, or simply a k-surface
patch. The map φ is called a parametrization of the k-surface patch φ(V ), and
the function

√
det(DφTDφ) is called the volume factor.

Remark. A 1-surface patch is called a curve. In addition, when k = 1, 2, the
volume factor may also be called the length factor or the area factor, respectively
(the motivation for these names will be clarified shortly). We will also see that
det(DφTDφ) is nonnegative; so its square root is real.

Remark. When the open set V is bounded, an easy way to check that φ−1 is
continuous is to show that φ extends to a continuous one-to-one function defined
on the compact set V .

297
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Remark. The requirements that Dφ has full rank k, and φ−1 is continuous, are
to ensure that the k-surface patch has no singularity . They also allow us to prove
that integration over a k-surface patch does not depend on the parametrization, as
we see below. In the next section, we will also see how to integrate over surfaces
which have some singularities.

Theorem 9.2. The dimension of a surface patch does not depend on its parametriza-
tion. In other words, if S = φ(V ) = ψ(U) is a surface patch in Rn, where V ⊂ Rk
and U ⊂ Rp are open sets, and φ, ψ are parametrizations of S, then we must have
p = k. In addition, we have
(i) φ−1 ◦ ψ : U → V is a C1 function.
(ii) φ−1 : φ(V )→ V is locally Lipschitz.

Remark. The function φ−1◦ψ is called a change of coordinates or a transition
function.

Proof. To simplify the notation let g := φ−1 ◦ ψ : U → V . Note that g and its
inverse g−1 = ψ−1 ◦φ : V → U are one-to-one and onto continuous functions. If we
show that g, g−1 are differentiable, then we have Dg−1(g(x))Dg(x) = Ip, because
g−1(g(x)) = x for x ∈ U . Therefore Dg(x) defines a one-to-one linear map from
Rp to Rk; hence p ≤ k. Similarly we have Dg(g−1(y))Dg−1(y) = Ik for y ∈ V . Let
y = g(x). Then we get Dg(x)Dg−1(g(x)) = Ik. Thus Dg(x) defines an onto linear
map from Rp to Rk; hence p ≥ k. Therefore we must have p = k, as desired.

To show that g, g−1 are C1, it suffices to show that they are C1 on an open
neighborhood of each point in their domains. We show this for g; the case of g−1

is similar. Let x0 ∈ V . We know that Dφ(x0) is an n × k matrix with rank k.
Hence it has k linearly independent rows. Let P : Rn → Rk be the projection onto
the coordinates determined by the indices of the k linearly independent rows of
Dφ(x0) (note that P may depend on x0). Now consider P ◦ φ : V → Rk. We have
D(P ◦φ)(x0) = PDφ(x0), since P is a linear map (we have denoted the matrix of P
simply by P ). But it is easy to see that PDφ(x0) is a k× k matrix whose rows are
the linearly independent rows of Dφ(x0). Hence PDφ(x0) is an invertible matrix.
Therefore, by the inverse function theorem, there is an open neighborhood Vx0 ⊂ V
of x0 such that P ◦ φ is one-to-one on it, P ◦ φ (Vx0) is open, and

(
P ◦ φ |Vx0

)−1 is
a C1 function on P ◦ φ (Vx0).

Now suppose we want to show that g = φ−1 ◦ψ is C1 on an open neighborhood
of y0 ∈ U . Let x0 = g(y0), and consider Vx0 . Then φ(Vx0) is an open subset of
S, since φ−1 is continuous. Hence Uy0 := ψ−1(φ(Vx0)) is an open neighborhood
of y0, since ψ is continuous. Then for every y ∈ Uy0 there is x ∈ Vx0 such that
ψ(y) = φ(x), because ψ(Uy0) = φ(Vx0). Therefore

P (ψ(y)) = P (φ(x)) ∈ P ◦ φ (Vx0).
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Hence P (ψ(y)) is in the domain of the C1 function
(
P ◦ φ |Vx0

)−1, and we have(
P ◦ φ |Vx0

)−1(
P (ψ(y))

)
=
(
P ◦ φ |Vx0

)−1(
P (φ(x))

)
= x (since x ∈ Vx0)

= φ−1(φ(x)) = φ−1(ψ(y)) = g(y).

Thus on Uy0 we have g =
(
P ◦ φ |Vx0

)−1 ◦ P ◦ ψ. In other words, on Uy0 , g is equal
to the composition of several C1 functions. Hence g is C1 on Uy0 , as desired.

Finally, let us show that φ−1 is locally Lipschitz. Let z0 = φ(x0). Note that
there is r such that Br(z0)∩ S ⊂ φ(Vx0), since φ(Vx0) is an open subset of S. Now
for z ∈ Br(z0) ∩ S there is a unique x ∈ Vx0 such that z = φ(x). In addition,
P (φ(x)) is in the domain of

(
P ◦ φ |Vx0

)−1. Hence we have

φ−1(z) = x = (P ◦ φ)−1
(
P (φ(x))

)
= (P ◦ φ)−1

(
P (z)

)
.

Thus on Br(z0) ∩ S we have φ−1 =
(
P ◦ φ |Vx0

)−1 ◦ P . So, locally, φ−1 is equal to
the composition of two C1 functions, which are also locally Lipschitz; therefore φ−1

is locally Lipschitz too. �

Next we want to define the integral of a function over a k-surface patch S ⊂ Rn.
Suppose we have S = φ(V ). Let f : S → R be a function which we want to integrate
over S. To motivate the following definition, we pursue the idea of partitioning S
into small pieces, and then we use the corresponding Riemann sums to approximate
the desired integral. To simplify this heuristic argument let us assume that V is an
open rectangle in Rk. An easy way for partitioning S is to consider a partition of
V , and map it by φ into S. Let {Rα} be a partition of V . Then we can consider
{φ(Rα)} as a partition of S. If we choose some tags xα ∈ Rα then the points
φ(xα) ∈ φ(Rα) can play the role of tags for the partition {φ(Rα)}. Now we can
form a Riemann sum that approximates the integral of f over S as follows:∑

α

f(φ(xα)) |φ(Rα)|, (∗)

where |φ(Rα)| is the “k-dimensional volume” of the k-surface patch φ(Rα) in Rn.
Hence we need to somehow approximate the volume |φ(Rα)| without integration

(because we want to use these values to define the integral over a k-surface patch!)
Let us assume that the mesh of the partition {Rα} is so small that over the rectangle
Rα, φ is almost equal to the linear function defined by its derivative Aα := Dφ(xα).
Then the volume |φ(Rα)| is almost equal to the volume of Aα(Rα), which is a k-
dimensional parallelepiped in Rn. If we had k = n then the volume of Aα(Rα) would
have been equal to |det(Aα)| |Rα|, as we have seen in the last chapter. However in
the actual case where k < n, the matrix Aα is not a square matrix, and we have not
even defined the volume of a parallelepiped in higher-dimensional ambient space.
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But intuitively we know that the volume does not change under rigid motions; in
particular, an orthogonal linear map cannot change the volume of k-dimensional
parallelepipeds.

Now note that by polar decomposition of matrices we have Aα = OαPα, where
Oα is an n×k orthogonal matrix (i.e. OT

αOα = Ik, which implies that Oα preserves
the distances), and Pα is a k×k positive matrix (i.e. it is a symmetric matrix with
nonnegative eigenvalues). Since we intuitively know that Oα does not change the
volume, we must have

|Aα(Rα)| = |Oα(Pα(Rα))| = |Pα(Rα)| = |det(Pα)| |Rα|,

where the last equality holds because Pα is a linear map on Rk, and Rα is a rectangle
in Rk. However we also have

AT
αAα = P T

αO
T
αOαPα = P T

αIkPα = P T
αPα = PαPα = P 2

α.

Therefore

(detPα)2 = det(P 2
α) = det(AT

αAα) = det
(
Dφ(xα)TDφ(xα)

)
.

Thus the volume of Aα(Rα) is equal to the volume of Rα times the volume factor
at the point xα. (We can also see that det(DφTDφ) is nonnegative.) Hence we can
finally approximate the Riemann sum (∗) as follows∑

α

f(φ(xα)) |φ(Rα)| ≈
∑
α

f(φ(xα)) |Aα(Rα)|

=
∑
α

f(φ(xα)) |det(Pα)| |Rα|

=
∑
α

f(φ(xα))
√

det
(
Dφ(xα)TDφ(xα)

)
|Rα|.

But the last expression is just a Riemann sum for the function (f ◦φ)
√

det(DφTDφ)
over the flat domain V ; and this can be used to define the integral of f over the
k-surface patch S. Hence we arrive at the following definition.

Definition 9.3. Let S = φ(V ) be a k-surface patch in Rn, where V ⊂ Rk is an
open set, and φ is a parametrization of S. Consider the function f : S → R. We
say f is integrable over S if (f ◦φ)

√
det(DφTDφ) is integrable over V . And in this

case we define the integral of f over S to be∫
S
f dσ :=

∫
V
f(φ(x))

√
det
(
Dφ(x)TDφ(x)

)
dx.
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Notation. The notation dσ in the integral
∫
S f dσ is incorporated to indicate that

we are integrating over a surface. Another common notation for dσ is dS, which
should not be confused with the notation that we used for the surface S over which
we are integrating. Also, when k = 1, we usually use ds instead of dσ.
Remark. We can similarly define the integral of vector-valued functions over a
surface patch. Then it would easily follow that the integrability of such a function
is equivalent to the integrability of its components, and its integral can be computed
componentwise.

Theorem 9.4. The integrability and the integral of a function over a k-surface
patch do not depend on the parametrization.

Proof. Let S = φ(V ) = ψ(U) be a k-surface patch in Rn, where V,U ⊂ Rk are
open sets, and φ, ψ are parametrizations of S. Let f : S → R. To simplify the
notation we will use the following convention throughout this proof:

Jφ =
√

det(DφTDφ), Jψ =
√

det(DψTDψ).

We need to show that the integrability of (f ◦ φ)Jφ over V is equivalent to the
integrability of (f ◦ ψ)Jψ over U , and when they are integrable, their integrals are
equal. Note that g := φ−1 ◦ ψ : U → V and its inverse g−1 = ψ−1 ◦ φ : V → U are
one-to-one and onto C1 functions. Thus Dg,Dg−1 are invertible matrices. Hence
by the change of variables theorem, the integrability of (f ◦ φ)Jφ over V = g(U)
implies the integrability of

(f ◦ φ ◦ g)
√

det(Dφ(g)TDφ(g)) |det(Dg)| (∗)

over U , and the two integrals are equal.
Now note that we have φ ◦ g = φ ◦ φ−1 ◦ ψ = ψ. Hence f ◦ φ ◦ g = f ◦ ψ. In

addition, we have Dψ = Dφ(g)Dg. Therefore

J2
ψ = det((Dψ)TDψ) = det

(
(Dφ(g)Dg)TDφ(g)Dg

)
= det

(
DgTDφ(g)TDφ(g)Dg

)
= det(DgT) det(Dφ(g)TDφ(g)) det(Dg)

= det(Dφ(g)TDφ(g)) det(Dg)2,

since a square matrix and its transpose have the same determinant. Hence the
function (∗) is equal to

(f ◦ ψ)
√

det(Dφ(g)TDφ(g)) det(Dg)2 = (f ◦ ψ)
√
J2
ψ = (f ◦ ψ)Jψ.

Thus we have shown that the integrability of (f ◦ φ)Jφ over V = g(U) implies
the integrability of (f ◦ ψ)Jψ over U , and their integrals are equal. Conversely,
by repeating the above argument using g−1 instead of g, we can show that the
integrability of (f ◦ ψ)Jψ implies the integrability of (f ◦ φ)Jφ. �
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Definition 9.5. Let S be a k-surface patch in Rn. The (k-dimensional) volume
of S is

vol(S) :=

∫
S

1 dσ,

provided that the integral exists. When k = 1, 2, the volume is called the length
or the area, respectively.

Remark. Note that since the volume factor is positive, if the above integral does
not exist then its value will be ∞.

Remark. If S has finite volume, then any bounded continuous function like f is
integrable over S. Because, in this case, for a parametrization φ : V → S, the
function

√
det
(
DφTDφ

)
is integrable over V due to the finiteness of the volume.

Thus the function f ◦ φ
√

det
(
DφTDφ

)
is also integrable over V , since f ◦ φ is

bounded and continuous (see the remarks after Theorem 8.60 and Example 8.66).

Remark. In Definition 6.52 we defined rectifiable curves and their lengths. It is
easy to see that by Theorem 6.54, a curve with a C1 parametrization (i.e. a 1-
surface patch) is also rectifiable, and both the above definition and Definition 6.52
give the same value for its length.

Example 9.6. Let V ⊂ Rk be an open set, and f : V → R be a C1 function. Then
the graph of f , i.e. the set

S = {(x, f(x)) : x ∈ V },

is a k-surface patch in Rk+1 with φ(x) := (x, f(x)) as a parametrization. To see this
note that φ is obviously one-to-one and C1. Also, it is apparent from the following
formula for Dφ that it has rank k. In addition, φ−1 is just the projection on the
first k components; so it is continuous. Now let us compute the volume of S. We
have

Dφ =

[
Ik
Df

]
=⇒ DφTDφ =

[
I DfT

] [ I
Df

]
= I +DfTDf.

Note that DfT is a (column) vector. Now note that for any vector a, the matrix
aaT has rank one, and its action on any vector x is

(aaT)x = a(aTx) = a(a · x) = (a · x)a.

Hence we have (I + aaT)x = x+ (a · x)a. Thus for x = a we get

(I + aaT)a = a+ (a · a)a = (1 + |a|2)a.

And if x is orthogonal to a we have (I + aaT)x = x+ 0a = x. Therefore the k × k
matrix I + aaT has (at least) k − 1 eigenvalues equal to 1, and an eigenvalue equal
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to 1+ |a|2. (Note that if a = 0 then the eigenvalue 1+ |a|2 is also equal to 1.) Hence
we have det(I + aaT) = 1 + |a|2, since the determinant is equal to the product of
all eigenvalues. So

det
(
Dφ(x)TDφ(x)

)
= det

(
I +DfTDf

)
= 1 + |Df |2.

Thus the volume of S, i.e. the volume of the graph of f , is∫
S

1 dσ =

∫
V

√
det
(
Dφ(x)TDφ(x)

)
dx =

∫
V

√
1 + |Df |2 dx.

Example 9.7. Let us provide a parametrization of a two-dimensional hemisphere
in R3 with radius r, and compute its area. Consider the parametrization φ : (0, π)×
(0, π)→ R3 defined by

(θ, ϕ) 7→ (r sin θ cosϕ, r sin θ sinϕ, r cos θ).

It is apparent that φ2
1 + φ2

2 + φ2
3 = r2, and φ2 > 0; so φ parametrizes part of

a hemisphere. On the other hand, it is easy to show that each point on that
hemisphere is the image of a uniquely determined (θ, ϕ). We also have

Dφ =

r cos θ cosϕ −r sin θ sinϕ
r cos θ sinϕ r sin θ cosϕ
−r sin θ 0

.
Note thatDφ has full rank, since sin θ, sinϕ never vanish on the domain of φ. Hence
the volume factor is(

det(DφTDφ)
)1/2

=
(

det

[
r2 0
0 r2 sin2 θ

])1/2
= r2 sin θ.

Therefore the area of a two-dimensional hemisphere with radius r is∫
(0,π)×(0,π)

r2 sin θ dθdϕ =

∫
[0,π]×[0,π]

r2 sin θ dθdϕ

=

∫ π

0

∫ π

0
r2 sin θ dθdϕ = 2πr2.

Note that the second equality holds by Fubini’s theorem. And the first equality
follows from the fact that the boundary of the closed rectangle [0, π] × [0, π] has
measure zero; so its inclusion does not alter the integral of the integrable func-
tion r2 sin θ. More precisely, the function r2 sin θ on [0, π]2 is a.e. equal to the
function which equals r2 sin θ on (0, π)2 and vanishes on its boundary. Hence by
Theorem 8.37 their integrals on [0, π]2 are equal. Note that both these functions
are integrable, since they are bounded and continuous a.e.
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9.2 Integration over a Rectifiable Set

In the last section we have computed the area of a two-dimensional hemisphere.
Intuitively, we know that we can double that amount to obtain the area of the
two-dimensional sphere. However, note that since we are integrating over open
sets, then we would have excluded a great circle of the sphere from the domain of
integration. In addition, it is not possible to cover the whole sphere with a single
2-surface patch, or to cover it with several nonoverlapping (open) 2-surface patches.

Thus we need another way to rigorously compute the volume of the sphere, or
more generally, to compute the integral of a function over a sphere. The good news
is that the great circle has “two-dimensional measure zero” (note that it resides in
R3). So its exclusion from the domain of integration should not affect the value
of the integral. In this section, we first make the idea of lower-dimensional zero
measure precise. Then we will use this notion to define integration over more
general “surfaces”.

Remember that we say A ⊂ Rn has measure zero if for every ε > 0 there exist
a countable family of open cubes {Qi} such that A ⊂

⋃
i≥1Qi, and∑

i≥1

|Qi| < ε.

Let li be the length of the edges of Qi. Then the above inequality becomes∑
i≥1 l

n
i < ε. For generalization, it is better to express this inequality in terms

of the diameter of Qi, i.e. the maximum distance between points of Qi. We can
easily see that the diameter of Qi is diamQi = li

√
n. Then we can say A has

measure zero if and only if for every ε > 0 there exist a countable family of open
cubes covering it such that ∑

i≥1

(diamQi)
n < ε.

Note that we have absorbed the factor n−
n
2 into ε, since n−

n
2 is constant, and ε

is arbitrary. Now we use the idea of replacing the power n with k in the above
inequality to define subsets of Rn which have “k-dimensional measure zero”.

Definition 9.8. Let A ⊂ Rn, and suppose k < n. We say A has k-measure zero
if for every ε > 0 there exist a countable family of open cubes in Rn, {Qi}, such
that A ⊂

⋃
i≥1Qi, and ∑

i≥1

(diamQi)
k < ε.

Remark. For compatibility, if a subset of Rn has measure zero in the ordinary
sense, we may also say that it has n-measure zero.
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Remark. An obvious consequence of the definition is that if A has k-measure zero
and B ⊂ A, then B has k-measure zero too.

Remark. Suppose k < l ≤ n. Then if A has k-measure zero, it also has l-measure
zero. To see this suppose ε < 1, and {Qi} is a countable family of open cubes
coveting A such that

∑
i≥1(diamQi)

k < ε. Then for each i we have diamQi <

ε
1
k < 1. Hence (diamQi)

l ≤ (diamQi)
k. Therefore we also have∑

i≥1

(diamQi)
l ≤

∑
i≥1

(diamQi)
k < ε,

as desired.

Theorem 9.9. Let {Aj} be a countable family of subsets of Rn that have k-measure
zero. Then

⋃
j Aj has k-measure zero. In particular, every countable subset of Rn

has k-measure zero for every 1 ≤ k ≤ n.

Proof. Let ε > 0 be given. Then we can cover Aj with a countable family of
open cubes {Qji}i≥1 such that∑

i≥1

(diamQji)
k <

ε

2j
.

Then {Qji}i,j≥1 is a countable family of open cubes that covers
⋃
j Aj , and∑

i,j≥1

(diamQji)
k <

∑
j≥1

ε

2j
≤ ε.

The final statement of the theorem follows from the trivial fact that a set with one
element has k-measure zero. �

Theorem 9.10. Suppose k ≤ n,m, and A ⊂ Rn has k-measure zero. Also suppose
F : A→ Rm is locally Lipschitz. Then F (A) has k-measure zero.

Proof. The proof is an easy modification of the proof of Theorem 8.51, which
considers the case k = m = n. Every a ∈ A has a neighborhood Br(a) such that
F is Lipschitz on A ∩Br(a). Then the family {Br(a) : a ∈ A} is an open covering
of A. By Theorem 11.57, every open covering of a subset of Rn has a countable
subcovering. Let us denote this countable subcovering by {Bi}. Then we have

F (A) =
⋃
i≥1

F (A ∩Bi) =
⋃
i≥1

F |A∩Bi(A ∩Bi).

But F |A∩Bi is Lipschitz, andA∩Bi has k-measure zero. Therefore it suffices to prove
the theorem for Lipschitz maps. Because then it follows that each F |A∩Bi(A ∩Bi)
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has k-measure zero. And as F (A) is the union of countably many sets of k-measure
zero, it also has k-measure zero as desired.

So we assume that F is Lipschitz, and A has k-measure zero. We want to show
that F (A) has k-measure zero. For any ε > 0 there is a family of open cubes
Qi ⊂ Rn such that A ⊂

⋃
i≥1Qi, and

∑
i≥1(diamQi)

k < ε. But the diameter
of A ∩ Qi, i.e. the maximum distance between its points, is less than or equal
to the diameter of Qi. Hence the diameter of F (A ∩ Qi) is at most KdiamQi,
where K is a constant satisfying |F (x)− F (y)| ≤ K|x− y| for any two points x, y.
Therefore F (A ∩ Qi) ⊂ Ri, where Ri is an open cube whose edges are of length
3KdiamQi, and is centered at some point z ∈ F (A ∩ Qi). Because for any other
point z′ ∈ F (A ∩ Qi) we have |z′ − z| ≤ KdiamQi; so the absolute value of each
coordinate of z′ − z is less than or equal to KdiamQi, which is strictly less than
3
2KdiamQi. Now, diamRi = 3

√
nKdiamQi. We also have

F (A) =
⋃
i≥1

F (A ∩Qi) ⊂
⋃
i≥1

Ri,

and ∑
i≥1

(diamRi)
k = 3kn

k
2Kk

∑
i≥1

(diamQi)
k < 3kn

k
2Kkε.

Thus as ε is arbitrary, F (A) has k-measure zero. �

Example 9.11. Remember that if we regard Rk−1 as the subset of Rk on which
xk = 0, then Rk−1 has measure zero in Rk. Thus any subset of Rk−1 has k-measure
zero in Rk. Hence the above theorem implies that the image of an open subset of
Rk−1 under a C1 function into some Rn has k-measure zero, since C1 functions are
locally Lipschitz. In particular, (k − 1)-surface patches have k-measure zero.

We next define a more general class of “k-dimensional surfaces” in Rn, which
are also allowed to have some singularities.

Definition 9.12. We say S ⊂ Rn is k-rectifiable if S can be written as a union
of pairwise disjoint sets

S = A t S1 t · · · t Sm,

such that each Sj is a k-surface patch which is an open set in S, and A has k-measure
zero.

Remark. We can extend the above definition, and allow countably many k-surface
patches. However, the simpler case of finitely many k-surface patches is still quite
general, and provides many interesting examples.

Next let us introduce one of the most important examples of rectifiable sets.
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Definition 9.13. We sayM ⊂ Rn is a k-dimensional manifold if for every point
a ∈M there exists an open ball Br(a) such that Br(a)∩M is a k-surface patch in
Rn. (Note that r > 0, and can depend on the point a.)

Theorem 9.14. Every compact manifold is a rectifiable set.

Proof. Let M be a compact k-dimensional manifold in Rn. We know that for
every a ∈M there is an open ball Br(a) such that Br(a)∩M is a k-surface patch in
Rn. Now note that for each a there is an open set Va ⊂ Rk, and a parametrization
φa : Va → Rn such that

φa(Va) = Br(a) ∩M.

Consider an open rectangle Ra containing φ−1
a (a), such that Ra ⊂ Va. Then the

collection {φa(Ra)}a∈M covers M . Also, due to the continuity of φ−1
a , each φa(Ra)

is open in Br(a) ∩M , hence it is open in M . Therefore, by compactness of M ,
finitely many of these open sets, namely φ1(R1), . . . , φm(Rm), cover M (note that
we suppressed the notation aj to j for simplicity). Each φj(Rj) is a k-surface patch,
with parametrization φj |Rj . However, they may have nonempty intersections.

To construct disjoint k-surface patches out of φ1(R1), . . . , φm(Rm) we proceed
as follows. Set M1 := φ1(R1). Then set M2 := φ2(R2)− φ1(R1). Note that φ1(R1)
is closed, since R1 is compact. HenceM2 is open inM . Also note thatM1∩M2 = ∅,
because M1 ⊂ φ1(R1). We continue inductively, and set

Mj+1 := φj+1(Rj+1)−
(
φ1(R1) ∪ · · · ∪ φj(Rj)

)
.

Note that eachMj is open inM , and by definition, they are pairwise disjoint. (Some
of the Mj ’s might be empty, in which case we simply discard them). Furthermore,
Mj is a k-surface patch with parametrization φj |Wj , where Wj := φ−1

j (Mj).
Now note that Rj = Rj t ∂Rj , since Rj is open. Hence we have

φj(Rj) = φj(Rj) t φj(∂Rj),

since φj is one-to-one. On the other hand, ∂Rj has measure zero in Rk, and φj is
locally Lipschitz (since it is C1); therefore

Ã := φ1(∂R1) ∪ · · · ∪ φm(∂Rm)

has k-measure zero. In addition, we have A := M −
⋃
j≤mMj ⊂ Ã. Because

every a ∈M belongs to some φj(Rj). Let j be the smallest number for which this
happens. Now if a /∈ Mj then for some i < j we must have a ∈ φi(∂Ri), since
a /∈ φi(Ri) by our assumption about j. Thus, in particular, A has k-measure zero.

Hence we have shown that the k-dimensional manifold M can be written as a
union of pairwise disjoint k-surface patches Mj , which are open in M , and a set A
with k-measure zero. Therefore M is a k-rectifiable set, as desired. �
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Remark. In the above proof, notice that the volume factor of eachMj is bounded,
because φj is C1 on the compact set Rj ⊃ φ−1

j (Mj). Furthermore, the open sets
Wj are Jordan measurable. To see this note that ∂Wj ⊂W j ⊂ Rj , and

φj(∂Wj) ∩Mj = φj(∂Wj) ∩ φj(Wj) = ∅,

since φj is one-to-one. Furthermore, we must also have φj(∂Wj) ∩ Mi = ∅ for
i 6= j. Because otherwise φ−1

j (Mi) would intersect ∂Wj . But φ−1
j (Mi) is an open

set, since Mi is open in M . Therefore φ−1
j (Mi) would intersect Wj ; which implies

that Mi would intersect φj(Wj) = Mj , contradicting their disjointness. Hence
φj(∂Wj) ⊂ A. However, A has k-measure zero; so φj(∂Wj) has k-measure zero
too. On the other hand, φ−1

j is locally Lipschitz. Therefore ∂Wj has measure zero,
as desired.

Remark. If we allow countably many sets in our definition of rectifiable sets then
we can similarly show that noncompact manifolds are also rectifiable. In this case
we could use the fact that the covering {φa(Ra)}a∈M has a countable subcovering
(see Theorem 11.57).

Example 9.15. An easy way for constructing manifolds is to consider the level
sets of C1 functions whose derivative has full rank. Suppose f : U → Rm is a C1

function, where U ⊂ Rn is an open set, and m < n. Suppose the level set

Γ := {x ∈ U : f(x) = c}

is nonempty. Also suppose that for every x ∈ Γ the m × n matrix Df(x) has
rank m. Then Df(x) must have m linearly independent columns. To simplify the
notation let us assume that the last m columns of Df(x) are linearly independent.
Also let us denote the points in Rn by (z, y), where z ∈ Rn−m and y ∈ Rm. Then
the m×m matrix [

∂fi
∂yj

(x)

]
1≤i,j≤m

is invertible, since its columns are linearly independent. Hence by the implicit
function theorem, there is an open set V ⊂ Rn containing x, an open set W ⊂
Rn−m, and a unique C1 function g : W → Rm such that

Γ ∩ V = {(z, g(z)) : z ∈W}.

It is easy to see that the function φ : W → Rn defined by φ(z) := (z, g(z)) is
a parametrization of Γ ∩ V . Because φ is obviously one-to-one and C1, and φ−1

is continuous, since it is just the projection on the first n − m components. In
addition, we have

Dφ =

[
In−m
Dg

]
;
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so its rank is n−m. Hence Γ ∩ V is an (n−m)-surface patch. Thus the level set
Γ is an (n−m)-dimensional manifold in Rn.

Definition 9.16. Let S = A t S1 t · · · t Sm be a k-rectifiable set in Rn, and
f : S → R. We say f is integrable over S if each f |Sj is integrable over Sj , and in
this case the integral of f over S is∫

S
f dσ :=

∫
S1

f dσ + · · ·+
∫
Sm

f dσ.

Remark. As before, we can also define the volume of S as

vol(S) :=

∫
S

1 dσ.

Remark. It is easy to see that if S has finite volume, then any bounded continuous
function is integrable over S. In fact, in this case, any bounded function which is
continuous on each Si is integrable over S. (The boundedness on all of S, and not
just on each Si, will assure that the integrability of the function does not depend
on the particular decomposition of S, as we will see below.)

Remark. As we mentioned in the last section, we can also define the integral of
vector-valued functions over a surface patch, and hence over a rectifiable set. Then
it would easily follow that the integrability of such a function is equivalent to the
integrability of its components, and its integral can be computed componentwise.

Suppose we have a parametrization Si = φi(Vi). Let K be a compact subset
of Si ⊂ S. Then φ−1

i (K) is a compact subset of Vi, since φ−1
i is continuous. Now

note that φ−1
i (K) is bounded and has a positive distance from ∂Vi. Thus, by the

construction of the sequence of compact Jordan measurable subsets in the proof
of Theorem 8.63, there is a compact Jordan measurable set K̃ ⊂ Vi that contains
φ−1
i (K). Then, by definition, (f ◦ φi)

√
det(DφT

iDφi) is Riemann integrable and
therefore bounded on K̃; hence it is bounded on φ−1

i (K). But
√

det(DφT
iDφi) is

continuous and positive on the compact set φ−1
i (K), so it has a positive minimum

and a positive maximum there. Thus f ◦ φi is bounded on φ−1
i (K), and hence f is

bounded on the compact set K ⊂ Si.
Therefore, for f to be integrable over S with respect to the decomposition

S = AtS1t· · ·tSm, it must be bounded on compact subsets of S that lie entirely
in one of the surface patches Si. This restriction is imposed on f since we are
employing the Riemann integral; however, if more general theories of integration
are employed such restrictions will not arise.

A rectifiable set may have different decompositions into surface patches. For
example, we can decompose a sphere into two open hemispheres and a great circle,
and use the above definition to integrate a function over the sphere. However, there
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are infinitely many great circles in a sphere, and we can divide the sphere along
any one of them. Hence we need to make sure that the value of an integral does
not depend on a specific decomposition of a rectifiable set.

Theorem 9.17. The integrability and the integral of a function f over a k-rectifiable
set do not depend on the decomposition of the k-rectifiable set into the union of sev-
eral k-surface patches and a set with k-measure zero, provided that f is bounded
on compact subsets of the k-rectifiable set which lie entirely in one of the surface
patches of that decomposition.

Remark. Note that the assumption of boundedness on compact subsets is auto-
matically satisfied when f is continuous.

Proof. Suppose S ⊂ Rn is a k-rectifiable set with two decompositions

A t S1 t · · · t Sm = S = A′ t S′1 t · · · t S′m′ ,

where each Sj , S′i is a k-surface patch which is open in S, and A,A′ have k-measure
zero. Suppose the function f : S → R is integrable with respect to the first
decomposition, i.e. f |Sj is integrable over Sj for each j. By assumption, f is
also bounded on any compact subset of S which lies entirely in S′i for some i.
We know that Sj is a k-surface patch; hence there exists an open set Vj ⊂ Rk
and a parametrization φj : Vj → Rn such that Sj = φj(Vj). Then by definition
(f ◦ φj)

√
det(DφT

jDφj) is integrable over Vj , and∫
Sj

f dσ =

∫
Vj

f(φj(x))
√

det
(
Dφj(x)TDφj(x)

)
dx.

Similarly we have S′i = ψi(V
′
i ), where V ′i ⊂ Rk is an open set, and ψi : V ′i → Rn

is a parametrization. We first need to show that for each i the function (f ◦
ψi)
√

det(DψT
iDψi) is integrable over V

′
i . And then show that the integral of f over

S does not depend on the decomposition of S, i.e.
∑

j

∫
Sj
f dσ =

∑
i

∫
S′i
f dσ.

Now note that Sj ∩S′i is open in S; so Vji := φ−1
j (Sj ∩S′i) is open in Vj , hence it

is an open set (some of them might be empty, in which case we can simply discard
them). Also note that the sets Vj1, . . . , Vjm′ , φ−1

j (A′) are pairwise disjoint and their
union is Vj . In addition, φ−1

j (A′) has measure zero in Rk, since φ−1
j is locally

Lipschitz and A′ has k-measure zero.
So far we have shown that each Vji is an open subset of Vj , and Vj −

⋃
i Vji =

φ−1
j (A′) is a set with k-measure zero in Rk. Hence by applying Theorem 8.68 to

the integrable function g = (f ◦ φj)
√

det(DφT
jDφj) on Vj , we conclude that g|Vji

are also integrable, and we have∫
Vj

g(x)dx =

∫
Vj1

g(x)dx+ · · ·+
∫
Vjm′

g(x)dx.
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Now note that Sj ∩S′i is itself a k-surface patch with parametrization φj |Vji . Hence
we have ∫

Sj∩S′i
f dσ =

∫
Vji

f(φj(x))
√

det
(
Dφj(x)TDφj(x)

)
dx.

Therefore we have actually shown that
∫
Sj
f dσ =

∑
i≤m′

∫
Sj∩S′i

f dσ.
We can similarly show that the sets V ′ij := ψ−1

i (Sj ∩ S′i) are open, and together
with ψ−1

i (A), they form a partition of V ′i into pairwise disjoint sets. And in addition,
ψ−1
i (A) has k-measure zero in Rk. Now note that ψi|V ′ij is also a parametrization

for Sj ∩ S′i. Hence (f ◦ ψi)
√

det(DψT
iDψi) is integrable over V ′ij , and we also have∫

Sj∩S′i
f dσ =

∫
V ′ij

f(ψi(x))
√

det
(
Dψi(x)TDψi(x)

)
dx.

Next note that that h = (f ◦ ψi)
√

det(DψT
iDψi) is bounded on any compact set

K ⊂ V ′i , since f is bounded on the compact set ψi(K) ⊂ S′i by our assumption,
and

√
det(DψT

iDψi) is continuous on the compact set K. Therefore by Theorem
8.68, h is integrable over V ′i , and we have∫

V ′i

h(x)dx =
∑
j≤m

∫
V ′ij

h(x)dx =
∑
j≤m

∫
Sj∩S′i

f dσ.

Hence we have shown that f is integrable over S′i, and we have∫
S′i

f dσ =

∫
V ′i

h(x)dx =
∑
j≤m

∫
Sj∩S′i

f dσ.

Finally, we can show that the integral of f over S does not depend on its decom-
position into k-surface patches. We have∫

S
f dσ =

∑
j≤m

∫
Sj

f dσ =
∑
j≤m

∑
i≤m′

∫
Sj∩S′i

f dσ

=
∑
i≤m′

∑
j≤m

∫
Sj∩S′i

f dσ =
∑
i≤m′

∫
S′i

f dσ,

as desired. �

Theorem 9.18. Let S be a k-rectifiable subset of Rn, and suppose f, g : S → R
are integrable over S. Let c1, c2, C ∈ R. Then we have
(i) c1f + c2g is integrable over S and∫

S
[c1f + c2g]dσ = c1

∫
S
f dσ + c2

∫
S
g dσ.
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(ii) If f ≤ g then ∫
S
f dσ ≤

∫
S
g dσ.

(iii) If |f | ≤ C then ∣∣∣∣∫
S
f dσ

∣∣∣∣ ≤ C vol(S),

provided that the volume of S is finite.

Proof. Suppose S = AtS1t· · ·tSm, where each Sj is a k-surface patch which is
open in S, and A has k-measure zero. Suppose φj : Vj → Sj is a parametrization of
Sj . Then by the assumption we know that f |Sj , g|Sj are integrable over Sj , which

means (f ◦ φj)Jj , (g ◦ φj)Jj are integrable over Vj , where Jj =
√

det(DφT
jDφj) is

the volume factor of φj .
(i) Note that ((c1f + c2g) ◦φj)Jj = c1(f ◦φj)Jj + c2(g ◦φj)Jj is integrable over

Vj for each j. Hence c1f + c2g is integrable over S. Now we have∫
S

[c1f + c2g]dσ =
∑
j≤m

∫
Sj

[c1f + c2g]dσ

=
∑
j≤m

∫
Vj

[c1f(φj(x)) + c2g(φj(x))]Jj(x)dx

= c1

∑
j≤m

∫
Vj

f(φj(x))Jj(x)dx+ c2

∑
j≤m

∫
Vj

g(φj(x))Jj(x)dx

= c1

∑
j≤m

∫
Sj

f dσ + c2

∑
j≤m

∫
Sj

g dσ = c1

∫
S
f dσ + c2

∫
S
g dσ.

(ii) Note that we have (f ◦φj)Jj ≤ (g ◦φj)Jj for each j, since the volume factor
is positive. Thus∫

S
f dσ =

∑
j≤m

∫
Sj

f dσ =
∑
j≤m

∫
Vj

f(φj(x))Jj(x)dx

≤
∑
j≤m

∫
Vj

g(φj(x))Jj(x)dx =
∑
j≤m

∫
Sj

g dσ =

∫
S
g dσ.

(iii) We have −C ≤ f ≤ C. Also note that constant functions are integrable
over S, since they are a constant times the constant function 1, and by our assump-
tion the constant function 1 is integrable over S. Hence by the previous parts we
have

−
∫
S
C dσ =

∫
S

(−C) dσ ≤
∫
S
f dσ ≤

∫
S
C dσ = C

∫
S

1 dσ = C vol(S),

which gives the desired. �
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9.3 Domains with Almost C1 Boundary

Definition 9.19. Let U ⊂ Rn be an open set, where n > 1. Then we say U has
C1 boundary if for every point a ∈ ∂U there exists an open ball Br(a) and a C1

function g : Rn−1 → R, such that for some j ∈ {1, . . . , n} and some ε ∈ {±1} we
have

U ∩Br(a) = {x ∈ Br(a) : εxj > g(x1, . . . , xj−1, xj+1, . . . , xn)}.

(Note that r > 0, and can depend on the point a.)

Remark. To simplify the notation we usually assume that j = n and ε = 1, so
that we have

U ∩Br(a) = {x : xn > g(x1, . . . , xn−1)}.

Also note that the domain of g can be an open subset of Rn−1, and need not be all
of Rn−1.

Proposition 9.20. In the above definition we have

∂U ∩Br(a) = {x ∈ Br(a) : xn = g(x1, . . . , xn−1)}.

Hence ∂U ∩Br(a) is an (n− 1)-surface patch with parametrization

φ(x1, . . . , xn−1) =
(
x1, . . . , xn−1, g(x1, . . . , xn−1)

)
.

And consequently, ∂U is an (n− 1)-dimensional manifold.

Proof. To simplify the notation we set B = Br(a). First suppose for some x ∈ B
we have xn = g(x̃), where x̃ = (x1, . . . , xn−1). We want to show that x ∈ ∂U .
Since B is an open set, there is an open rectangle R ⊂ B that contains x. Now
note that for large enough m the points z±m := (x̃, g(x̃)± 1

m) belong to R. Thus by
our assumption about U we have z+

m ∈ U ∩ B and z−m ∈ U c ∩ B. In addition we
have z±m → x; so x ∈ ∂U , as desired.

Conversely, suppose x ∈ ∂U ∩B. We want to show that xn = g(x̃). If xn > g(x̃)
then we must have x ∈ U , which contradicts the fact that U is open. And if
xn < g(x̃) then there is an open ball Bs(x) ⊂ B such that for every y ∈ Bs(x) we
have yn < g(ỹ). Because the inverse image of the open interval (−∞, 0) under the
continuous function y 7→ yn − g(ỹ) is an open neighborhood of x. Thus it would
follow that an open neighborhood Bs(x) of x does not intersect U ; which implies
that x cannot belong to ∂U . Therefore we must have xn = g(x̃), as desired.

Hence ∂U ∩B is the graph of the function g. Thus, as we have seen in Example
9.15, ∂U ∩B is a surface patch with parametrization φ. Note that the domain of φ
is the (bounded) open set φ−1(B) ⊂ P (B), where P is the projection on the first
n− 1 components (actually we have φ−1 = P |φ−1(B)). �
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Remark. Let U be an open set with C1 boundary. We know that locally U is the
region above (or below) the graph of a C1 function. We have also shown that ∂U is
a manifold. So ∂U can be locally parametrized by a C1 parametrization. However,
note that this last property alone does not imply that an open set has C1 boundary.
Because an open set with C1 boundary must also lie on one side of its boundary.

Definition 9.21. Let U ⊂ Rn be an open set, where n > 1. Then we say U has
almost C1 boundary if ∂U can be written as a union of pairwise disjoint sets

∂U = A t S1 t · · · t Sm,

such that A has (n−1)-measure zero, and each Si is an (n−1)-surface patch which
is an open set in ∂U , and U lies on one side of it. More precisely, for each i there is
an open set Ui, and a C1 function g : Rn−1 → R, such that for some j ∈ {1, . . . , n}
and some ε ∈ {±1} we have

U ∩ Ui = {x ∈ Ui : εxj > g(x1, . . . , xj−1, xj+1, . . . , xn)},

and
Si = ∂U ∩ Ui = {x ∈ Ui : xj = εg(x1, . . . , xj−1, xj+1, . . . , xn)}.

Remark. It is obvious from the above definition that if U has almost C1 boundary,
then ∂U is an (n − 1)-rectifiable set. The parametrization of Si corresponding to
εg is

φ(x1, . . . , xj−1, xj+1, . . . , xn) := (x1, . . . , xj−1, εg, xj+1, . . . , xn),

and is defined on the open set φ−1(Ui).

To simplify the notation we usually assume that j = n and ε = 1, so that we
have

U ∩ Ui = {x : xn > g(x1, . . . , xn−1)},
Si = ∂U ∩ Ui = {x : xn = g(x1, . . . , xn−1)},

and
φ(x1, . . . , xn−1) =

(
x1, . . . , xn−1, g(x1, . . . , xn−1)

)
.

Also note that the domain of g can be an open subset of Rn−1, and need not be all
of Rn−1. In fact, if we let P : (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1) be the projection
on Rn−1, then we can assume that the domain of g is P (Ui). Note that P (Ui) is an
open set in Rn−1. Because we can easily see that the projection of any open ball in
Rn is an open ball in Rn−1. And since the image of the union of some open balls
under P is the union of the image of those open balls, the image of Ui must be an
open set.
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In addition, we can easily change the coordinates to locally straighten the
boundary of U . Consider the C1 functions Φ,Ψ defined as{

yi = Φi(x) := xi for i < n,

yn = Φn(x) := xn − g(x1, . . . , xn−1),

and {
xi = Ψi(y) := yi for i < n,

xn = Ψn(y) := yn + g(y1, . . . , yn−1).

Note that the domain of Φ,Ψ is the open set P−1(V ), where V is the domain of g.
In particular, the domain of Φ,Ψ contains Ui. It is easy to see that Ψ = Φ−1, and

Φ(U ∩ Ui) ⊂ {yn > 0}, Φ(∂U ∩ Ui) ⊂ {yn = 0}.

Also note that

DΦ =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
−gx1 −gx2 . . . 1

;

so DΦ is invertible, and we have detDΦ = 1. The same is true about DΨ.

Proposition 9.22. Let U ⊂ Rn be a bounded open set with C1 boundary. Then U
also has almost C1 boundary.

Proof. The proof is similar to the proof of Theorem 9.14, in which we showed
that a manifold is rectifiable. We know that for every point a ∈ ∂U there is an
open ball Br(a) and a C1 function g (which depends on a) such that

U ∩Br(a) = {x ∈ Br(a) : xn > g(x1, . . . , xn−1)},
∂U ∩Br(a) = {x ∈ Br(a) : xn = g(x1, . . . , xn−1)}.

Let φa be the parametrization of ∂U ∩ Br(a) corresponding to g, and let Va :=
φ−1
a (Br(a)) be its domain. Now consider an open rectangle Ra containing φ−1

a (a),
such that Ra ⊂ Va. Then the collection {φa(Ra)}a∈∂U covers ∂U . Also, due to the
continuity of φ−1

a , each φa(Ra) is open in Br(a)∩∂U , hence it is open in ∂U . On the
other hand, ∂U is closed, and as U is bounded, ∂U is also bounded. Hence ∂U is
compact. Therefore finitely many of these open sets, namely φ1(R1), . . . , φm(Rm),
cover ∂U .

Next, similarly to the proof of Theorem 9.14, we can construct disjoint sets
S1, . . . , Sm out of φ1(R1), . . . , φm(Rm) such that

∂U = A t S1 t · · · t Sm,
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where A has (n − 1)-measure zero, and each Si is an (n − 1)-surface patch which
is an open set in ∂U . (Some of the Si’s might be empty, in which case we simply
discard them). Now since Si is open in ∂U , we have Si = ∂U ∩ Ũi for some open
set Ũi. We also have Si ⊂ φi(Ri) ⊂ Bri(ai). Set Ui := Ũi ∩Bri(ai). Then we have

Si = Si ∩Bri(ai) = ∂U ∩ Ũi ∩Bri(ai) = ∂U ∩ Ui.

To simplify the notation, let us denote the points of Rn by x = (x̃, xn). Then

Si = ∂U ∩ Ui = ∂U ∩Bri(ai) ∩ Ũi = {x ∈ Bri(ai) : xn = g(x̃)} ∩ Ũi
= {x ∈ Bri(ai) ∩ Ũi : xn = g(x̃)} = {x ∈ Ui : xn = g(x̃)}.

We also have

U ∩ Ui = U ∩Bri(ai) ∩ Ũi = {x ∈ Bri(ai) : xn > g(x̃)} ∩ Ũi
= {x ∈ Bri(ai) ∩ Ũi : xn > g(x̃)} = {x ∈ Ui : xn > g(x̃)}.

Therefore U has almost C1 boundary, as desired. �

Proposition 9.23. Let U ⊂ Rn be a bounded open set with almost C1 boundary.
Then U is Jordan measurable.

Proof. We only need to show that ∂U has measure zero in Rn. We know that
∂U consists of a set A with (n − 1)-measure zero, and several parts Si which are
graphs of C1 functions over some open sets. As we have shown in Theorem 8.44
and the remark after it, the graph of a continuous function over an open set has
measure zero. So each Si has measure zero. On the other hand, A has n-measure
zero in Rn too, since it has (n − 1)-measure zero. Therefore ∂U is the union of
finitely many sets with measure zero; so it also has measure zero. �

Next let us define the normal to an almost C1 boundary. Suppose

U ∩ Ui = {x : xn > g(x1, . . . , xn−1)},
∂U ∩ Ui = {x : xn = g(x1, . . . , xn−1)},

for some C1 function g. Let x̃ = (x1, . . . , xn−1). Then for small h, the points
(x̃, g(x̃)) and (x̃ + hek, g(x̃ + hek)) belong to ∂U . So their difference (hek, g(x̃ +
hek)− g(x̃)) is almost tangent to ∂U . If we normalize this vector by dividing it by
h, and let h → 0, then we intuitively know that the limit, i.e. (ek, Dkg(x̃)), must
be tangent to ∂U . It is easy to see that the vector (Dg(x̃),−1) is orthogonal to
(ek, Dkg(x̃)) for every k. Hence (Dg(x̃),−1) is normal to ∂U at the point (x̃, g(x̃)).
In addition, note that (Dg(x̃),−1) is pointing to the outside of U . Because if we
slightly move alongside of it we reach the point

(x̃, g(x̃)) + t(Dg(x̃),−1) =
(
x̃+ tDg(x̃), g(x̃)− t

)
.
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Now note that g(x̃+tDg(x̃)) = g(x̃)+tDg(x̃)·Dg(x̃)+r(t), where r(t) is a sublinear
function. Thus for small enough positive t we have |r(t)| ≤ t|Dg(x̃)|2 (provided that
Dg(x̃) is nonzero; otherwise the following desired inequality holds trivially). Hence
g(x̃+ tDg(x̃)) ≥ g(x̃) > g(x̃)− t. Therefore the above point belongs to U c.

Motivated by the above argument, we define the unit outward normal to ∂U
at the point a = (x̃0, g(x̃0)) to be

ν(a) :=
(Dg(x̃0),−1)√
1 + |Dg(x̃0)|2

=
1√

1 + |Dg(x̃0)|2
(
D1g(x̃0), . . . , Dn−1g(x̃0),−1

)
.

Note that ν is defined at every point of ∂U except on the set of possible singularities
of ∂U , which by assumption has (n− 1)-measure zero. In other words, ν is defined
at almost every point of ∂U . Also note that on the nonsingular part of ∂U , which
by assumption is an open subset of ∂U , ν is continuous. (When ∂U is C1, the
normal ν is defined and is continuous everywhere.) Of course we also need to check
that ν does not depend on the particular representation of ∂U around a as a graph
of a function.

To prove the independence of ν from the representation of ∂U , let us assume
that for some j ∈ {1, . . . , n}, ε ∈ {±1}, and C1 function f we also have

U ∩ U ′i = {y : εyj > f(y1, . . . , yj−1, yj+1, . . . , yn)},

and a ∈ ∂U ∩ U ′i , where

∂U ∩ U ′i = {y : yj = εf(y1, . . . , yj−1, yj+1, . . . , yn)}.

Let ŷ = (y1, . . . , yj−1, yj+1, . . . , yn). Then the points (εf(ŷ), ŷ) are on ∂U , where
(εf(ŷ), ŷ) is a shorthand notation for (y1, . . . , yj−1, εf(ŷ), yj+1, . . . , yn). Now for
some ŷ0 we have a = (εf(ŷ0), ŷ0). Then if we repeat the above argument, we arrive
at the following definition for the unit outward normal to the boundary

ν(a) =
1√

1 + |Df(ŷ0)|2
(
D1f(ŷ0), . . . , Dj−1f(ŷ0),−ε,Dj+1f(ŷ0), . . . , Dnf(ŷ0)

)
.

Let us show that these two values for ν are the same. First note that both of these
values are vectors with norm 1. In addition, for every x̃ in a neighborhood of x̃0

we have (x̃, g(x̃)) ∈ ∂U ∩ U ′i ; so there is ŷ such that (x̃, g(x̃)) = (εf(ŷ), ŷ). Hence
we have 

xk = yk k 6= j, n,

xj = εf(ŷ),

yn = g(x̃).

Thus

yn = g(x̃) = g(x1, . . . , xn−1) = g(y1, . . . , yj−1, εf(ŷ), yj+1, . . . , yn−1).
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Therefore 1 = ∂yn
∂yn

= εDjg
∂f
∂yn

= εDjgDnf . In particular we get Djg 6= 0. And for
k 6= j, n we have

0 =
∂yn
∂yk

= Dkg + εDjgDkf =⇒ Dkf = −εDkg

Djg
.

Hence(
D1f, . . . ,Dj−1f,−ε,Dj+1f, . . . ,Dnf

)
=
(
− εD1g

Djg
, . . . ,−εDj−1g

Djg
,−εDjg

Djg
,−εDj+1g

Djg
, . . . , ε

1

Djg

)
=
−ε
Djg

(
D1g, . . . , Dj−1g,Djg,Dj+1g, . . . ,−1

)
.

Now if we show that −ε
Djg

> 0, then we can normalize both sides of the above
equation to have norm 1, and conclude that the two formulas for ν give the same
value. And it will follow that ν is well defined. To see that −εDjg

> 0 note that we
obtained the formulas for ν by using the fact that a+ tν ∈ U c for small t > 0. We
can similarly show that a− tν ∈ U . Hence the two formulas for ν cannot point in
opposite directions, and −ε

Djg
must be positive. �

Sometimes part of ∂U is parametrized, but the parametrization does not come
from representing that part of ∂U as the graph of a function. Suppose ψ is a
parametrization of an open subset of ∂U containing the point a. In this case we
can still find ν(a) up to multiplication by ±1, using D1ψ, . . . ,Dn−1ψ. Note that
these vectors are linearly independent, since ψ is a parametrization and thus Dψ
has rank n − 1. Let us show that the subspace spanned by D1ψ, . . . ,Dn−1ψ does
not depend on the parametrization ψ. Let φ be another parametrization. Then we
know that φ−1 ◦ ψ is a C1 function. We have ψ = φ ◦ (φ−1 ◦ ψ). Hence

Dkψ =
∑
l

DlφDk(φ
−1 ◦ ψ)l =

∑
l

aklDlφ,

where akl = Dk(φ
−1 ◦ψ)l. So each Dkψ is a linear combination of D1φ, . . . ,Dn−1φ.

Conversely we can show that each Dkφ is a linear combination of D1ψ, . . . ,Dn−1ψ.
Thus the subspace spanned byD1ψ, . . . ,Dn−1ψ does not depend on the parametriza-
tion ψ. This subspace is known as the tangent space to ∂U at the point a.

Let φ(x̃) = (x̃, g(x̃)) be a parametrization of a neighborhood of a in ∂U , such
that U lies above the graph of the function g. As we have explained before the
definition of normal to the boundary, ν is orthogonal to D1φ, . . . ,Dn−1φ. Hence
ν(a) is orthogonal to the tangent space to ∂U at a. Now suppose we are given an
arbitrary parametrization ψ of ∂U . Then we know that ν is a vector with norm
one, and belongs to the one-dimensional orthogonal complement of the tangent
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space, which is spanned by the vectors D1ψ, . . . ,Dn−1ψ. Thus to determine ν
we only need to determine its direction, so that ν points to the outside of U .
However, an arbitrary parametrization like ψ does not provide sufficient information
for determining the direction of ν, and we need to additionally know U lies on which
side of ∂U .

Another case of interest is when (part of) ∂U is determined as the level set
{G = c} of a C1 function G from a subset of Rn into R whose derivative does not
vanish. Then by the implicit function theorem, {G = c} = {(x̃, g(x̃))} for some
C1 function g. (To simplify the notation we assumed that DnG 6= 0, so that xn
becomes a function of x̃ = (x1, . . . , xn−1).) We also know that

G(x̃, g(x̃)) = c =⇒ DkG+DnGDkg = 0.

Therefore Dkg = −DkG
DnG

. Hence

(D1g, . . . , Dn−1g,−1) =
−1

DnG
(D1G, . . . ,Dn−1G,DnG) =

−1

DnG
DG.

Thus ν is proportional to DG; so we have

ν = ± DG

|DG|
,

since ν has norm one. As before, to determine the sign we need to additionally
know U lies on which side of ∂U . The above observation can also be expressed by
saying that DG is orthogonal to the level sets of G. �

9.4 The Divergence Theorem

Let R =
∏
i≤n(a−i , a

+
i ) be an open rectangle. Then the functions g±i = a±i on

suitable domains define ∂R. In addition, R lies below the boundary parts corre-
sponding to g+

i = a+
i , and above the boundary parts corresponding to g−i = a−i .

Hence the unit outward normal ν to ∂R corresponding to these boundary parts are
±ei, respectively. Thus, in particular, for some j ≤ n we have νj = ±1 on the
parts of ∂R corresponding to g±j = a±j , and νj = 0 elsewhere on ∂R. Now let us
decompose R into (a−j , a

+
j )× R̂, where R̂ =

∏
i 6=j(a

−
i , a

+
i ) is an (n− 1)-dimensional

open rectangle. Let f be a C1 function from an open set containing R into R. Then
we have ∫

R
Djf dx =

∫
R̂

∫ a+j

a−j

Djf dxjdx̂

=

∫
R̂
f(a+

j , x̂)− f(a−j , x̂) dx̂ =

∫
∂R
fνj dσ.
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This is a special case of the divergence theorem.
Next note that if we have two adjacent rectangles, then the outward normals

to their common boundary part will be opposite to each other. Therefore when
we integrate fνj over the union of their boundaries, the integrals over the common
part of their boundaries cancel each other. By changing the coordinates, we can
also show that the same conclusions hold for deformed “curved rectangles”. So if a
domain can be decomposed as the union of several “curved rectangles” which only
intersect at their boundaries, then the divergence theorem holds for that domain.
Because the integral of Djf over the domain is the sum of its integrals over the
“curved rectangles”, and the sum of the integrals of fνj over the boundaries of the
“curved rectangles” is equal to its integral over the boundary of the domain, since
the integrals over the common boundary parts cancel each other.

To rigorously implement the above idea for the proof of the divergence theorem,
we need to be able to decompose a domain as the union of several “curved rectangles”
which only intersect at their boundaries. However, even for nice domains, proving
this property is not easy. Thus we follow another approach in which we prove the
divergence theorem by first working locally, and then patching things together using
partitions of unity, which we are going to introduce.

Definition 9.24. Let ζ : Rn → Rm. The support of ζ is the closure of the set
over which ζ 6= 0, i.e.

spt(ζ) := {x ∈ Rn : ζ(x) 6= 0}.

A function with compact support is a function whose support is a compact subset
of Rn.

Theorem 9.25. Let U ⊂ Rn be an open set, and let K ⊂ U be a compact set. Then
there is a C∞ function ζ : Rn → R with compact support, such that spt(ζ) ⊂ U ,
0 ≤ ζ ≤ 1, and ζ = 1 on K.

Proof. Consider the function

f(t) :=

{
e−

1
t t > 0,

0 t ≤ 0.

In Example 6.25 we showed that f is a C∞ function (which is not analytic). Let

g(t) := f(1− t)f(t).

Then g is a C∞ function which is positive on (0, 1), and is zero everywhere else.
Now consider an open rectangle R ⊂ Rn whose ith edge is (ai, bi). Set

η(x) := g
(x1 − a1

b1 − a1

)
· · · g

(xn − an
bn − an

)
.
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Then η : Rn → R is a C∞ function which is positive on R, and is zero everywhere
else; so spt(η) = R.

Since K ⊂ U , and U is open, for every x ∈ K there is an open rectangle
Rx containing x, such that Rx ⊂ U . And since K is compact, finitely many of
these open rectangles, namely R1, . . . , Rm, cover K. Let ηi be the smooth function
constructed above, whose support is Ri. Then γ := η1 + · · ·+ ηm is a C∞ function
which is positive on

⋃
iRi ⊃ K, and is zero outside of it. Since K is compact, we

have γ ≥ ε on K, for some ε > 0.
Now consider the function

h(t) :=
1

c

∫ t

0
g
(τ
ε

)
dτ,

where c =
∫ ε

0 g( τε )dτ . Then h′(t) = 1
cg( tε); so h is also C∞. Note that g( tε) is

positive on (0, ε), and zero elsewhere. In addition, for t < 0 we have

h(t) =
−1

c

∫ 0

t
g
(τ
ε

)
dτ =

−1

c

∫ 0

t
0 dτ = 0;

and for t ≥ ε we have

h(t) =
1

c

∫ t

0
g
(τ
ε

)
dτ =

1

c

∫ ε

0
g
(τ
ε

)
dτ +

1

c

∫ t

ε
g
(τ
ε

)
dτ =

1

c
c+

1

c

∫ t

ε
0 dτ = 1.

Also, since g( ·ε) is positive on (0, ε), h is positive there; and for t ∈ (0, ε) we
obviously have h(t) < 1, because

∫ t
0 g
(
τ
ε

)
dτ <

∫ ε
0 g
(
τ
ε

)
dτ .

Finally, let ζ := h ◦ γ. Then ζ is C∞, and 0 ≤ ζ ≤ 1, since 0 ≤ h ≤ 1. In
addition, for x ∈ K we have

ζ(x) = h(γ(x)) = 1,

because γ(x) ≥ ε. Also, for x /∈
⋃
iRi we have ζ(x) = 0, since γ(x) = 0. On the

other hand, by Exercise 2.36, the closure of the union of finitely many sets is the
union of their closures. Hence we have

spt(ζ) ⊂
⋃
Ri =

⋃
Ri ⊂ U.

Furthermore, spt(ζ) is compact, since it is closed, and
⋃
Ri is compact. �

Theorem 9.26. Let K ⊂ Rn be a compact set, and suppose U1, . . . , Um ⊂ Rn form
an open covering of K. Then there are C∞ functions ζ1, . . . , ζm : Rn → R with
compact support, such that spt(ζi) ⊂ Ui, 0 ≤ ζi ≤ 1, and for every x ∈ K we have

ζ1(x) + · · ·+ ζm(x) = 1.
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Remark. The functions ζ1, . . . , ζm are called a partition of unity subordinate to
the open covering U1, . . . , Um.

Proof. For every x ∈ K there is Ui such that x ∈ Ui. Hence there is an open
rectangle Rx containing x, such that Rx ⊂ Ui, because Ui is open. And since K is
compact, finitely many of these open rectangles, namely R1, . . . , Rl, cover K. Let
Vi be the union of all open rectangles Rj for which we have Rj ⊂ Ui. (A rectangle
Rj can also be a subset of another open set Ui′ , and in this case we include Rj in
Vi′ too.) Note that the open sets V1, . . . , Vm also cover K. Let γi : Rn → R be a
C∞ function with compact support spt(γi) ⊂ Ui, whose values are in [0, 1], and is
1 on V i. Now set ζ1 := γ1. And for i > 1 set

ζi := (1− γ1) · · · (1− γi−1)γi.

Note that ζi is a C∞ function whose values are in [0, 1], and vanishes outside the
support of γi. So spt(ζi) ⊂ spt(γi) ⊂ Ui; and thus spt(ζi) is compact too.

Finally note that for every k we have

ζ1 + · · ·+ ζk = 1− (1− γ1) · · · (1− γk).

Because for k = 1 the equality holds trivially. And if it holds for k, then for k + 1
we have

ζ1 + · · ·+ ζk + ζk+1 = 1− (1− γ1) · · · (1− γk) + (1− γ1) · · · (1− γk)γk+1

= 1− (1− γ1) · · · (1− γk)(1− γk+1),

as desired. Hence in particular ζ1 + · · ·+ ζm = 1− (1− γ1) · · · (1− γm). Now note
that for x ∈ K we have x ∈ Vi for some i. Hence we have γi(x) = 1. Therefore we
get

ζ1(x) + · · ·+ ζm(x) = 1− 0 = 1,

as wanted. �

Remark. Suppose that in the above theorem U1 = R1, . . . , Uk = Rk are open
cubes. Let R̃1, . . . , R̃k be open cubes with the same center and twice the side length.
Then R̃1, . . . , R̃k, Uk+1, . . . , Um is also an open covering of K. Let us construct
a partition of unity subordinate to this partition, which has special properties,
and will be needed in the proof of the divergence theorem. First note that if we
enlarge one of the sets Vi in the above proof, and use the corresponding γi, then
the construction of the partition of unity will still work. Let us use Ri instead of
Vi. In this case spt(γi) is not a subset of Ri anymore, but we can still make sure
that spt(γi) ⊂ R̃i.
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Let us recall how we constructed γi. Suppose the jth edge of the open cube Ri
is (aj , bj). Then bj − aj = l, where l is the side length of Ri. Then the jth edge of
R̃i is (aj − l/2, bj + l/2). Now consider the function

η(x) := g
(x1 − (a1 − l/4)

3
2 l

)
· · · g

(xn − (an − l/4)
3
2 l

)
,

where g is defined in the proof of Theorem 9.25. Then η is a C∞ function which is
positive on the open rectangle whose jth edge is (aj − l/4, bj + l/4), and vanishes
elsewhere. Let d be the minimum of g on [1

6 ,
5
6 ]. Then η ≥ dn on Ri, since for

x ∈ Ri we have xj−(aj−l/4)
3l/2 ∈ [1

6 ,
5
6 ]. If we set ε = dn, and use the function

h(t) :=
1

c

∫ t

0
g
(τ
ε

)
dτ,

with c =
∫ ε

0 g( τε )dτ , then as we showed in the proof of Theorem 9.25, γi := h ◦ η is
a C∞ function with values in [0, 1], which is 1 on Ri, and its support is in R̃i.

Now let us compute Djγi. We have

Djγi = h′(η)Djη =
1

c
g
(η
ε

) 2

3l
g′
(xj − (aj − l/4)

3
2 l

) ∏
j′ 6=j

g
(xj′ − (aj′ − l/4)

3
2 l

)
.

Let C0, C1 be the maximum of g, g′ respectively. Then we have

|Djγi| ≤
2Cn0C1

3c

1

l
=⇒ |Dγi| ≤

C

diam R̃i
,

for some constant C which only depends on the function g, and the dimension n;
because the diameter of a cube can be computed in terms of its side length.

Next remember that

ζ1 + · · ·+ ζk = 1− (1− γ1) · · · (1− γk).

Hence we have Dj(ζ1 + · · ·+ ζk) =
∑k

i=1Djγi
∏
i′ 6=i(1− γi′). Therefore∣∣Dj(ζ1 + · · ·+ ζk)

∣∣ ≤∑
i≤k
|Djγi|

∏
i′ 6=i
|1− γi′ |

≤
∑
i≤k
|Djγi| =

∑
i≤k
|Djγi|χR̃i ≤

∑
i≤k

C

diam R̃i
χR̃i ,

where χ denotes the characteristic function of a set. Note that |Djγi| = |Djγi|χR̃i
because Dγi is zero outside of R̃i. �
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Lemma 9.27. Let V,A ⊂ Rn. Suppose V is open and V ⊂ A. Also suppose f :
A→ R is integrable over compact Jordan measurable subsets of A, and spt(f) ⊂ V .
Then f is integrable over A if and only if it is integrable over V , and in this case
we have ∫

A
f(x)dx =

∫
V
f(x)dx.

Proof. First suppose f ≥ 0. Let S ⊂ V and K ⊂ A be arbitrary compact Jordan
measurable sets. Suppose f is integrable over A. Then since S ⊂ A we have∫

S
f(x)dx ≤ sup

K⊂A

∫
K
f(x)dx =

∫
A
f(x)dx <∞.

Hence, by taking supremum over S, we conclude that f is integrable over V and
we have

∫
V f(x)dx ≤

∫
A f(x)dx.

Now suppose f is integrable over V . Let Sk ⊂ V be a sequence of compact
Jordan measurable sets given by Theorem 8.63, which satisfy Sk ⊂ S◦k+1 and V =⋃
k≥1 Sk. Now spt(f) ∩ K is a compact subset of V , since spt(f) is closed. So it

is bounded and has a positive distance from ∂V . Thus, by the construction of the
sequence Sk in the proof of Theorem 8.63, there is m such that spt(f) ∩K ⊂ Sm.
Then, by Theorem 8.43 we get∫

K
f(x)dx =

∫
Sm

f(x)dx+

∫
K−Sm

f(x)dx =

∫
Sm

f(x)dx,

since f is zero on K − Sm. Hence we have∫
K
f(x)dx =

∫
Sm

f(x)dx ≤ sup
S⊂V

∫
S
f(x)dx =

∫
V
f(x)dx.

Therefore, by taking supremum over K, we conclude that f is integrable over A
and we have

∫
A f(x)dx ≤

∫
V f(x)dx. Thus for f ≥ 0, the integrability of f over

A, V are equivalent, and the integrals are equal.
Finally, for general f , the above argument implies that the integrability of

f± over A, V are equivalent, and we have
∫
A f
±(x)dx =

∫
V f
±(x)dx. Hence the

integrability of f over A, V are equivalent too, and∫
A
f(x)dx =

∫
A
f+(x)dx−

∫
A
f−(x)dx

=

∫
V
f+(x)dx−

∫
V
f−(x)dx =

∫
V
f(x)dx,

as desired. �

Next let us prove a special case of the divergence theorem, which will also be
used in the proof of the general form of the theorem.
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Lemma 9.28. Let U ⊂ Rn be a bounded open set with almost C1 boundary. Suppose
f is a C1 function from an open set containing U into R. Also suppose the support
of f is compact, and is contained in one of the open sets Ui such that Si = ∂U ∩Ui
is the graph of a C1 function. Then we have∫

U
Djf dx =

∫
Si

fνj dσ,

where ν is the unit outward normal to ∂U .

Remark. Note that Djf is integrable on U , since it is a bounded continuous
function and U is Jordan measurable. Also, fνj is bounded and continuous, and
since f has compact support, we can ensure that the domain of integration of fνj
has finite volume (as we will see in the following proof); so it is integrable over Si.

Proof. We know that

U ∩ Ui = {x : xn > g(x1, . . . , xn−1)},
∂U ∩ Ui = {x : xn = g(x1, . . . , xn−1)},

for some C1 function g (which depends on i). Consider the C1 change of coordinates
Φ,Ψ which straighten ∂U ∩ Ui. Then we have

Φ(U ∩ Ui) ⊂ {yn > 0}, Φ(∂U ∩ Ui) ⊂ {yn = 0}.

Note that the support of f is contained in Ui (which is itself contained in the domain
of Φ). Let us find a bounded open set that contains spt(f) and its closure is in
Ui, such that its image under Φ is also bounded. Note that ∂Ui, spt(f) are disjoint
closed sets and one of them is compact. Hence, by Exercise 2.111, the distance
between their points has a positive minimum d. Now consider the open cubes with
diameter d

2 whose center is a point of spt(f). Then finitely many of these open
cubes cover spt(f). Then the union of these cubes is our desired bounded open set.
Let us call this bounded open set Wi (note that Wi is also Jordan measurable).
So U ∩Wi is bounded too. Note that U ∩Wi is contained in W i ⊂ Ui; so it is
contained in the domain of Φ. In addition, Φ(U ∩Wi) is also bounded, since it is
a subset of the compact set Φ(W i).

Hence by the change of variables theorem and the previous lemma we have∫
U
Djf dx =

∫
U∩Wi

Djf dx (since spt(f) ⊂Wi)

=

∫
Ψ(Φ(U∩Wi))

Djf dx =

∫
Φ(U∩Wi)

(Djf) ◦Ψ |detDΨ| dy

=

∫
Φ(U∩Wi)

(Djf) ◦Ψ dy. (since detDΨ = 1)
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Remember that {
xi = Ψi(y) := yi for i < n,

xn = Ψn(y) := yn + g(y1, . . . , yn−1).

Now note that

Dn(f ◦Ψ) =
∑

k
(Dkf) ◦Ψ ·DnΨk = (Dnf) ◦Ψ. (∗)

And thus when j 6= n we have

Dj(f ◦Ψ) =
∑

k
(Dkf) ◦Ψ ·DjΨk

= (Djf) ◦Ψ + (Dnf) ◦Ψ ·Djg = (Djf) ◦Ψ +DjgDn(f ◦Ψ).

So
(Djf) ◦Ψ = Dj(f ◦Ψ)−DjgDn(f ◦Ψ). (∗∗)

Let R ⊂ {yn > 0} be a rectangle containing Φ(U ∩Wi), such that ∂R∩{yn = 0}
is one of the faces of ∂R, and contains Φ(∂U ∩Wi). We can decompose R into
[aj , bj ] × R̂, where R̂ is the (n − 1)-dimensional rectangle which is the product of
all the edges of R other than its jth edge [aj , bj ]. We can also decompose R into
R̃× [0, bn], where R̃ is the (n− 1)-dimensional rectangle which is the product of all
the edges of R other than its nth edge [0, bn]. Note that R̃× {0} = ∂R ∩ {yn = 0}
is the face of ∂R described above. Therefore, by (∗∗), for j 6= n we have∫

U∩Wi

Djf dx =

∫
Φ(U∩Wi)

(Djf) ◦Ψ dy

=

∫
Φ(U∩Wi)

Dj(f ◦Ψ)−DjgDn(f ◦Ψ) dy

=

∫
R
Dj(f ◦Ψ)−DjgDn(f ◦Ψ) dy,

where the last equality follows from the previous lemma, noting that spt(f ◦Ψ) ⊂
Ψ−1(spt(f)) = Φ(spt(f)) ⊂ Φ(U ∩Wi). Now we have∫

R
Dj(f ◦Ψ) dy =

∫
R̂

∫ bj

aj

Dj(f ◦Ψ) dyjdŷ

=

∫
R̂
f(Ψ(bj , ŷ))− f(Ψ(aj , ŷ)) dŷ =

∫
R̂

0 dŷ = 0,

since f ◦Ψ vanishes on a neighborhood of the faces of ∂R other than ∂R∩{yn = 0},
and the points (bj , ŷ), (aj , ŷ) belong to those faces. Note thatDj(f◦Ψ) is continuous
and R is Jordan measurable, so the above integral is a proper Riemann integral,
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and we can apply Fubini’s theorem. Similarly, since g does not depend on yn we
have

−
∫
R
DjgDn(f ◦Ψ) dy = −

∫
R̃
Djg

∫ bn

0
Dn(f ◦Ψ) dyndỹ

= −
∫
R̃
Djg ·

(
f(Ψ(ỹ, bn))− f(Ψ(ỹ, 0))

)
dỹ

=

∫
R̃
Djg · f(Ψ(ỹ, 0)) dỹ

=

∫
R̃

Djg(ỹ)√
1+|Dg(ỹ)|2

√
1 + |Dg(ỹ)|2 · f(ỹ, g(ỹ)) dỹ

=

∫
R̃
νj(φ(ỹ))J · f(φ(ỹ)) dỹ,

where ν is the unit outward normal to Si, and J is the volume factor of the
parametrization φ(ỹ) = (ỹ, g(ỹ)) = Ψ(ỹ, 0) of Si. Note that Fubini’s theorem
implies that the integral over R̃ exists.

Now note that φ−1 = P , where P is the projection on the first n−1 components.
Furthermore, φ−1(Wi) = φ−1(∂U ∩Wi) since the image of φ is inside ∂U . Hence
we have

φ−1(Wi) = φ−1(∂U ∩Wi) = P (∂U ∩Wi) = P (Φ(∂U ∩Wi)) ⊂ R̃,

where the last equality follows from the fact that P (Φ(y)) = P (y) = ỹ for every
point y. Also note that we have spt(f ◦ φ) ⊂ φ−1(Wi) ⊂ φ−1(Ui) since spt(f) ⊂
Wi ⊂ Ui. Therefore by applying the previous lemma twice and using the definition
of integral over the surface patch Si we get∫

R̃
νjf(φ(ỹ))J dỹ =

∫
φ−1(Wi)

νjf(φ(ỹ))J dỹ

=

∫
φ−1(Ui)

νjf(φ(ỹ))J dỹ =

∫
Si

νjf dσ.

Note that the existence of integrals over φ−1(Wi) and φ−1(Ui) follows from the
previous lemma too.

On the other hand, by (∗), when j = n we have∫
R

(Dnf) ◦Ψ dy =

∫
R
Dn(f ◦Ψ) dy

=

∫
R̃

∫ bn

0
Dn(f ◦Ψ) dyndỹ

=

∫
R̃
f(Ψ(ỹ, bn))− f(Ψ(ỹ, 0)) dỹ = −

∫
R̃
f(Ψ(ỹ, 0)) dỹ



CHAPTER 9. INTEGRATION OVER SURFACES 328

=

∫
R̃

−1√
1+|Dg|2

√
1 + |Dg|2 · f(ỹ, g(ỹ)) dỹ

=

∫
R̃
νnf(φ(ỹ))J dỹ =

∫
Si

νnf dσ =

∫
Si

νjf dσ.

Hence in either case we have shown that∫
U
Djf dx =

∫
Si

fνj dσ,

as desired. �

Suppose U ⊂ Rn is a bounded open set with C1 boundary. Then every a ∈ ∂U
has a neighborhood Ua such that U ∩ Ua = {xn > g(x̃)} and ∂U ∩ Ua = {xn =
g(x̃)} for some C1 function g (here x̃ = (x1, . . . , xn−1)). Since ∂U is compact,
finitely many of these open neighborhoods, namely U1, . . . , Um, cover ∂U . Then
U,U1, . . . , Um is an open covering of the compact set U . Let ζ0, ζ1, . . . , ζm be a
partition of unity subordinate to this open covering whose sum is 1 on U . We have∫

U
Djf dx =

∫
U

1 ·Djf dx =

∫
U

∑m

i=0
ζiDjf dx

=
∑∫

U
ζiDjf dx =

∑∫
U
Dj(ζif)− fDjζi dx

=
∑∫

U
Dj(ζif) dx−

∑∫
U
fDjζi dx

=
∑∫

U
Dj(ζif) dx−

∫
U
fDj

(∑
ζi
)
dx

=
∑∫

U
Dj(ζif) dx−

∫
U
fDj(1) dx =

∑∫
U
Dj(ζif) dx.

Let Q be a rectangle containing U . Let us denote a point x ∈ Rn by (xj , x̂),
where x̂ is the vector of all the components of x other than xj . We can also
decompose Q into [aj , bj ]× Q̂, where Q̂ is the (n− 1)-dimensional rectangle which
is the product of all the edges of Q other than its jth edge [aj , bj ]. Then we have∫

U
Dj(ζ0f) dx =

∫
Q
Dj(ζ0f) dx =

∫
Q̂

∫ bj

aj

Dj(ζ0f) dxjdx̂

=

∫
Q̂

(ζ0f)(bj , x̂)− (ζ0f)(aj , x̂) dx̂ =

∫
Q̂

0 dx̂ = 0,

since ζ0f vanishes on ∂Q, and the points (bj , x̂), (aj , x̂) belong to ∂Q.
Next consider a fixed i ≥ 1. From the proofs of Proposition 9.22 and Theorem

9.14 it is easy to see that we can decompose ∂U into several disjoint (n−1)-surface
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patches S1, . . . , Sl and a set A with (n− 1)-measure zero such that S1 = ∂U ∩ Ui.
Now we know that spt(ζif) is compact and is contained in Ui. Hence by the above
lemma we have ∫

U
Dj(ζif) dx =

∫
S1

ζifνj dσ.

However by the definition of integral over a rectifiable set we have∫
∂U
ζifνj dσ =

l∑
i′=1

∫
Si′

ζifνj dσ =

∫
S1

ζifνj dσ,

since ζif is zero on S2, . . . , Sl. (Note that for each i we need a different decompo-
sition of ∂U to prove the above equality.) Therefore we get∫

U
Djf dx =

∑
i≤m

∫
U
Dj(ζif) dx =

∑
i≤m

∫
∂U
ζifνj dσ

=

∫
∂U
fνj

∑
i≤m

ζi dσ =

∫
∂U
fνj dσ,

since
∑

i≤m ζi = 1 on ∂U . Thus we have proved the divergence theorem for domains
with C1 boundary. But when the boundary is almost C1 and has some singularities
we also need to analyze the integrals around the singular points of the boundary.
This is done in the next theorem.

The Divergence Theorem. Let U ⊂ Rn be a bounded open set with almost C1

boundary, and suppose vol(∂U) < ∞. Let f be a C1 function from an open set
containing U into R. Then we have∫

U
Djf dx =

∫
∂U
fνj dσ,

where ν is the unit outward normal to ∂U . As a result, if F is a C1 function from
an open set containing U into Rn, we have∫

U
divF dx =

∫
∂U
F · ν dσ,

where divF := D1F1 +D2F2 + · · ·+DnFn is the divergence of F .

Remark. Note that Djf is integrable on U , since it is a bounded continuous
function and U is Jordan measurable. Also, fνj is a bounded function which is
continuous on every surface patch of any decomposition of ∂U ; thus since ∂U has
finite volume, fνj is integrable over ∂U .



CHAPTER 9. INTEGRATION OVER SURFACES 330

Proof. First note that the second part of the theorem follows from its first part;
since for a vector-valued function F we have∫

U
divF dx =

∫
U

∑
DiFi dx =

∫
∂U

∑
Fiνi dσ =

∫
∂U
F · ν dσ.

So we only need to prove the first statement. We break the proof into several parts
to make it more comprehensible, although the parts are intertwined. The idea is
to use a partition of unity subordinate to an open covering of U , such that the
singular part of ∂U lies in some open sets whose total volume is small, and their
intersection with ∂U has small “area”.

(i) Suppose ∂U = A t S1 t · · · t Sm, where A has (n − 1)-measure zero, and
each Si is an (n− 1)-surface patch. We know that there are open sets Ui such that
Si = ∂U ∩Ui is the graph of a C1 function, and U ∩Ui is the region above or below
that graph. Let φi : Vi → Rn be the corresponding parametrization of Si, where
Vi = φ−1

i (Ui) is an open set in Rn−1. We know that the volume of Si is finite,
so vol(Si) =

∫
Vi
Ji(x)dx < ∞, where Ji is the volume factor of φi. Thus, by the

definition of the integral of the nonnegative function Ji, there is a compact Jordan
measurable set K ⊂ Vi such that∫

Vi

Ji(x)dx− ε <
∫
K
Ji(x)dx ≤

∫
Vi

Ji(x)dx,

for a given ε > 0. Consider the open set Wi := Vi −K. Then we have∫
Wi

Ji(x)dx < ε, (?)

because for any compact Jordan measurable set K̃ ⊂ Wi we have K̃ ∩K = ∅, and
thus ∫

K̃
Ji(x)dx+

∫
K
Ji(x)dx =

∫
K̃∪K

Ji(x)dx ≤
∫
Vi

Ji(x)dx,

since K̃ ∪K is a compact Jordan measurable subset of Vi. Hence∫
K̃
Ji(x)dx ≤

∫
Vi

Ji(x)dx−
∫
K
Ji(x)dx < ε.

Therefore, by taking supremum over K̃, we can conclude that Ji is integrable over
Wi, and its integral satisfies the desired estimate (?).

Now note that Vi −Wi = K is compact. Therefore φi(Vi −Wi) is a compact
subset of ∂U . Hence ∂U −

⋃
i φi(Vi −Wi) is an open subset of ∂U . Thus there is

an open set W ⊂ Rn such that ∂U ∩W = ∂U −
⋃
i φi(Vi−Wi). Note that ∂U ∩W

contains A, since φi(Vi−Wi) ⊂ Si. In other words, the possible singularities of ∂U



CHAPTER 9. INTEGRATION OVER SURFACES 331

are contained in ∂U ∩W . We can also assume that W is bounded, since we can
consider its intersection with a bounded open set containing U . In addition note
that Si ∩W = φi(Wi). So its (n− 1)-dimensional volume satisfies

vol(Si ∩W ) =

∫
Wi

Ji(x)dx < ε, (∗)

due to the estimate (?).
On the other hand, since A has (n − 1)-measure zero, for δ > 0 there is a

countable family of open cubes {Rk} in Rn that covers A, and satisfies∑
k≥1

(diamRk)
n−1 < δ.

Note that diamRk ≤ δ
1

n−1 . Now note that A is closed in ∂U . So A is compact.
Thus we can assume that the family of cubes has finitely many elements, namely
R1, . . . , Rl. Let R̃k be the cube with the same center as Rk, and twice the side
length. Then R̃1, . . . , R̃l also cover A, and we have∑

k≥1

(diam R̃k)
n−1 < 2n−1δ. (∗∗)

In addition, note that A ⊂ W , and W is bounded. Hence A and ∂W are disjoint
compact sets. Thus the distance between their points has a positive minimum.
Therefore we can assume δ is small enough so that each R̃k is inside W . We also
assume that 2n−1δ < εn−1, so that diam R̃k < ε.

(ii) Now the open sets R1, . . . , Rl, U1, . . . , Um, U cover the compact set U∪∂U =
U . Hence the open sets R̃1, . . . , R̃l, U1, . . . , Um, U also cover U . Let ζ1, . . . , ζl+m, ζ0

be a partition of unity subordinate to the second open covering whose sum is 1 on
U . As explained in the remark after Theorem 9.26, we can furthermore assume
that ∣∣∣Dj

(∑
k≤l

ζk

)∣∣∣ ≤∑
k≤l

C

diam R̃k
χR̃k , (∗∗∗)

where the constant C only depends on the dimension n.
As we have shown before this theorem we have∫

U
Djf dx =

l+m∑
i=0

∫
U
Dj(ζif) dx.

We have also seen that
∫
U Dj(ζ0f) dx = 0. Next consider

∫
U Dj(ζl+if) dx, where

1 ≤ i ≤ m. Note that the support of ζl+if is compact and is contained in Ui. Hence
by the previous lemma we have∫

U
Dj(ζl+if) dx =

∫
Si

ζl+ifνj dσ,
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for 1 ≤ i ≤ m.
Finally note that∫

∂U
fνj dσ =

l+m∑
i=0

∫
∂U
ζifνj dσ

=
m∑
i=1

∫
∂U
ζl+ifνj dσ +

l∑
k=1

∫
∂U
ζkfνj dσ

=
m∑
i=1

m∑
i′=1

∫
Si′

ζl+ifνj dσ +
l∑

k=1

∫
∂U
ζkfνj dσ

=

m∑
i=1

∫
Si

ζl+ifνj dσ +

l∑
k=1

∫
∂U
ζkfνj dσ,

since ζl+i is zero on Si′ for i′ 6= i, and ζ0 is zero on ∂U .
(iii) From what we have shown so far we can conclude that∫

U
Djf dx−

∫
∂U
fνj dσ =

∑
k≤l

∫
U
Dj(ζkf) dx−

∑
k≤l

∫
∂U
ζkfνj dσ.

Let C0, C1 be upper bounds for |f |, |Df | on U , respectively. Then by inequalities
(∗∗), (∗∗∗), and the fact that diamRk < ε we have∣∣∣∣∣∣

∑
k≤l

∫
U
Dj(ζkf) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
U
Dj

(∑
k≤l

ζkf
)
dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
U
fDj

(∑
k≤l

ζk

)
+
(∑
k≤l

ζk

)
Djf dx

∣∣∣∣∣∣
≤
∫
U
|f |
∣∣∣Dj

(∑
ζk

)∣∣∣ dx+

∫
U

∑
ζk|Djf | dx

≤
∫
U
|f |
∑ C

diam R̃k
χR̃k dx+

∫
U

∑
χR̃k |Djf | dx

≤
∑∫

R̃k

|f | C

diam R̃k
dx+

∑∫
R̃k

|Djf | dx

≤
∑
|R̃k|

( C0C

diam R̃k
+ C1

)
≤
∑(

C0C(diam R̃k)
n−1 + C1(diam R̃k)

n
)

≤ (C0C + C1ε)
∑

(diam R̃k)
n−1 < (C0C + C1ε)2

n−1δ.
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Note that we have also used the fact that 0 ≤ ζk ≤ χR̃k , which holds because
ζk ≤ 1 and vanishes outside R̃k. Also note that since we do not have an upper
bound for the number of cubes Rk, we cannot obtain a bound for

∑
(diam R̃k)

n−1

just by knowing that diam R̃k is small for each k; and thus it is essential to have
the inequality (∗∗).

On the other hand, we have
∑

k≤l ζk ≤ 1, and
∑

k≤l ζk is zero outside W .
Remember that Si ∩W = φi(Wi), and Wi is an open subset of Vi = φ−1

i (Ui). Let
Ji be the volume factor of the parametrization φi. Then, by Lemma 9.27, we have∫

Si

fνj
∑

ζk dσ =

∫
Vi

(
fνj

∑
ζk
)
(φi(x))Ji dx

=

∫
Wi

(
fνj

∑
ζk
)
(φi(x))Ji dx =

∫
Si∩W

fνj
∑

ζk dσ,

because spt
(
(fνj

∑
ζk)◦φi

)
⊂ spt

(
(
∑
ζk)◦φi

)
⊂Wi as φi is one-to-one. Therefore

since |νj
∑
ζk| ≤ 1 we get∣∣∣∣∫

Si

fνj
∑

ζk dσ

∣∣∣∣ =

∣∣∣∣∫
Si∩W

fνj
∑

ζk dσ

∣∣∣∣ ≤ C0 vol(Si ∩W ) < C0ε,

where the bound for vol(Si ∩W ) is given by inequality (∗). So∣∣∣∣∫
∂U
fνj

∑
ζk dσ

∣∣∣∣ < mC0ε.

Thus we have shown that∣∣∣∣∫
U
Djf dx−

∫
∂U
fνj dσ

∣∣∣∣ < (C0C + C1ε)2
n−1δ +mC0ε→ 0,

as ε, δ → 0. Hence we get the desired result. �

Integration by Parts. Let U ⊂ Rn be a bounded open set with almost C1 bound-
ary. Let f, g be C1 functions from an open set containing U into R. Then we
have ∫

U
gDjf dx = −

∫
U
fDjg dx+

∫
∂U
fgνj dσ,

where ν is the unit outward normal to ∂U .

Remark. A particularly useful case of integration by parts is when f |∂U = 0 or
g|∂U = 0, in which case we have∫

U
gDjf dx = −

∫
U
fDjg dx.
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Proof. By the divergence theorem we have∫
U
gDjf dx+

∫
U
fDjg dx =

∫
U
Dj(fg) dx =

∫
∂U
fgνj dσ,

which gives the desired. �

Suppose n = 2. Let
(x, y) 7→ (x, y)⊥ = (−y, x)

denote the 90 degrees counterclockwise rotation around the origin in R2. Note that
for z, w ∈ R2 we have (z⊥)⊥ = −z, and z⊥ ·w⊥ = z ·w. Let D ⊂ R2 be a bounded
open set with almost C1 boundary, and let F = (f, g) be a C1 function from an
open neighborhood of D into R2. Then F⊥ = (−g, f). Hence by the divergence
theorem we have∫

∂D
F · ν⊥ ds =

∫
∂D

F⊥ · (ν⊥)⊥ ds = −
∫
∂D

F⊥ · ν ds

= −
∫∫

D
divF⊥ dxdy =

∫∫
D
gx − fy dxdy.

Now note that T := ν⊥ is tangent to ∂D. If φ : I → R2 is a parametrization
of ∂D then φ′ is also tangent to ∂D. Thus φ′

|φ′| = ±T. Let us assume that the

direction along which φ traverses ∂D is such that φ′

|φ′| = T holds (otherwise we
can consider φ(−t) instead). Note that the length factor corresponding to φ is√

det(φ′Tφ′) =
√
|φ′|2 = |φ′|. Thus we have∫

∂D
F · T ds =

∫
I
F (φ(t)) · φ

′(t)

|φ′(t)|
|φ′(t)|dt

=

∫
I
F (φ(t)) · φ′(t) dt =

∫
I
f(φ(t))φ′1(t) + g(φ(t))φ′2(t) dt.

Motivated by this formula we define∫
∂D

fdx+ gdy :=

∫
∂D

F · T ds =

∫
∂D

F · ν⊥ ds.

Therefore we have shown that∫
∂D

fdx+ gdy =

∫∫
D
gx − fy dxdy,

which is known as the Green’s theorem.
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9.5 Cauchy Integral Theorem and Formula

Let f be a function from a subset of C into C. Then we have

f(z) = u(x, y) + iv(x, y),

where z = x + iy, and u, v are functions from a subset of R2 = C into R. Let us
formally set dz = dx+ idy, and formally compute

f(z)dz = (u+ iv)(dx+ idy) = udx− vdy + i(vdx+ udy).

Now let D ⊂ C be a bounded open set with almost C1 boundary. Then, motivated
by the above computation, we define∫

∂D
f(z)dz :=

∫
∂D

udx− vdy + i

∫
∂D

vdx+ udy

=

∫
∂D

(u,−v) · ν⊥ ds+ i

∫
∂D

(v, u) · ν⊥ ds,

where ν is the unit outward normal to ∂D, and ν⊥ = (−ν2, ν1) is the unit tangent
vector to ∂D. Let φ : I → C be a parametrization of ∂D such that φ′

|φ′| = T = ν⊥.
Note that the length factor corresponding to φ is |φ′|. Then we have∫

∂D
f(z)dz =

∫
I

(
(u,−v) · φ

′(t)

|φ′(t)|
+ i (v, u) · φ

′(t)

|φ′(t)|

)
|φ′(t)|dt

=

∫
I
(u,−v) · φ′(t) + i (v, u) · φ′(t) dt

=

∫
I
u(φ(t))φ′1(t)− v(φ(t))φ′2(t) + i

(
v(φ(t))φ′1(t) + u(φ(t))φ′2(t)

)
dt

=

∫
I
u(φ(t))

(
φ′1(t) + iφ′2(t)

)
+ iv(φ(t))

(
φ′1(t) + iφ′2(t)

)
dt

=

∫
I

(
u(φ(t)) + iv(φ(t))

)(
φ′1(t) + iφ′2(t)

)
dt;

which is a useful formula for computing the integral
∫
∂D f(z)dz.

Cauchy Integral Theorem. Let D ⊂ C be a bounded open set with almost C1

boundary. Suppose f = u + iv is a holomorphic function on D, and furthermore,
u, v are C1 function from an open set containing D into R. Then we have∫

∂D
f(z)dz = 0.
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Proof. We have∫
∂D

f(z)dz =

∫
∂D

udx− vdy + i

∫
∂D

vdx+ udy (by definition)

=

∫∫
D

(−v)x − uy dxdy (by Green’s theorem)

+ i

∫∫
D
ux − vy dxdy

=

∫∫
D

0 dxdy + i

∫∫
D

0 dxdy (by Cauchy-Riemann equations)

= 0 + i0 = 0,

as desired. �

Cauchy Integral Formula. Let D ⊂ C be a bounded open set with almost C1

boundary. Suppose f = u + iv is a holomorphic function on D, and furthermore,
u, v are C1 function from an open set containing D into R. Let z0 ∈ D. Then we
have

f(z0) =
1

2πi

∫
∂D

f(z)

z − z0
dz.

Proof. Since D is open we have B2r(z0) ⊂ D for some r. Then Br(z0) ⊂ D.
Let U = D − Br(z0). Then ∂U = ∂D t ∂Br(z0). Note that the circle ∂Br(z0) is
1-rectifiable; so ∂U is almost C1. In addition, f(z)

z−z0 is holomorphic on D − {z0}.
Thus by Cauchy integral theorem we have∫

∂U

f(z)

z − z0
dz = 0.

Now note that if we remove one point from the circle ∂Br(z0), we can parametrize
the remaining part with a C1 parametrization. We can also decompose ∂D into
several C1 curves and a set with 1-measure zero. Therefore by the definition of
integral over rectifiable sets we have

0 =

∫
∂U

f(z)

z − z0
dz =

∫
∂D

f(z)

z − z0
dz +

∫
∂B

f(z)

z − z0
dz,

where B = Br(z0). Note that in both of the above integrals we use tangent vectors
which result from 90 degrees counterclockwise rotation of the outward normal to
∂U . In particular, the normal to ∂B ⊂ ∂U must point to the inside of B, i.e.
toward z0. If we consider ∂B as the boundary of B, and use the outward normal
to ∂B which points to the outside of B, then the sign of the corresponding integral
will flip, and we obtain ∫

∂D

f(z)

z − z0
dz =

∫
∂B

f(z)

z − z0
dz.
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Now let t 7→ z0 + reit for t ∈ (0, 2π) be a parametrization of ∂B − {z0 + r}. Note
that the derivative of this parametrization has the desired direction, compatible
with the outward normal. Then we have∫

∂B

f(z)

z − z0
dz =

∫ 2π

0

f(z0 + reit)

reit
ireitdt = i

∫ 2π

0
f(z0 + reit)dt.

Now note that
∫ 2π

0 f(z0)dt = f(z0)
∫ 2π

0 1 dt = 2πf(z0). Hence∣∣∣∣∫ 2π

0
f(z0 + reit)dt− 2πf(z0)

∣∣∣∣ =

∣∣∣∣∫ 2π

0

(
f(z0 + reit)− f(z0)

)
dt

∣∣∣∣
≤
∫ 2π

0

∣∣f(z0 + reit)− f(z0)
∣∣dt

≤ 2π max
0≤t≤2π

∣∣f(z0 + reit)− f(z0)
∣∣ −→
r→0

0,

since f is continuous. Therefore we get the desired formula. �



Chapter 10

Lebesgue Measure

10.1 Outer Measure

Definition 10.1. A closed rectangle in Rn is a product of n bounded closed
intervals, i.e. it is a set of the form

[a1, b1]× · · · × [an, bn] ⊂ Rn.

Similarly, an open rectangle in Rn is a product of n bounded open intervals, i.e.
it is a set of the form

(a1, b1)× · · · × (an, bn) ⊂ Rn.
In general, a rectangle R in Rn is a product of n bounded intervals, i.e. there are
bounded intervals I1, I2, . . . , In ⊂ R such that

R := I1 × I2 × · · · × In ⊂ Rn.

Each interval Ii can be closed, open, or half-open. The intervals Ii are called the
edges of R. Let ai, bi be the left endpoint and the right endpoint of Ii respectively.
Then bi − ai is the length of the interval Ii. The rectangle R is called a cube if
bi−ai = b1−a1 for all i ≤ n. When n = 2, cubes are called squares. The volume
of the rectangle R is the positive real number

|R| := (b1 − a1) · · · (bn − an).

When n = 1, 2, the volume is called the length or the area, respectively. The
points (c1, . . . , cn) where each ci is either ai or bi, are called the vertices of the
rectangle R.

Remark. Note that a closed rectangle is closed, being a product of closed sets; and
an open rectangle is open, being a product of open sets. Let R be the rectangle in
the above definition. It is easy to see that

R = [a1, b1]× · · · × [an, bn], R◦ = (a1, b1)× · · · × (an, bn).

338
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In other words, the closure of a rectangle is a closed rectangle, and the interior of
a rectangle is an open rectangle. As a result we have

∂R = R−R◦ =
⋃
i≤n

[a1, b1]× · · · × {ai, bi} × · · · × [an, bn].

Definition 10.2. A partition P of an interval [a, b] ⊂ R is a finite set of points
{c0, . . . , cm} such that

a = c0 < c1 < · · · < cm = b.

The interval [ci−1, ci] is called the ith subinterval of the partition P .

Definition 10.3. A partition of the closed rectangle

R = [a1, b1]× · · · × [an, bn],

is a cartesian product P := P1×· · ·×Pn, where each Pi is a partition of the interval
[ai, bi]. Suppose [ci, di] is a subinterval of the partition Pi, then the closed rectangle

[c1, d1]× · · · × [cn, dn]

is called a subrectangle of the partition P . If Pi divides [ai, bi] intoNi subintervals,
then P divides R into N1 · · ·Nn subrectangles. We denote these subrectangles by
Rα, where α is the multi-index (α1, . . . , αn) such that 1 ≤ αi ≤ Ni. In this notation,
Rα denotes the subrectangle Iα1 × · · · × Iαn , where Iαi is the αith subinterval of
Pi. We sometimes abuse the notation and write P = {Rα}.

Theorem 10.4. Let R ⊂ Rn be a rectangle.
(i) Suppose P = {Rα} is a partition of R. Then we have

|R| =
∑
|Rα|.

(ii) Suppose R1, . . . , Rm are rectangles in Rn, and R ⊂
⋃
Ri. Then

|R| ≤
∑
|Ri|.

(iii) Suppose R1, . . . , Rm ⊂ R are rectangles that have pairwise disjoint interiors,
i.e. R◦i ∩R◦k = ∅ for every i 6= k. Then∑

|Ri| ≤ |R|.

If in addition we have R =
⋃
Ri, then

|R| =
∑
|Ri|.
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Proof. Let R = [a1, b1]× · · · × [an, bn]. In the following, we will use the fact that
the closure of a rectangle is a closed rectangle that has the same volume as the
original rectangle.

(i) Suppose P = P1 × · · · × Pn. Let us denote the subrectangles of P by
Rα = Iα1 × · · · × Iαn , where Iαi is a subinterval of Pi and 1 ≤ αi ≤ Ni. Then we
have

∑
|Rα| =

N1∑
α1=1

· · ·
Nn∑
αn=1

|Iα1 | · · · |Iαn | =
n∏
i=1

( Ni∑
αi=1

|Iαi |
)

=

n∏
i=1

(bi − ai) = |R|.

(ii) Let us denote R by R0 to simplify the notation. First we assume that all
the rectangles are closed. Suppose

Ri = [ai1, bi1]× · · · × [ain, bin].

Let
R̂ = I1 × · · · × In.

be a closed rectangle that contains R0, R1, . . . , Rm. Let Qj be a partition of Ij
that contains aij , bij for all i ≤ m. Then for a fixed i, Qj ∩ [aij , bij ] is a partition
of [aij , bij ]. Now Q =

∏
j≤nQj is a partition of R̂ that contains all the vertices of

every Ri. Then note that

Q ∩Ri =
(∏
j≤n

Qj

)⋂(∏
j≤n

[aij , bij ]
)

=
∏
j≤n

(Qj ∩ [aij , bij ])

is a partition of Ri. Suppose {Sα} is the set of subrectangles of Q. Then the set of
subrectangles of Q ∩Ri is

{Sα : Sα ⊂ Ri}.

To see this note that each subinterval of Qj ∩ [aij , bij ] is also a subinterval of Qj .
Thus the subrectangles of Q ∩ Ri belong to the set {Sα}. The subrectangles of
Q ∩ Ri are also obviously subsets of Ri, so they belong to {Sα : Sα ⊂ Ri}. On
the other hand, suppose Sα is a subrectangle of Q such that Sα =

∏
j≤n Iαj ⊂ Ri.

Then the endpoints of Iαj are between aij , bij , and also belong to Qj . So Iαj is a
subinterval of Qj ∩ [aij , bij ]. Therefore Sα is a subrectangle of Q ∩ Ri as desired.
As a result we have ∑

Sα⊂Ri

|Sα| = |Ri|.

Now we have

{Sα : Sα ⊂ R0} ⊂
m⋃
i=1

{Sα : Sα ⊂ Ri}. (∗)
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Because if Sα =
∏
j≤n Iαj ⊂ R0, then S◦α intersects Ri for some i. But we have

Ri = R◦i . Therefore for x ∈ S◦α ∩ Ri, there is a sequence xl ∈ R◦i that converges
to x. But then we must have xl ∈ S◦α for large enough l, since S◦α is an open
neighborhood of x. Thus S◦α intersects R◦i . So Iαj intersects (aij , bij) for all j ≤ n.
But we cannot have Iαj 6⊂ [aij , bij ], since that would imply aij ∈ I◦αj or bij ∈ I◦αj ,
which is impossible due to the fact that a subinterval of a partition cannot contain
a point of the partition in its interior. Hence Iαj ⊂ [aij , bij ] for all j ≤ n, and
therefore Sα ⊂ Ri. Thus we finally obtain that

|R| = |R0| =
∑

Sα⊂R0

|Sα| ≤
m∑
i=1

∑
Sα⊂Ri

|Sα| =
m∑
i=1

|Ri|.

Note that the volume of each Sα ⊂ R0 appears at least once in the right hand side
of the above inequality, due to (∗). At the end, suppose that the rectangles are not
necessarily closed. Then we have R ⊂

⋃
i≤mRi, since

⋃
i≤mRi is a closed set that

contains R. Hence we have

|R| = |R| ≤
∑
|Ri| =

∑
|Ri|.

(iii) First we assume that all the rectangles are closed. Suppose

Ri = [ai1, bi1]× · · · × [ain, bin].

Similarly to the above, letQ be a partition of R that contains all the vertices of every
Ri. Then Q ∩Ri is a partition of Ri whose set of subrectangles is {Sα : Sα ⊂ Ri}.
Hence we have ∑

Sα⊂Ri

|Sα| = |Ri|.

In addition, for i 6= k we have

{Sα : Sα ⊂ Ri} ∩ {Sα : Sα ⊂ Rk} = ∅.

Because if Sα ⊂ Ri then S◦α ⊂ R◦i . Hence S◦α∩R◦k = ∅. So we cannot have Sα ⊂ Rk,
since S◦α is nonempty. Therefore we get

m∑
i=1

|Ri| =
m∑
i=1

∑
Sα⊂Ri

|Sα| ≤
∑
all α

|Sα| = |R|.

Note that in the left hand side of the above inequality, no |Sα| can appear more
than once. Now suppose that the rectangles are not necessarily closed. Then we
have Ri ⊂ R. We also have

(Ri)
◦ ∩ (Rk)

◦ = R◦i ∩R◦k = ∅,
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since the interior of the closure of a rectangle equals the corresponding open rect-
angle, which is equal to the interior of the original rectangle. Hence we have∑

|Ri| =
∑
|Ri| ≤ |R| = |R|.

Finally, the last statement of the theorem follows easily from the previous parts.
Because by part (ii) we have

|R| = |R| ≤
∑
|Ri| =

∑
|Ri|.

Also, by the first statement of part (iii) we have |R| ≥
∑
|Ri|. Hence the result

follows. �

Remark. Note that part (ii) of the above theorem is nontrivial even when n = 1.
Also note that when n > 1, in the last statement of part (iii), {Ri} is not necessarily
the set of subrectangles of some partition of R. So it is not apparent how to deduce
this fact, although it is geometrically obvious.
Notation. Let A ⊂ R ∪ {∞} be a nonempty set. If A− {∞} 6= ∅ we define

inf A := inf(A− {∞}).

Otherwise, if A = {∞} we define inf A :=∞.

Definition 10.5. The (Lebesgue) outer measure of A ⊂ Rn is

m∗(A) := inf

{∑
i≥1

|Qi| : {Qi}i≥1 is a countable family

of open cubes such that A ⊂
⋃
i≥1

Qi

}
.

Remark. Remember that a countable set is either finite or countably infinite.
Also, note that for any countable family of open cubes {Qi} that covers A, we have
0 ≤

∑
|Qi| ≤ ∞. Hence 0 ≤ m∗(A) ≤ ∞.

Remark. Note that the concept of outer measure depends on the dimension n.
For example the interval [0, 1] has outer measure one as a subset of R, but if we
regard it as the subset [0, 1]× {0} of R2, it has outer measure zero. We will prove
these later in this section.

Proposition 10.6. Let A ⊂ Rn. Then we have

m∗(A) := inf

{∑
i≥1

|Ri| : {Ri}i≥1 is a countable family

of open rectangles such that A ⊂
⋃
i≥1

Ri

}
.
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Remark. Note that in the definition of outer measure, and also in the above
proposition, we have only considered cubes and rectangles whose edges are parallel
to the coordinate axes.

Remark. In the above proposition, instead of open rectangles, we can use closed
rectangles or general rectangles. The proof is similar to what follows. But the above
version is more useful. Note that the above version is not a trivial consequence of
the similar statement for general rectangles.

Proof. Let a be the infimum of
∑
|Ri|, where {Ri} is a countable family of open

rectangles that covers A. It is obvious that a ≤ m∗(A), since every open cube is
also an open rectangle. In particular, if a = ∞ then m∗(A) = ∞ = a. So suppose
that a < ∞. We need to show that m∗(A) ≤ a. Let {Ri} be a family of open
rectangles that covers A, such that

∑
i≥1 |Ri| < a+ ε, for a given ε > 0. Note that

this is possible since a is the infimum of the sum of the volumes of rectangles, and
therefore a + ε is not a lower bound for them. Consider a fixed i, and suppose we
have

Ri = (a1, b1)× · · · × (an, bn).

Let lj := bj − aj , and let l be a positive number less than minj≤n lj . Then we have
kj := b ljl c ∈ N. We also have kjl ≤ lj < (kj + 1)l = kjl+ l. Now consider the open
rectangle

Si = (a1, a1 + k1l + l)× · · · × (an, an + knl + l).

Obviously we have Ri ⊂ Si. Furthermore, due to the continuity of the multiplica-
tion, we can take l to be small enough so that

|Si| =
∏
j≤n

(kjl + l) ≤
∏
j≤n

(lj + l) ≤
(∏
j≤n

lj

)
+

ε

2i
= |Ri|+

ε

2i
.

Now each interval [aj , aj + kjl + l] has a partition with kj + 1 closed subintervals
of length l. Then we get a partition of Si with Ni :=

∏
j≤n(kj + 1) subrectangles,

which are all closed cubes with volume ln. Note that by Theorem 10.4, the volume
of Si is the sum of the volume of these closed cubes, i.e. it is Nil

n. We can cover
each of these closed cubes by an open cube whose volume is less than ln + ε

Ni2i
.

Call these open cubes Qij , where j ≤ Ni. Then we have
∑

j≤Ni |Qij | < |Si|+
ε
2i
.

We can repeat the above construction for every i, to get a countable family {Si}
of open rectangles that covers A, such that∑

i≥1

|Si| ≤
∑
i≥1

|Ri|+
∑
i≥1

ε

2i
< a+ 2ε.

Now {Qij : i ≥ 1, j ≤ Ni} is a family of open cubes that covers A; and it is also
countable, since it is the union of countably many finite families. We consider this
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family with the order

Q11, Q12, . . . , Q1N1 , Q21, . . . , Q2N2 , . . . , Qm1, . . . , QmNm , . . . .

Let us denote the kth cube in this sequence by Qk. Then for N ≤ N1 + · · ·+ Nm

we have
N∑
k=1

|Qk| ≤
m∑
i=1

∑
j≤Ni

|Qij | <
m∑
i=1

|Si|+
m∑
i=1

ε

2i
<
∑
i≥1

|Si|+
∑
i≥1

ε

2i
< a+ 3ε.

By taking the limit as N → ∞ we obtain
∑

k≥1 |Qk| ≤ a + 3ε. Thus we have
m∗(A) ≤ a+ 3ε. Now as ε is arbitrary, we get m∗(A) ≤ a as desired. �

Proposition 10.7. Let a ∈ R. Then the (n− 1)-dimensional plane {x ∈ Rn : xi =
a} has outer measure zero in Rn.

Proof. Let P be the described plane. Then we have P ⊂
⋃
j≥1Rj , where Rj is

the open rectangle
∏
k≤n Ik in which Ik = (−2j−1, 2j−1) for k 6= i, and

Ii = (a− ε2−nj−1, a+ ε2−nj−1).

Now we have |Rj | = ε2−nj2j(n−1) = ε2−j . Hence∑
j≥1

|Rj | = ε
∑
j≥1

2−j = ε.

Therefore P has outer measure zero, since ε is arbitrary. �

Notation. [0,∞] := [0,∞) ∪ {∞}.
Remark. In the rest of this chapter, we have to deal with series of the form

∑
ak

where ak ∈ [0,∞]. Now if ak = ∞ for some k, then the series diverges to ∞ by
definition. Otherwise, the series converges to a finite nonnegative number if its
partial sums are bounded, and diverges to ∞ if its partial sums are unbounded. So
such series either converge, or diverge to ∞.

Theorem 10.8. Let P(Rn) be the set of all subsets of Rn. Then the Lebesgue outer
measure is a function m∗ : P(Rn)→ [0,∞] that satisfies
(i) The outer measure of the empty set is zero, i.e. m∗(∅) = 0.
(ii) The outer measure is monotone, i.e. if A,B are subsets of Rn such that

A ⊂ B, then m∗(A) ≤ m∗(B).
(iii) The outer measure is countably subadditive, i.e. if {Ak}k≥1 is a countable

family of subsets of Rn, then

m∗
( ⋃
k≥1

Ak
)
≤
∑
k≥1

m∗(Ak).
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Remark. Note that the countable family {Ak} can be finite too. In this case, the
countable subadditivity is called (finite) subadditivity.

Proof. (i) Any open cube covers ∅. Hence we can cover ∅ by open cubes with
arbitrarily small volume. Thus m∗(∅) = 0.

(ii) Any countable family of open cubes that covers B also covers A. Hence we
get the desired.

(iii) If
∑

km
∗(Ak) = ∞, then the inequality holds trivially. So suppose that∑

km
∗(Ak) <∞. Then we have m∗(Ak) <∞ for all k. Let ε > 0 be given. Then

we can cover each Ak with a countable family of open cubes {Qki}i≥1 such that∑
i≥1

|Qki| < m∗(Ak) +
ε

2k
.

Then {Qki}i,k≥1 is a countable family of open cubes that covers
⋃
k Ak, and∑

i,k≥1

|Qki| ≤
∑
k≥1

m∗(Ak) +
∑
k≥1

ε

2k
≤
∑
k≥1

m∗(Ak) + ε.

Therefore m∗(
⋃
Ak) ≤

∑
k≥1m

∗(Ak) + ε, and as ε is arbitrary we get the desired.
Note that m∗(

⋃
Ak) can be ∞ too. �

Remark. If we want to be completely rigorous in the above proof, we have to
arrange the family of open cubes {Qki}i,k≥1 into a sequence. Note that different
arrangements do not change the sum of the volumes of the family, since the volume
of each cube is positive and therefore their series is absolutely convergent. Now
suppose we have arranged the family as the sequence {Qj}j≥1. Then for any N ∈ N
there is M ∈ N such that

{Qj}1≤j≤N ⊂ {Qki}1≤i,k≤M .

Then we have∑
j≤N
|Qj | ≤

∑
k≤M

∑
i≤M
|Qki| <

∑
k≤M

m∗(Ak) +
∑
k≤M

ε

2k
<
∑
k≥1

m∗(Ak) + ε.

Now by taking the limit as N → ∞ we get
∑

j≥1 |Qj | ≤
∑

k≥1m
∗(Ak) + ε as

desired.

Remark. It is a trivial consequence of the above theorem that if A ⊂ Rn, and
{Ak}k≥1 is a countable family of subsets of Rn such that A ⊂

⋃
k≥1Ak, then we

have
m∗(A) ≤

∑
k≥1

m∗(Ak).
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Example 10.9. It is easy to see that the outer measure of a single point is zero,
since we can cover that point by open cubes with arbitrarily small volume. Then
the above theorem implies that the outer measure of any countable subset of Rn is
also zero.

Theorem 10.10. Let R be a rectangle in Rn. Then we have

m∗(R) = |R|.

Proof. First suppose that R is closed. Now note that m∗(R) ≤ |R|. Because for
any ε > 0, we can cover R by a single open rectangle whose volume is less than
|R| + ε. Thus m∗(R) ≤ |R| + ε, and since ε is arbitrary we get the desired. In
particular we see that m∗(R) is finite. To show the reverse inequality, let {Ri}
be a family of open rectangles that covers R, such that for a given ε > 0 we have∑

i≥1 |Ri| < m∗(R)+ε. Then finitely many of Ri’s will cover R, since R is compact.
Therefore there is N such that R ⊂

⋃N
i=1Ri. Thus by Theorem 10.4 we have

|R| ≤
N∑
i=1

|Ri| ≤
∑
i≥1

|Ri| < m∗(R) + ε.

As ε is arbitrary we get |R| ≤ m∗(R), as desired.
Next suppose R is a general rectangle. Then we have

m∗(R) ≤ m∗(R) = |R| = |R|.

On the other hand, for every ε > 0 there is a closed rectangle S ⊂ R such that
|S| > |R| − ε. Hence

m∗(R) ≥ m∗(S) = |S| > |R| − ε.

Thus we get m∗(R) ≥ |R|, since ε was arbitrary. �

Example 10.11. As a particular case of the above theorem, we see that the outer
measure of a bounded interval in R equals its length. It is also easy to see that the
outer measure of an unbounded interval is∞, since an unbounded interval contains
bounded intervals with arbitrarily large lengths.

Theorem 10.12. Suppose A ⊂ Rn. Then for any x ∈ Rn we have

m∗(A+ x) = m∗(A),

where A+ x := {a+ x : a ∈ A}.
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Proof. First note that if Q is an open cube, then Q+x is also an open cube such
that |Q + x| = |Q|. Let {Qi} be a countable family of open cubes that covers A.
Then {Qi + x} is a countable family of open cubes that covers A + x. Hence we
have

m∗(A+ x) ≤
∑
|Qi + x| =

∑
|Qi|.

By taking the infimum over all families {Qi} covering A, we getm∗(A+x) ≤ m∗(A).
The reverse inequality follows similarly since A = (A+ x) + (−x). �

Theorem 10.13. Let A ⊂ Rn. Then we have

m∗(A) = inf{m∗(U) : U is open, and U ⊃ A}.

Proof. If U ⊃ A then m∗(A) ≤ m∗(U). Therefore m∗(A) ≤ inf{m∗(U)}. Now
if m∗(A) = ∞ then the equality holds trivially. So suppose m∗(A) < ∞. Let
ε > 0. Then there is a countable family of open cubes {Qi} that covers A, and∑
|Qi| < m∗(A) + ε. Now Ũ :=

⋃
Qi is an open set containing A such that

m∗(Ũ) ≤
∑

m∗(Qi) =
∑
|Qi| < m∗(A) + ε.

Hence inf{m∗(U)} < m∗(A)+ε; and as ε is arbitrary we have inf{m∗(U)} ≤ m∗(A)
as desired. �

Definition 10.14. Let A,B ⊂ Rn. The distance of the two sets A,B is

d(A,B) := inf{|a− b| : a ∈ A, b ∈ B}.

Remark. Recall that the diameter of a nonempty set A ⊂ Rn is

diam(A) := sup{|x− y| : x, y ∈ A}.

We can easily show that the diameter of a rectangle whose edges have lengths
l1, . . . , ln is

√
l21 + · · ·+ l2n. We will use this fact in the proof of the next theorem.

Theorem 10.15. Let A,B ⊂ Rn. If d(A,B) > 0 then

m∗(A ∪B) = m∗(A) +m∗(B).

Remark. Note that when d(A,B) > 0 then A ∩ B = ∅. But by merely assuming
that A ∩ B = ∅ we cannot deduce that m∗(A ∪ B) = m∗(A) + m∗(B). The
counterexamples will be discussed later.
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Proof. If m∗(A) or m∗(B) is ∞, then m∗(A ∪ B) =∞ due to the monotonicity
of the outer measure. Hence the equality holds trivially. So suppose m∗(A) and
m∗(B) are finite. Then

m∗(A ∪B) ≤ m∗(A) +m∗(B) <∞.

To prove the reverse inequality, let {Qi} be a countable family of open cubes that
covers A ∪B. Furthermore suppose that∑

|Qi| < m∗(A ∪B) + ε,

for a given ε > 0. Now for each i there is a partition of Qi such that each sub-
rectangle of the partition has diameter less than some given δ > 0. This can be
achieved by simply dividing each edge of Qi into subintervals of equal length less
than δ√

n
. Let Rij for j ≤ Ni denote the subrectangles of this partition of Qi. Then

we have ∑
j≤Ni

|Rij | = |Qi|.

Now {Rij : i ≥ 1, j ≤ Ni} is a countable family of closed cubes that covers A ∪B.
We consider this family with the order

R11, R12, . . . , R1N1 , R21, . . . , R2N2 , . . . , Rm1, . . . , RmNm , . . . .

Let us denote the kth cube in this sequence by Rk. Then for N ≤ N1 + · · · + Nm

we have
N∑
k=1

|Rk| ≤
m∑
i=1

∑
j≤Ni

|Rij | =
m∑
i=1

|Qi|.

Thus
∑N

k=1 |Rk| ≤
∑

i≥1 |Qi|, and therefore
∑

k≥1 |Rk| ≤
∑

i≥1 |Qi|. Similarly for
N ≥ N1 + · · · + Nm−1 we have

∑N
k=1 |Rk| ≥

∑m−1
i=1 |Qi|. Hence we can obtain

similarly that
∑

k≥1 |Rk| ≥
∑

i≥1 |Qi|. Therefore∑
k≥1

|Rk| =
∑
i≥1

|Qi|.

Now let J := {k : Rk ∩A 6= ∅}. We claim that

A ⊂
⋃
k∈J

Rk, B ⊂
⋃
k/∈J

Rk.

The first inclusion is obvious since {Rk}k≥1 covers A ∪B. Hence those cubes that
intersect A must cover A. For the second inclusion we have to use the fact that
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d(A,B) > 0. Note that we have not used this fact so far. Since d(A,B) > 0,
there is δ > 0 such that d(A,B) > δ. Suppose we have used this δ in the above
construction. Then no Rk can intersect both A and B, since otherwise the diameter
of that Rk would have been greater than δ, contrary to our assumption. Thus if
Rk ∩ B 6= ∅ then Rk ∩ A = ∅, and thus k /∈ J . But those cubes that intersect B
must cover B. Hence those cubes that do not intersect A will also cover B. Finally,
due to the subadditivity of the outer measure we have

m∗(A) +m∗(B) ≤
∑
k∈J

m∗(Rk) +
∑
k/∈J

m∗(Rk)

=
∑
k∈J
|Rk|+

∑
k/∈J

|Rk|

=
∑
k≥1

|Rk| =
∑
i≥1

|Qi| < m∗(A ∪B) + ε.

As ε was arbitrary we get m∗(A) +m∗(B) ≤ m∗(A ∪B), as desired. �

Remark. In the above proof we used the equality∑
k∈J
|Rk|+

∑
k/∈J

|Rk| =
∑
k≥1

|Rk|.

First note that if k1 < k2 < . . . denote the elements of J , then
∑

k∈J |Rk| is by
definition

∑
j≥1 |Rkj |. We can similarly define

∑
k/∈J |Rk|. It is also easy to see that

these series are convergent, since their sequences of partial sums are sequences of
positive numbers, and are bounded by

∑
k≥1 |Rk|.

Now note that
∑

k∈J |Rk| =
∑

k≥1 ak, and
∑

k/∈J |Rk| =
∑

k≥1 bk, where

ak :=

{
|Rk| k ∈ J,
0 k /∈ J,

bk :=

{
0 k ∈ J,
|Rk| k /∈ J.

To see this, let L :=
∑

k∈J |Rk|, and let si denotes the ith partial sum of
∑
ak.

Then for km ≤ i < km+1 we have

si =

i∑
k=1

ak =

m∑
j=1

|Rkj |.

Thus if M is large enough so that for m ≥M we have∣∣∣∣∣
m∑
j=1

|Rkj | − L

∣∣∣∣∣ < ε,
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for a given ε > 0, then for i ≥ km we have |si − L| < ε. Hence si → L. The case of∑
bk is similar. Finally we have∑

k∈J
|Rk|+

∑
k/∈J

|Rk| =
∑
k≥1

ak +
∑
k≥1

bk =
∑
k≥1

(ak + bk) =
∑
k≥1

|Rk|.

10.2 Measurable Sets

Suppose A is a bounded subset of Rn, and R is an open rectangle containing A.
We can define the inner measure of A to be

m∗(A) := |R| −m∗(R−A).

It can be shown that this definition does not depend on the rectangle R. When the
set A is not too complex, we expect that its inner and outer measures are equal,
i.e.

m∗(A) = m∗(A).

Lebesgue took this as the definition of measurability. If A has this property we
have

m∗(R ∩A) +m∗(R ∩Ac) = m∗(A) +m∗(R−A) = |R| = m∗(R).

Caratheodory modified this definition, and allowed arbitrary sets in place of R. We
can think of it as a localization of Lebesgue’s definition. Caratheodory’s definition
is easier to work with, does not assume the boundedness of A, and is more suitable
for generalization. We will use his definition throughout this chapter.

Definition 10.16. A set A ⊂ Rn is called (Lebesgue) measurable if for every
X ⊂ Rn we have

m∗(X) = m∗(X ∩A) +m∗(X ∩Ac).

Remark. Note that we only need to check thatm∗(X) ≥ m∗(X∩A)+m∗(X∩Ac),
since the reverse inequality always holds due to the subadditivity of the outer
measure. Also note that this inequality is trivially true when m∗(X) = ∞. So
without loss of generality we can always assume that m∗(X) <∞.

Proposition 10.17. If A ⊂ Rn is measurable then Ac is measurable too.

Proof. For every X ⊂ Rn we have

m∗(X) = m∗(X ∩A) +m∗(X ∩Ac) = m∗(X ∩Ac) +m∗(X ∩ (Ac)c),

since (Ac)c = A. �
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Proposition 10.18. Suppose A ⊂ B ⊂ Rn, and A is measurable. If m∗(A) < ∞,
then we have

m∗(B −A) = m∗(B)−m∗(A).

Remark. Note that we do not need the measurability of B for this equation to
hold. But the measurability of A is necessary, as we will show later. Also note
that the equation holds if in particular we have m∗(B) < ∞, since that implies
m∗(A) ≤ m∗(B) <∞.

Proof. The measurability of A implies

m∗(B) = m∗(B ∩A) +m∗(B ∩Ac) = m∗(A) +m∗(B −A).

Now we can subtract m∗(A) from both sides, since it is finite. �

Definition 10.19. LetM be the set of all measurable subsets of Rn. The (Lebesgue)
measure is

m := m∗|M :M→ [0,∞].

So if A ⊂ Rn is measurable, its (Lebesgue) measure is m(A) := m∗(A).

Theorem 10.20. Suppose Z ⊂ Rn, and m∗(Z) = 0. Then Z is measurable.

Remark. In particular, the countable subsets of Rn are measurable. Also, the
empty set ∅ is measurable too.

Proof. For every X ⊂ Rn we have m∗(X ∩ Z) ≤ m∗(Z) = 0, since X ∩ Z ⊂ Z.
Thus m∗(X ∩ Z) = 0. Hence we have

m∗(X ∩ Zc) +m∗(X ∩ Z) = m∗(X ∩ Zc) ≤ m∗(X),

since X ∩ Zc ⊂ X. Therefore Z is measurable. �

Theorem 10.21. Suppose A,B ⊂ Rn are measurable. Then A ∪ B, A ∩ B, and
A−B are measurable too.

Remark. As a consequence, we can show by a simple induction that if A1, . . . , Ak
are measurable, then

⋃k
j=1Aj and

⋂k
j=1Aj are also measurable.

Proof. Let X ⊂ Rn. Then

m∗(X) = m∗(X ∩A) +m∗(X ∩Ac). (?)

Now we can use the measurability of B to obtain

m∗(X ∩A) = m∗(X ∩A ∩B) +m∗(X ∩A ∩Bc), (∗)
m∗(X ∩Ac) = m∗(X ∩Ac ∩B) +m∗(X ∩Ac ∩Bc). (∗∗)
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On the other hand

X ∩ (A ∪B) = X ∩
(
(A−B) ∪ (A ∩B) ∪ (B −A)

)
=
(
X ∩ (A ∩Bc)

)
∪
(
X ∩ (A ∩B)

)
∪
(
X ∩ (B ∩Ac)

)
.

Hence we have

m∗(X ∩ (A ∪B)) ≤ m∗(X ∩A ∩Bc) +m∗(X ∩A ∩B)

+m∗(X ∩B ∩Ac)
= m∗(X ∩A) +m∗(X ∩B ∩Ac). by (∗)

We also have X ∩ (A ∪B)c = X ∩Ac ∩Bc. Therefore if we add the outer measure
of this set to both sides of the above inequality, we get

m∗(X ∩ (A ∪B)) +m∗(X ∩ (A ∪B)c)

≤ m∗(X ∩A) +m∗(X ∩B ∩Ac) +m∗(X ∩Ac ∩Bc)

= m∗(X ∩A) +m∗(X ∩Ac) by (∗∗)
= m∗(X). by (?)

Thus A ∪ B is measurable. Now as Ac, Bc are measurable Ac ∪ Bc is measurable
too. Hence A ∩ B = (Ac ∪ Bc)c is also measurable. Finally, A − B = A ∩ Bc is
measurable too. �

Remark. Suppose A1 ⊂ Rn is measurable. Then A2 := Ac1 is measurable too, and
we have A1 ∩A2 = ∅ and A1 ∪A2 = Rn. Furthermore, for any X ⊂ Rn we have

m∗(X) = m∗(X ∩A1) +m∗(X ∩A2).

The following theorem is a generalization of this property.

Theorem 10.22. Suppose {Aj}j≥1 is a countable family of measurable subsets of
Rn, which are pairwise disjoint i.e. Ai∩Ak = ∅ for every i 6= k. Let A :=

⋃
j≥1Aj.

Then for any X ⊂ Rn we have

m∗(X ∩A) =
∑
j≥1

m∗(X ∩Aj).

Remark. Note that in this theorem, X need not be measurable.

Proof. Let Bk :=
⋃k
j=1Aj . First we show by induction that for all k ∈ N we

have

m∗(X ∩Bk) =

k∑
j=1

m∗(X ∩Aj).
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The case of k = 1 is trivial. So suppose the claim holds for some k. Then by using
the measurability of Ak+1 we get

m∗(X ∩Bk+1) = m∗
(
X ∩ (Bk ∪Ak+1)

)
= m∗

(
X ∩ (Bk ∪Ak+1) ∩Ak+1

)
+m∗

(
X ∩ (Bk ∪Ak+1) ∩Ack+1

)
.

Now we can use the following set theoretic identities

(Bk ∪Ak+1) ∩Ak+1 = Ak+1, (Bk ∪Ak+1) ∩Ack+1 = Bk ∩Ack+1.

In addition we have Bk ⊂ Ack+1, since Bk ∩Ak+1 = ∅. Hence we have Bk ∩Ack+1 =
Bk. Therefore

m∗(X ∩Bk+1) = m∗(X ∩Ak+1) +m∗(X ∩Bk)

= m∗(X ∩Ak+1) +

k∑
j=1

m∗(X ∩Aj) =

k+1∑
j=1

m∗(X ∩Aj).

If {Aj} is a finite family, there is nothing left to prove. So let us assume that
{Aj} is a countably infinite family. Now note that

X ∩A = X ∩
⋃
j≥1

Aj =
⋃
j≥1

(X ∩Aj).

Thus m∗(X ∩ A) ≤
∑∞

j=1m
∗(X ∩ Aj) due to the countable subadditivity of the

outer measure. If m∗(X ∩ A) = ∞ then the equality holds trivially. So suppose
m∗(X ∩A) <∞. Thus m∗(X ∩Aj) <∞ for all j, since X ∩Aj ⊂ X ∩A. On the
other hand we have X ∩Bk ⊂ X ∩A for all k. Hence

k∑
j=1

m∗(X ∩Aj) = m∗(X ∩Bk) ≤ m∗(X ∩A).

By taking the limit as k → ∞ we obtain
∑∞

j=1m
∗(X ∩ Aj) ≤ m∗(X ∩ A). Note

that the series is convergent, since its terms are nonnegative real numbers, and its
partial sums are bounded. Thus we finally get the desired equality. �

Theorem 10.23. Suppose {Aj}j≥1 is a countable family of measurable subsets of
Rn. Then

⋃
j≥1Aj and

⋂
j≥1Aj are measurable too.

Proof. When the family {Aj} is finite, we have seen that the union and the
intersection of its elements are measurable. So we assume that {Aj} is a countably
infinite family. We inductively define B1 := A1, and Bk+1 := Ak+1−

⋃
j≤k Aj . Since

the union of finitely many measurable sets is measurable, and the difference of two



CHAPTER 10. LEBESGUE MEASURE 354

measurable sets is measurable, {Bj}j≥1 is a countably infinite family of measurable
sets. In addition, note that Bi ∩Bk = ∅ when i 6= k. Because we have Bi ⊂ Ai, so
if i < k then Bi ∩Bk ⊂ Ai ∩Bk = ∅. Furthermore, we have⋃

j≥1

Bj =
⋃
j≥1

Aj .

It is obvious that
⋃
Bj ⊂

⋃
Aj , since Bj ⊂ Aj for each j. For the reverse inclusion,

let x ∈
⋃
Aj . Then x ∈ Aj for some j. Let k be the smallest positive integer such

that x ∈ Ak. If k = 1 then x ∈ A1 = B1 ⊂
⋃
Bj . If k > 1 then x /∈ Aj for j < k.

Hence x ∈ Ak −
⋃
j<k Aj = Bk ⊂

⋃
Bj . Thus we have

⋃
Aj ⊂

⋃
Bj as desired.

Now suppose X ⊂ Rn. Let A :=
⋃
j≥1Aj . We want to show that

m∗(X) ≥ m∗(X ∩A) +m∗(X ∩Ac).

We can assume that m∗(X) < ∞, since otherwise the above inequality holds triv-
ially. We showed that A =

⋃
j≥1Bj , where {Bj} is a countable family of pairwise

disjoint measurable sets. Let Ck :=
⋃k
j=1Bj . Then by Theorem 10.22 we have

m∗(X ∩A) =
∑
j≥1

m∗(X ∩Bj), m∗(X ∩ Ck) =
k∑
j=1

m∗(X ∩Bj).

In addition we have m∗(X ∩ Ac) ≤ m∗(X ∩ Cck), since Ck ⊂ A, and therefore
Ac ⊂ Cck. But Ck is measurable. Hence

m∗(X) = m∗(X ∩ Ck) +m∗(X ∩ Cck)

≥
k∑
j=1

m∗(X ∩Bj) +m∗(X ∩Ac).

Now by taking the limit as k →∞ we obtain

m∗(X) ≥
∞∑
j=1

m∗(X ∩Bj) +m∗(X ∩Ac) = m∗(X ∩A) +m∗(X ∩Ac).

Note that the above series is convergent, since its terms are nonnegative finite real
numbers, and its partial sums are bounded. Thus A is measurable as desired.
Finally, for the intersection note that we have⋂

j≥1

Aj =
( ⋃
j≥1

Acj

)c
.

So the measurability of
⋂
Aj follows, since the complement of a measurable set is

measurable too. �
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Definition 10.24. Let A be a family of subsets of a set X. We say A is a σ-
algebra on X, if it satisfies the following conditions.
(i) φ ∈ A.
(ii) A is closed under complement, i.e. if A ∈ A then Ac ∈ A.
(iii) A is closed under countable union, i.e. if {Aj}j≥1 is a countable family of

elements of A, then
⋃
j≥1Aj ∈ A.

Remark. Note that a σ-algebra is also closed under countable intersection, since⋂
j≥1Aj =

(⋃
j≥1A

c
j

)c. So in particular, a σ-algebra is closed under finite union and
finite intersection too. But in general, a σ-algebra is not closed under uncountable
union or uncountable intersection.

Example 10.25. LetM be the family of measurable subsets of Rn. What we have
proved so far implies thatM is a σ-algebra.

Theorem 10.26. Let M be the set of all measurable subsets of Rn. Then the
Lebesgue measure is a function m :M→ [0,∞] that satisfies
(i) The measure of the empty set is zero, i.e. m(∅) = 0.
(ii) The measure is countably additive, i.e. if {Aj}j≥1 ⊂ M is a countable

family of measurable sets, which are pairwise disjoint i.e. Ai ∩ Ak = ∅ for
every i 6= k, then we have

m
( ⋃
j≥1

Aj
)

=
∑
j≥1

m(Aj).

Remark. Note that the countable family {Aj} can be finite too. In this case, the
countable additivity is called (finite) additivity.

Proof. For (i) just note that ∅ is measurable, and m(∅) = m∗(∅) = 0. Now to
prove (ii) let A :=

⋃
j≥1Aj . We know that A is measurable. By Theorem 10.22,

we also know that for any X ⊂ Rn we have m∗(X ∩A) =
∑

j≥1m
∗(X ∩Aj). If we

substitute X = A in this equation we get

m(A) = m∗(A) = m∗(A ∩A) =
∑
j≥1

m∗(A ∩Aj)

=
∑
j≥1

m∗(Aj) =
∑
j≥1

m(Aj).

Note that Aj ∩A = Aj , since Aj ⊂ A. �

Remark. A sequence of sets {Aj}∞j=1 is called increasing if Aj+1 ⊂ Aj for all j,
and it is called decreasing if Aj+1 ⊂ Aj for all j.

Theorem 10.27. Let {Aj} be a sequence of measurable subsets of Rn.
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(i) If {Aj} is an increasing sequence, then we have

m
( ⋃
j≥1

Aj
)

= lim
j→∞

m(Aj).

(ii) If {Aj} is a decreasing sequence, and m(A1) <∞, then we have

m
( ⋂
j≥1

Aj
)

= lim
j→∞

m(Aj).

Remark. The above theorem is known as the continuity of measure. The reason
is that we can consider the union of an increasing sequence of sets as their limit.
Similarly, we can consider the intersection of a decreasing sequence of sets as their
limit.

Proof. (i) Let B1 := A1, and Bj+1 := Aj+1 − Aj for j ≥ 1. Note that Aj =⋃
i≤j Ai, since {Aj} is an increasing sequence. Then as we saw in the proof of

Theorem 10.23, {Bj} is a sequence of pairwise disjoint measurable sets, such that

A :=
⋃
j≥1

Aj =
⋃
j≥1

Bj .

If m(Ak) =∞ for some k, then m(Aj) =∞ for all j ≥ k, since Ak ⊂ Aj . Also we
have m(A) =∞. Thus m(Aj)→ m(A) as desired. So suppose m(Aj) <∞ for all
j. Then m(Bj) <∞ for all j, since Bj ⊂ Aj . We also have

m(A) =
∑
j≥1

m(Bj).

But it is easy to see that Aj =
⋃
i≤j Bi. Thus m(Aj) =

∑j
i=1m(Bi). Therefore

m(Aj) is the jth partial sum of the series
∑
m(Bi). Hence m(Aj) converges to the

limit of the series, i.e. m(Aj)→ m(A).
(ii) Let Cj := A1 − Aj for j ≥ 1. Then {Cj} is an increasing sequence of

measurable sets, because {Aj} is a decreasing sequence. We also have
⋃
j≥1Cj =

A1−A, where A :=
⋂
j≥1Aj . To see this note that Cj = A1−Aj ⊂ A1−A. Hence⋃

Cj ⊂ A1−A. On the other hand, if x ∈ A1−A then x /∈ A. Thus there is k such
that x /∈ Ak. So x ∈ A1 − Ak = Ck ⊂

⋃
Cj . Therefore A1 − A ⊂

⋃
Cj as desired.

Hence by the previous part we get

limm(Cj) = m(A1 −A) = m(A1)−m(A).

Note that we have used Proposition 10.18 and the fact that m(A1) < ∞. For the
same reason we havem(Cj) = m(A1)−m(Aj). Also, note thatm(A),m(Aj),m(Cj)
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are all finite, since A,Aj , Cj are all subsets of A1. Therefore we have

limm(Aj) = lim
(
m(A1)−m(Cj)

)
= limm(A1)− limm(Cj)

= m(A1)−
(
m(A1)−m(A)

)
= m(A). �

Remark. Note that in the second part of the above theorem we can replace the
assumption of m(A1) < ∞ with m(Aj) < ∞ for some j. The proof is the same,
since we can simply ignore the sets A1, . . . , Aj−1 in the sequence. But unlike the
first part, the second part of the above theorem does not hold without assuming
that some Aj has finite measure. For example the intervals (n,∞) have infinite
measure, while their intersection

⋂
n≥1(n,∞) = ∅ has measure zero.

Theorem 10.28. Suppose A ⊂ Rn is measurable. Then for any x ∈ Rn, A+ x is
measurable too, and we have

m(A+ x) = m(A).

Proof. It suffices to show that A+x is measurable, then the equality of measures
of A,A+x follows from the equality of their outer measures. Let us write B := A+x
to simplify the notation. Let X ⊂ Rn. We have to show that

m∗(X) = m∗(X ∩B) +m∗(X ∩Bc). (∗)

Let Y := X + (−x). Then we know that

m∗(Y ) = m∗(Y ∩A) +m∗(Y ∩Ac), (∗∗)

since A is measurable. But we have

(Y ∩A) + x = X ∩B, (Y ∩Ac) + x = X ∩Bc.

Let us prove the second equality, the first one is similar. Let y ∈ Y ∩ Ac. Then
y /∈ A, and y = z − x for some z ∈ X. Hence y + x = z ∈ X. Also we cannot have
y + x ∈ B, since that would have implied y = (y + x)− x ∈ B + (−x) = A. Thus
y + x ∈ Bc. Therefore we have (Y ∩ Ac) + x ⊂ X ∩ Bc. The reverse inclusion can
be proved similarly. Finally we get

m∗(Y ∩A) = m∗(X ∩B), m∗(Y ∩Ac) = m∗(X ∩Bc),

since translations preserve the outer measure. For the same reason we also have
m∗(Y ) = m∗(X). Now if we plug these values into (∗∗) we obtain (∗) as desired. �

Proposition 10.29. Let a ∈ R. Then the open half space {x ∈ Rn : xi > a} is
measurable.
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Proof. Let X ⊂ Rn. We have to show that

m∗(X) ≥ m∗(X ∩ {xi > a}) +m∗(X ∩ {xi ≤ a}).

We can assume that m∗(X) < ∞, since otherwise the above inequality holds triv-
ially. First we assume that X ∩ {xi = a} = ∅. Let

X+ := X ∩ {xi > a}, X− := X ∩ {xi < a} = X ∩ {xi ≤ a}.

Let {Rj} be a countable family of open rectangles that covers X, such that∑
j≥1

|Rj | < m∗(X) + ε,

for a given ε > 0. For each j let R+
j := Rj ∩{xi > a}, and R−j := Rj ∩{xi < a}. It

is obvious that R±j are also open rectangles. In fact, their closures are subrectangles
of a partition of Rj . Hence |Rj | = |R+

j |+ |R
−
j |. Furthermore we have

X+ = {xi > a} ∩X ⊂ {xi > a} ∩
⋃
j≥1

Rj =
⋃
j≥1

({xi > a} ∩Rj) =
⋃
j≥1

R+
j .

Similarly we have X− ⊂
⋃
j≥1R

−
j . Therefore

m∗(X+) +m∗(X−) ≤
∑
j≥1

|R+
j |+

∑
j≥1

|R−j |

=
∑
j≥1

(|R+
j |+ |R

−
j |) =

∑
j≥1

|Rj | < m∗(X) + ε.

As ε is arbitrary we get the desired.
Now suppose X∩{xi = a} 6= ∅. Let Z := X∩{xi = a}, and Y := X∩{xi 6= a}.

Then Z has measure zero, since the (n−1)-dimensional plane {xi = a} has measure
zero. Also Y ∩ {xi = a} = ∅, so

m∗(Y ∩ {xi > a}) +m∗(Y ∩ {xi < a}) ≤ m∗(Y ).

Therefore by the subadditivity of the outer measure we get

m∗(X ∩ {xi > a}) +m∗(X ∩ {xi ≤ a})
≤ m∗(X ∩ {xi > a}) +m∗(X ∩ {xi < a}) +m∗(Z)

= m∗(Y ∩ {xi > a}) +m∗(Y ∩ {xi < a})
≤ m∗(Y ) ≤ m∗(X). �

Proposition 10.30. The open rectangles in Rn are measurable.
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Proof. Let R = (a1, b1)× · · · × (an, bn) be an open rectangle. Then we have

R =

n⋂
i=1

({xi > ai} ∩ {xi < bi}).

Now each open half space {xi > ai} or {xi > bi} is measurable. Hence {xi ≤
bi} = {xi > bi}c is measurable too. In addition, {xi = bi} is measurable, since
it has measure zero. Thus {xi < bi} = {xi ≤ bi} − {xi = bi} is also measurable.
Therefore R is measurable, since it is the intersection of finitely many measurable
sets. �

Theorem 10.31. The open and closed subsets of Rn are measurable.

Proof. Let U ⊂ Rn be an open set. Then for any x ∈ U there is an open ball
Bx whose center is x, such that Bx ⊂ U . Let Qx be an open cube centered at
x that is contained in Bx. Hence x ∈ Qx ⊂ U . Now {Qx : x ∈ U} is an open
covering of U , i.e. U ⊂

⋃
x∈U Qx. Thus by theorem 11.57, this open covering has

a countable subcovering, i.e. there are countably many points x1, x2, · · · ∈ U such
that U ⊂

⋃
j≥1Qxj . But Qxj ⊂ U for each j. Hence U =

⋃
j≥1Qxj . Therefore

U is the union of countably many open cubes, which are measurable. So U is also
measurable.

Finally, closed sets are the complements of open sets, which are measurable.
Hence closed sets are measurable too. �

Remark. The Jordan measurable subsets of Rn are also Lebesgue measurable.
Because a set S is Jordan measurable if its boundary ∂S has measure zero. But we
have

S = S◦ ∪ (∂S ∩ S),

where S◦ is the interior of S. Then S◦ is Lebesgue measurable since it is open.
Also, ∂S∩S is Lebesgue measurable since it has measure zero. Hence S is Lebesgue
measurable too.

Example 10.32. Every rectangle R ⊂ Rn is Lebesgue measurable, since it is
Jordan measurable. Because ∂R is contained in the union of finitely many (n −
1)-dimensional planes, so it has measure zero. Note that we do not require the
rectangle to be open or closed. As a consequence we have

m(R) = m∗(R) = |R|.

In other words, the Lebesgue measure of a rectangle is its volume.

Proposition 10.33. The intersection of a nonempty family of σ-algebras on a set
X is a σ-algebra on X.
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Proof. The intersection obviously contains ∅. It is also easy to check that the
intersection is closed under complement and countable union. �

Definition 10.34. The σ-algebra generated by a family A of subsets of a set X
is the intersection of all σ-algebras containing A.

Remark. Note that the power set of X is a σ-algebra containing A, so the family
of all σ-algebras containing A is nonempty, and its intersection is defined.

Proposition 10.35. Suppose F is the σ-algebra generated by a family A. Then
F is contained in any σ-algebra containing A. In other words, F is the smallest
σ-algebra with respect to inclusion that contains A.

Proof. F is the intersection of all σ-algebras containing A, therefore it is a subset
of any one of them. �

Definition 10.36. A subset of Rn is called Gδ if it is the intersection of countably
many open sets. And a subset of Rn is called Fσ if it is the union of countably
many closed sets.

Definition 10.37. The Borel σ-algebra is the σ-algebra generated by the family
of open subsets of Rn, i.e. it is the smallest σ-algebra that contains all open sets.
A Borel set is a subset of Rn that belongs to the Borel σ-algebra.

Remark. Note that every closed set is Borel, since the Borel σ-algebra is closed
under complement. Also, every Gδ set or Fσ set is Borel, since Borel σ-algebra
is closed under countable union and countable intersection. But there are Borel
sets that are not among any of these sets. On the other hand, every Borel set is
measurable. Because the family of measurable sets is a σ-algebra that contains the
open sets. Hence it contains the smallest σ-algebra containing open sets, i.e. the
Borel σ-algebra.

Theorem 10.38. Let A ⊂ Rn. Then the following assertions are equivalent.
(i) A is measurable.
(ii) For every ε > 0 there is an open set U ⊃ A such that m∗(U −A) < ε.
(iii) There is a Gδ set G ⊃ A such that m∗(G−A) = 0.
(iv) For every ε > 0 there is a closed set C ⊂ A such that m∗(A− C) < ε.
(v) There is an Fσ set F ⊂ A such that m∗(A− F ) = 0.

Remark. The above properties are known as the regularity of Lebesgue measure.
Remark. Note that by Theorem 10.13, for any set A ⊂ Rn and every ε > 0, there
is an open set U ⊃ A such that m∗(U) ≤ m∗(A) + ε. But this does not imply part
(ii) of the above theorem, even if m∗(A) <∞. Because in general we only have

m∗(U −A) ≥ m∗(U)−m∗(A),

and the equality requires the measurability of A.
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Proof. (i) =⇒ (ii): First we assume that m∗(A) <∞. Then by Theorem 10.13
we know that for every ε > 0, there is an open set U ⊃ A such that m∗(U) <
m∗(A) + ε. Hence by Proposition 10.18 we have

m∗(U −A) = m∗(U)−m∗(A) < ε,

since A is measurable and has finite measure. Now suppose that m∗(A) =∞. Let
Aj := A ∩ Rj , where Rj is the open cube centered at the origin whose edges have
length j. Note that each Aj is measurable and we have A =

⋃
j≥1Aj . Also note

that m∗(Aj) ≤ m∗(Rj) < ∞, since Aj ⊂ Rj . Hence there is an open set Uj ⊃ Aj
such that m∗(Uj −Aj) < ε

2j
. Now let U :=

⋃
j≥1 Uj . Then U is open, and we have

A =
⋃
j≥1Aj ⊂

⋃
j≥1 Uj = U . Furthermore

U −A =
( ⋃
j≥1

Uj

)
∩Ac =

⋃
j≥1

(Uj ∩Ac) =
⋃
j≥1

(Uj −Aj).

Hence by subadditivity of the outer measure we get

m∗(U −A) ≤
∑
j≥1

m∗(Uj −Aj) <
∑
j≥1

ε

2j
≤ ε.

(ii) =⇒ (iii): Note that here we do not assume that A is measurable. For every
j ∈ N there is an open set Uj ⊃ A such that m∗(Uj − A) < 1

j . Let G :=
⋂
j≥1 Uj .

Then G is a Gδ set containing A. We also have G−A ⊂ Uj −A for every j. Hence

m∗(G−A) ≤ m∗(Uj −A) <
1

j
=⇒ m∗(G−A) = 0.

(iii) =⇒ (i): We have A = G− Z, where Z := G− A. Then m∗(Z) = 0, so Z
is measurable. On the other hand G is measurable too, since it is Gδ. Thus A is
also measurable.

(i) =⇒ (iv): We know that Ac is measurable too. Thus there is an open set
U ⊃ Ac such that m∗(U −Ac) < ε, for a given ε > 0. Because we have shown that
(i) is equivalent to (ii). Now let C := U c. Then C is closed, and C ⊂ (Ac)c = A.
We also have

A− C = A ∩ Cc = A ∩ U = U ∩ (Ac)c = U −Ac.

Hence m∗(A− C) < ε.
(iv) =⇒ (v): For every j ∈ N there is a closed set Cj ⊂ A such that m∗(A −

Cj) <
1
j . Let F :=

⋃
j≥1Cj . Then F is an Fσ set contained in A. We also have

A− F ⊂ A− Cj for every j. Hence

m∗(A− F ) ≤ m∗(A− Cj) <
1

j
=⇒ m∗(A− F ) = 0.
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(v) =⇒ (i): We have A = F ∪Z, where Z := A−F . Then m∗(Z) = 0, so Z is
measurable. On the other hand F is measurable too, since it is Fσ. Thus A is also
measurable. �

Theorem 10.39. Suppose A ⊂ Rn is measurable. Then we have

m(A) = sup{m(C) : C is closed, and C ⊂ A}.

Proof. This is a simple consequence of the previous theorem. Let

C := {m(C) : C is closed, and C ⊂ A}.

We know that for every ε > 0 there is a closed set C ⊂ A such that m(A−C) < ε.
But we have A = C∪(A−C). Hence m(A) = m(C)+m(A−C), since C and A−C
are disjoint and measurable. Now if m(A) = ∞ then m(C) = ∞, since m(A − C)
is finite. Thus m(A) = sup C as desired. So let us assume that m(A) < ∞. Then
m(C) <∞ too, and we have

m(C) = m(A)−m(A− C) > m(A)− ε.

Therefore m(A)− ε cannot be an upper bound for C. Hence sup C ≥ m(A). On the
other hand, for every closed set C ⊂ A we havem(C) ≤ m(A). Thus sup C ≤ m(A),
and therefore the two values are equal. �

Remark. If we use m∗(A) instead of m(A), then unlike Theorem 10.13, the above
theorem is not true for sets A that are not measurable. In fact when m∗(A) <∞,
A is measurable if and only if

m∗(A) = sup{m(C) : C is closed, and C ⊂ A}. (∗)

To see this, it suffices to show the if part, as we have already proved the only if
part. Now, for any ε > 0 there is a closed set C ⊂ A such that m(C) > m∗(A)− ε.
But we have m∗(A − C) = m∗(A) − m(C), since C is measurable and has finite
measure. Hence m∗(A − C) < ε. Thus A is measurable due to the regularity of
Lebesgue measure. On the other hand, when m∗(A) = ∞, the property (∗) does
not imply the measurability of A. The counterexamples will be discussed later.

Theorem 10.40. Suppose A ⊂ Rn is measurable, and m(A) <∞. Then
(i) For every ε > 0 there are finitely many open cubes Q1, . . . , Qk such that for

Q :=
⋃k
j=1Qj we have

m(Q∆A) < ε,

where Q∆A := (Q−A) ∪ (A−Q).
(ii) For every ε > 0 there is a compact set K ⊂ A such that m(A−K) < ε.
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Proof. (i) Let {Qj} be a countable family of open cubes that covers A, and∑
j≥1

|Qj | < m(A) +
ε

2
,

for a given ε > 0. Then the series
∑

j≥1 |Qj | is convergent, since m(A) < ∞.
Hence there is k ∈ N such that

∑
j>k |Qj | <

ε
2 . Let Q :=

⋃
j≤kQj . Then note

that A − Q ⊂
⋃
j>kQj . Thus m(A − Q) ≤

∑
j>km(Qj) <

ε
2 . On the other hand

Q ⊂
⋃
j≥1Qj . Therefore

m(Q) ≤
∑
j≥1

m(Qj) < m(A) +
ε

2
.

Hencem(Q−A) = m(Q)−m(A) < ε
2 , since A is measurable and has finite measure.

Thus we have

m(Q∆A) ≤ m(Q−A) +m(A−Q) <
ε

2
+
ε

2
= ε.

(ii) We know that there is a closed set C ⊂ A such that m(A − C) < ε
2 . Let

Kj := Rj ∩C, where Rj is the closed cube centered at the origin whose edges have
length j. Note that for every j, Kj is closed and bounded, so it is compact. It is
also obvious that Kj ⊂ Kj+1. We can also easily show that C =

⋃
j≥1Kj . Hence

we have m(C) = limm(Kj). Thus there is a large enough k such that

m(C −Kk) = m(C)−m(Kk) <
ε

2
.

Note that we have used the measurability of C,Kk. Finally we have Kk ⊂ C ⊂ A,
and A−Kk = (A− C) ∪ (C −Kk). Therefore

m(A−Kk) ≤ m(A− C) +m(C −Kk) < ε. �

Suppose A ⊂ Rn is bounded, and R ⊃ A is an open rectangle. Remember that
Lebesgue’s original definition of measurability of A was m∗(A) = m∗(A), where
m∗(A) := |R| −m∗(R−A) is the inner measure of A. This condition follows easily
from Caratheodory’s definition of measurability, i.e. the definition that we used
in this section. The next theorem implies that the two definitions are actually
equivalent.

Theorem 10.41. Suppose A,B ⊂ Rn are bounded, and A ⊂ B. Also suppose that
B is measurable, and

m∗(A) +m∗(B −A) = m(B).

Then A is measurable.
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Remark. Note that the boundedness of B is essential, since, for example, the
above equality holds for every set A when B = Rn.

Proof. Note that B is also bounded. Let R be an open rectangle containing B.
Then we have

(R−A) ∩B = R ∩Ac ∩B = B −A, (R−A) ∩Bc = R ∩Ac ∩Bc = R−B.

Hence the measurability of B implies that

m∗(R−A) = m∗((R−A) ∩B) +m∗((R−A) ∩Bc)

= m∗(B −A) +m∗(R−B).

Therefore by theorem’s assumption we get

m∗(A) +m∗(R−A) = m∗(A) +m∗(B −A) +m∗(R−B)

= m(B) +m(R−B) = m(R), (∗)

since B,R−B are disjoint measurable sets whose union is R.
Now consider R − A. Then for a given ε > 0 there is an open set U ⊃ R − A

such that m(U) < m∗(R − A) + ε. We can assume U ⊂ R, since we can consider
U ∩ R instead of U . Let C := R − U . Then C ⊂ R − (R − A) = A. Hence
C ⊂ Ā ⊂ B ⊂ R. We also have C ⊂ U c, since U c is a closed set that contains C.
Thus C ⊂ R ∩ U c = C. So C is closed. We also have m(C) +m(U) = m(R), since
C,U are disjoint measurable sets whose union is R. Therefore by (∗) we get

m∗(A)−m(C) = m(R)−m∗(R−A)−
(
m(R)−m(U)

)
= m(U)−m∗(R−A) < ε.

Note that here we are using the fact that m(R), and consequently the (outer)
measure of the other sets in the above equation, are finite. Now we know that
m∗(A− C) = m∗(A)−m(C), since C is a measurable set that has finite measure.
Hencem∗(A−C) < ε. Thus by the regularity of Lebesgue measure A is measurable.

�



Chapter 11

Topological Spaces

11.1 Topology and Basis

Definition 11.1. A topology on a set X is a family of its subsets T satisfying
the following axioms
(i) ∅, X ∈ T .
(ii) T is closed under arbitrary union, i.e. if {Uα}α∈I ⊂ T then⋃

α∈I
Uα ∈ T .

(iii) T is closed under finite intersection, i.e. if U1, . . . , Un ∈ T then

n⋂
i=1

Ui ∈ T .

A set equipped with a topology is called a topological space.

Remark. We refer to the elements of a topological space as points of the topological
space.

Remark. Note that by an easy inductive argument, closedness under finite inter-
section follows from closedness under binary intersection.

Definition 11.2. Elements of T are called open sets. A subset of X is called
closed if its complement is open. A neighborhood of a point a ∈ X is a set that
contains an open set containing a.

Theorem 11.3. The family of closed sets has the following properties
(i) ∅, X are closed sets.
(ii) The intersection of any collection of closed sets is a closed set.

365
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(iii) The union of finitely many closed sets is a closed set.

Proof. Take the complement of the respective properties for open sets, and use
De Morgan’s laws. �

Proposition 11.4. The intersection of a nonempty family of topologies on a set
X is a topology on X.

Proof. The intersection obviously contains ∅, X. It is also easy to check that the
intersection is closed under arbitrary union and finite intersection. �

Definition 11.5. The topology generated by a family A of subsets of a set X is
the intersection of all topologies containing A.

Remark. Note that the power set of X is a topology containing A, so the family
of all topologies containing A is nonempty, and its intersection is defined.

Proposition 11.6. Suppose T is the topology generated by A. Then T is contained
in any topology containing A. In other words, T is the smallest topology with respect
to inclusion that contains A.

Proof. T is the intersection of all topologies containing A, therefore it is a subset
of any one of them. �

Definition 11.7. Let B be a collection of subsets of X, and let T be the topology
generated by B. Then B is called a basis for T , if it satisfies
(i)
⋃
B∈B B = X.

(ii) If B1, B2 ∈ B and x ∈ B1 ∩B2, then there is B3 ∈ B such that

x ∈ B3 ⊂ B1 ∩B2.

Theorem 11.8. Suppose B is a basis for a topology T on a set X. Then

T = {
⋃
α

Bα : {Bα} ⊂ B}.

In other words, every open set in T is the union of some sets in the basis B.

Proof. It is obvious that T contains the described family, since T is a topology
that contains B. Hence it is enough to show that the described family is a topology.
Then the result follows from the minimality of T . First note that T contains X by
the first property of a basis. It also contains ∅, since ∅ is the union of the empty
subset of B. In addition, T is closed under unions by definition. Finally suppose
{Bα}, {Bβ} ⊂ B. It suffices to show that

[
⋃
α

Bα] ∩ [
⋃
β

Bβ] =
⋃
γ

Bγ ,
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for some {Bγ} ⊂ B. We have

[
⋃
α

Bα] ∩ [
⋃
β

Bβ] =
⋃
α

⋃
β

[Bα ∩Bβ].

But by the second property of a basis, Bα∩Bβ =
⋃
γ∈Iαβ Bγ for some {Bγ}γ∈Iαβ ⊂

B. Now we have
[
⋃
α

Bα] ∩ [
⋃
β

Bβ] =
⋃
α,β

⋃
γ∈Iαβ

Bγ . �

Remark. The notion of a basis for a topology, is a generalization of the family of
open balls in a metric space.
Remark. Note that the concept of basis in topology is different than the concept of
basis in linear algebra. Here, a basis is merely a suitable generator of the topology,
and there is no corresponding notion of uniqueness of the representation of an open
set in terms of the basis.
Remark. If B is a basis for the topology on X. Then every open set U of X is
the union of some elements of B. So for every a ∈ U there is B ∈ B such that
a ∈ B ⊂ U .

Theorem 11.9. Let B be a collection of open subsets of a space X. Then B is a
basis for the topology of X if and only if for every open subset U of X and every
a ∈ U there is B ∈ B such that a ∈ B ⊂ U .

Proof. If B is a basis, the claim holds as indicated in the previous remark. Con-
versely, suppose the family B has the described property. First note that any open
set U can be written as a union of elements of B, namely U =

⋃
a∈U Ba where

Ba ∈ B satisfies a ∈ Ba ⊂ U . Thus all the open subsets of X are contained in any
topology containing B, especially the topology generated by B. Hence the topology
generated by B equals the topology of X, since the latter obviously contains B.

As a special case of the above, X itself can be written as a union of elements
of B. So, all that is left is to check the second property of a basis for B. Let
B1, B2 ∈ B, and x ∈ B1 ∩B2. Then as B1, B2 are open, so is B1 ∩B2. Hence there
is B3 ∈ B such that x ∈ B3 ⊂ B1 ∩B2, as desired. �

Example 11.10. The standard topology on R is the topology generated by bounded
open intervals. Note that they form a basis for the topology.

Example 11.11. Remember that when (X, d) is a metric space, a set U ⊂ X is
open if for every x ∈ U there is r > 0 such that the open ball of radius r around x
is in U , i.e.

Br(x) := {y ∈ X : d(y, x) < r} ⊂ U.
We always equip metric spaces with this topology and consider them as a special
kind of topological spaces.
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Proposition 11.12. The family of open balls is a basis for the topology of a metric
space.

Proof. Since open balls are open sets, and for every open set U and every a ∈ U
there is an open ball Br(a) ⊂ U , the collection of open balls is a basis. �

Second Proof. Here we give a direct proof for the theorem. The union of all
open balls is the whole space obviously. Now consider two points x, y in the metric
space and let z ∈ Br(x) ∩Bs(y). Then

Bt(z) ⊂ Br(x) ∩Bs(y),

where t = min{r − d(x, z), s − d(y, z)}. Thus the family of open balls is a basis.
Finally note that every open set in a metric space is a union of a collection of open
balls, so every open set is contained in any topology containing the open balls.
Therefore the family of open balls generates the topology of the metric space. �

11.2 Sequences and Limit Points

Definition 11.13. A sequence (an) in a set X is a function

N→ X
n 7→ an

.

We also use the notation (an)n∈N. A sequence (bk)k∈N is called a subsequence of
(an)n∈N if bk = ank , for a strictly increasing sequence n1 < n2 < · · · of positive
integers.

Definition 11.14. Suppose (an) is a sequence in the topological space X. We say
the sequence (an) converges to the limit a ∈ X, and write lim an = a or an → a,
if for every open set U containing a there exists an N ∈ N such that an ∈ U for all
n ≥ N .

Theorem 11.15. Let (X, d) be a metric space. Then a sequence (an) in X con-
verges to a if and only if

∀ε > 0 ∃N ∈ N such that ∀n ≥ N we have d(an, a) < ε.

Proof. Suppose an → a. Then for large enough n we have an ∈ Bε(a), since
Bε(a) is an open set containing a. But we have

an ∈ Bε(a) ⇐⇒ d(an, a) < ε.

For the converse, let U be an open set containing a. Then as open balls form a basis
for the topology of a metric space, there is an open ball Bε(a) such that Bε(a) ⊂ U .
Hence for large enough n we have d(an, a) < ε thus an ∈ Bε(a) ⊂ U , as desired. �
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Theorem 11.16. Suppose B is a basis for the topology on X, and (an) is a sequence
in X. Then an → a if and only if for every open set B ∈ B that contains a there
exists an N ∈ N such that an ∈ B for all n ≥ N .

Proof. If an → a then the claim holds by the definition of convergence, since
the elements of B are open sets. Conversely, suppose the definition of convergence
holds for open sets in B. Let U be an open set containing a. Then there is B ∈ B
such that a ∈ B ⊂ U . Hence there is N ∈ N such that for all n ≥ N we have
an ∈ B ⊂ U . Therefore an → a. �

Definition 11.17. A topological space X is called a Hausdorff space if for every
two distinct points x, y ∈ X there exist open sets U, V such that

x ∈ U, y ∈ V, and U ∩ V = ∅.

Theorem 11.18. Metric spaces are Hausdorff.

Proof. If x 6= y then d(x, y) > 0. Let r < 1
2d(x, y), then by the triangle inequality

Br(x) ∩Br(y) = ∅. �

Theorem 11.19. Every convergent sequence in a Hausdorff space has a unique
limit.

Proof. Suppose to the contrary that a sequence (an) converges to two distinct
points a, b. Let U, V be open sets containing a, b respectively, such that U ∩V = ∅.
Then for large enough n we must have an ∈ U and an ∈ V , which is impossible. �

Theorem 11.20. Finite subsets of a Hausdorff space are closed.

Proof. The empty set is obviously closed. Let {a} be a one element subset. Then
for any b ∈ {a}c there are open sets U, V such that b ∈ U , a ∈ V , and U ∩ V = ∅.
In particular a /∈ U , thus U ⊂ {a}c. Thus {a}c is a union of open sets, hence it is
open. So {a} is closed. Finally, any finite subset is a union of finitely many closed
one element subsets, hence it is closed. �

Theorem 11.21. Every subsequence of a convergent sequence converges to the
same limit(s) as the original sequence.

Proof. Suppose an → a and bk = ank . Let U be an open neighborhood of a.
Then there is N so that an ∈ U for n ≥ N . Now since nk ≥ k, the same N works
for (bk). �

Definition 11.22. Suppose X is a topological space, and A ⊂ X. The closure of
A, denoted by Ā, is the intersection of all closed sets containing A.
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Remark. Note that X is a closed set containing A, so the family of all closed sets
containing A is nonempty and its intersection is defined.

Theorem 11.23. Suppose X is a topological space, and A ⊂ X. Then Ā is the
smallest closed set that contains A, i.e. it is closed, contains A, and is contained
in any closed set containing A. As a result, C = C for any closed set C.

Proof. Ā is the intersection of all closed sets containing A, therefore it is closed,
and is a subset of any closed set containing A. It also contains A obviously. Now
if C is closed, then C is the smallest closed set containing C. Hence C = C. �

Theorem 11.24. Suppose X is a topological space, and A ⊂ X. If a sequence (an)
of points in A converges to a, then a ∈ Ā.

Proof. If a /∈ Ā, then a ∈ (Ā)c. Now as (Ā)c is open, for large enough n we must
have an ∈ (Ā)c. But this is impossible since (Ā)c ⊂ Ac. �

Definition 11.25. A point x ∈ X is called a limit point or an accumulation
point of A ⊂ X, if every open set containing x intersects A in a point other than
x.

Theorem 11.26. The closure of a set is the union of the set and its limit points.

Proof. Suppose x ∈ Ā− A. Let U be an open set containing x. Suppose to the
contrary that U ∩ A = ∅. Then U ⊂ Ac, and consequently A ⊂ U c. Now as U c is
closed, we have Ā ⊂ U c. But this is in contradiction with the fact that x ∈ Ā. �

Proposition 11.27. The closure of a set is the set of points that any open neigh-
borhood of them intersects the set.

Proof. By the last theorem, every point of Ā is either in A or is a limit point of
A. Any open neighborhood of these points clearly intersects A. So we only need
to show that no other point has this property. This is easy since if x /∈ Ā, then
x ∈ (Ā)c. But (Ā)c is open and does not intersect A. �

Definition 11.28. Suppose X is a topological space, and A ⊂ X. The interior of
A is the union of all open subsets of X contained in A. We denote it by A◦. The
boundary of A is ∂A := Ā−A◦.

Proposition 11.29. Suppose X is a topological space, and A ⊂ X. Then

∂A = Ā ∩Ac.

As a result, ∂A is closed, and equals the set of points that any open neighborhood
of them intersects both A,Ac.
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Proof. We have ∂A = Ā−A◦ = Ā∩(A◦)c. So it suffices to show that (A◦)c = Ac.
If x /∈ A◦, then for every open set U ⊂ A we have x /∈ U . Let C be a closed set
containing Ac. Then Cc is an open set contained in A. Thus x /∈ Cc. Hence x ∈ C,
and as C is arbitrary we get x ∈ Ac.

Conversely suppose x ∈ Ac. Then for every closed set C ⊃ Ac we have x ∈ C.
Let U be an open set contained in A. Then U c is a closed set containing Ac.
Therefore x ∈ U c. So x /∈ U . Hence x /∈ A◦.

Thence we have ∂A = Ā ∩Ac. Thus ∂A is closed, since it is the intersection of
two closed sets. Finally, the last statement of the theorem follows from the previous
proposition about characterizing the closure of a set. �

Proposition 11.30. Suppose X is a topological space, and A ⊂ X. Then A◦ is
the largest open set contained in A, i.e. it is open, is contained in A, and contains
any open subset of A.

Proof. A◦ is the union of all open sets contained in A, therefore it is open, and
contains any open set contained in A. It is also contained in A obviously. �

11.3 Subspaces

Definition 11.31. Let X be a topological space, and Y ⊂ X. The subspace
topology on Y is the topology

{U ∩ Y : U is open in X}.

Remark. In the above definition, it must be checked that the specified family is a
topology.

Theorem 11.32. Suppose B is a basis for the topology on X, and Y ⊂ X. Then

{B ∩ Y : B ∈ B}

is a basis for the subspace topology on Y .

Proof. First note that the union of the specified family is Y . Now let

x ∈ (B1 ∩ Y ) ∩ (B2 ∩ Y ) = (B1 ∩B2) ∩ Y.

Then there is B3 such that x ∈ B3 ⊂ B1 ∩B2. Hence

x ∈ B3 ∩ Y ⊂ (B1 ∩ Y ) ∩ (B2 ∩ Y ).

Finally note that for any open set U ∩Y in the subspace topology, there is a family
{Bα} such that U =

⋃
Bα. Therefore

U ∩ Y = [
⋃
α

Bα] ∩ Y =
⋃
α

[Bα ∩ Y ]. �
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Theorem 11.33. Suppose Y is a subspace of X. Then C ⊂ Y is closed in Y if
and only if there is a closed subset D ⊂ X such that C = D ∩ Y .

Proof. Let C be a closed set in Y . Then the complement of C in Y is open in Y ,
i.e. Y −C is open in Y . Thus there is an open set U ⊂ X such that Y −C = U ∩Y .
Hence

U c ∩ Y = Y − U = Y − (U ∩ Y ) = Y − (Y − C) = Y ∩ C = C.

Conversely, let D be a closed subset of X. The Dc is open. Hence Dc ∩ Y is open
in Y . Now we have

Y − (D ∩ Y ) = Y −D = Y ∩Dc.

Thus D ∩ Y is closed in Y . �

Theorem 11.34. Suppose Y is a subspace of X, and (an) is a sequence in Y . Then
(an) converges to a ∈ Y as a sequence in Y if and only if an → a as a sequence in
X.

Proof. Any open neighborhood V of a in Y is of the form Y ∩ U where U is
an open neighborhood of a in X. Now for large enough n, an ∈ U if and only if
an ∈ V , since an ∈ Y . Thus the two convergences are equivalent. �

Theorem 11.35. Let Z ⊂ Y ⊂ X. Then the subspace topology that Z inherits
from Y is the same as the subspace topology that Z inherits from X.

Proof. Let U be an open subset of X. Then the claim follows easily from

U ∩ Z = (U ∩ Y ) ∩ Z. �

Theorem 11.36. The subspaces of a Hausdorff space are Hausdorff.

Proof. SupposeX is Hausdorff and Y ⊂ X. Let x, y ∈ Y be distinct points. Then
there are open subsets U, V of X containing x, y respectively, such that U ∩V = ∅.
But then U ∩ Y and V ∩ Y are open neighborhoods of x, y in Y , and

(U ∩ Y ) ∩ (V ∩ Y ) = ∅. �

Theorem 11.37. Suppose (X, d) is a metric space and Y ⊂ X. Then d|Y×Y is a
metric on Y that induces the same topology as the subspace topology.

Proof. It is obvious that d|Y×Y is a metric on Y . We use the notations Br(x,X)
and Br(x, Y ) for the open balls around x in X,Y respectively. Note that we have

Br(x, Y ) = {y ∈ Y : d(y, x) < r} = Br(x,X) ∩ Y.
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Now let V be an open subset of Y in the metric topology. Then V =
⋃
x∈V Brx(x, Y ).

Hence
V =

⋃
x∈V

[Brx(x,X) ∩ Y ] = [
⋃
x∈V

Brx(x,X)] ∩ Y.

But
⋃
x∈V Brx(x,X) is open in X, since it is a union of open balls. Therefore V is

open in the subspace topology.
Conversely suppose V is an open subset of Y in the subspace topology. Then

V = U ∩ Y for some U which is open in X. Then we have U =
⋃
x∈U Brx(x,X).

Hence

V = [
⋃
x∈U

Brx(x,X)] ∩ Y =
⋃
x∈U

[Brx(x,X) ∩ Y ] =
⋃
x∈U

Brx(x, Y ).

Therefore V is also open in the metric topology. �

Theorem 11.38. Suppose A is a subspace of X. Then
(i) Open sets in A are open in X when A is open in X.
(ii) Closed sets in A are closed in X when A is closed in X.

Proof. Open sets in A are of the form U ∩A where U is open in X. Hence if A
is open in X, U ∩A is also open in X. The proof is the same for closed sets. �

11.4 Product Spaces

Definition 11.39. Suppose X1, . . . , Xn are topological spaces. The product
topology on

∏n
i=1Xi = X1 × · · · ×Xn is the topology generated by

{U1 × · · · × Un : Ui is open in Xi}.

Remark. It is easy to see that the product of open sets is indeed a basis for the
product topology.

Theorem 11.40. Suppose Bi is a basis for the topology on Xi. Then

{B1 × · · · ×Bn : Bi ∈ Bi}

is a basis for the product topology on
∏n
i=1Xi.

Proof. First note that the union of the specified family is
∏
Xi, since for any

x = (x1, . . . , xn) in the product space we have xi ∈ Bi for some Bi ∈ Bi, hence
x ∈

∏
Bi. Now let

x = (x1, . . . , xn) ∈
(∏
i≤n

Bi

)
∩
(∏
i≤n

B′i

)
=
∏
i≤n

(Bi ∩B′i).
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Then there are B′′i such that xi ∈ B′′i ⊂ Bi ∩B′i. Hence

x ∈
∏
i≤n

B′′i ⊂
(∏
i≤n

Bi

)
∩
(∏
i≤n

B′i

)
.

Finally to see that the specified family generates the product topology, it is enough
to show that each open set of the form U1× · · · ×Un is the union of some elements
of the family. The reason is that any open set in the product topology is a union
of some open sets of the form U1 × · · · × Un. Now we have Ui =

⋃
αi
Bαi , where

Bαi ∈ Bi. Therefore

U1 × · · · × Un =
⋃
α1

Bα1 × · · · ×
⋃
αn

Bαn

=
⋃

α1,...,αn

Bα1 × · · · ×Bαn . �

Exercise 11.41. Show that the product of closed sets is a closed subset of the
product space.

Theorem 11.42. Suppose (Xi, di) are metric spaces. Then, the equivalent metrics

d(x, y) :=

[
n∑
i=1

di(xi, yi)
2

]1
2

,

dsum(x, y) :=

n∑
i=1

di(xi, yi),

dmax(x, y) := max
i≤n
{di(xi, yi)},

induce the product topology on
∏n
i=1Xi.

Proof. These metrics are all equivalent as we have seen before, so they induce the
same topology by Theorem 2.39. On the other hand, let x = (x1, . . . , xn) ∈

∏
Xi.

We use the notation Br(z, d) for the ball of radius r around z with respect to the
metric d. Then it is easy to see that

Br(x, dmax) =
n∏
i=1

Br(xi, di).

Thus the open balls with respect to dmax form a basis for the product topology,
hence dmax induces the product topology. �

Theorem 11.43. Suppose that Yi ⊆ Xi. Then the product of subspace topologies
on
∏n
i=1 Yi is the same as the topology it inherits as a subspace of

∏n
i=1Xi.
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Proof. The sets
∏n
i=1(Ui ∩ Yi), where Ui is an open subset of Xi, form a basis

for the product of subspace topologies. On the other hand, the sets (
∏n
i=1 Ui) ∩

(
∏n
i=1 Yi) form a basis for the subspace topology inherited from

∏n
i=1Xi. But we

have
n∏
i=1

(Ui ∩ Yi) =
( n∏
i=1

Ui

)
∩
( n∏
i=1

Yi

)
. �

Theorem 11.44. A sequence (an)n∈N =
(
(an,1, . . . , an,k)

)
n∈N in X1 × · · · × Xk

converges to a = (a1, . . . , ak) if and only if an,i → ai for each i.

Proof. Let U be an open neighborhood of a. Then there open subsets Ui of Xi

such that
a ∈ U1 × · · · × Uk ⊂ U,

since the sets
∏
Ui form a basis for the product topology. Now if an,i → ai for each

i, then for large enough n we have an,i ∈ Ui for each i. Hence

an ∈ U1 × · · · × Uk ⊂ U.

For the converse note that if an → a, then for large enough n we have an ∈
∏
Ui.

Therefore an,i ∈ Ui for each i. �

Theorem 11.45. The product of finitely many Hausdorff spaces is Hausdorff.

Proof. Suppose x, y ∈
∏
i≤nXi, and x 6= y. Then xj 6= yj for some j. Now there

are open sets Uj , Vj in Xj , containing xj , yj respectively, such that Uj ∩ Vj = ∅.
Then

x ∈ X1 × · · · ×Xj−1 × Uj ×Xj+1 × · · · ×Xn

y ∈ X1 × · · · ×Xj−1 × Vj ×Xj+1 × · · · ×Xn,

and
[X1 × · · · × Uj × · · · ×Xn] ∩ [X1 × · · · × Vj × · · · ×Xn] = ∅. �

11.5 The Countability Axioms

Definition 11.46. A first countable topological space X, is a space that has a
countable basis at each point, i.e. for every point x ∈ X there exists a countable
family {Un} of open sets containing x, such that any open set that contains x
contains one of the Un’s.

Remark. We can redefine Un to be
⋂n
i=1 Ui and assume that the above family is

decreasing.
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Theorem 11.47. Metric spaces are first countable.

Proof. {B 1
k
(x) : k ∈ N} is a countable basis at x. �

Theorem 11.48. Suppose that A is a subset of a first countable space, and x ∈ Ā.
Then there is a sequence in A that converges to x.

Proof. Let {Un} be a decreasing countable basis at x. Then there are points
an ∈ A ∩ Un, since x ∈ Ā. Now we have an → x. Because for every open
neighborhood U of x, there is N such that Un ⊂ U for n ≥ N . Hence an ∈ U for
n ≥ N . �

Definition 11.49. A second countable topological space is a space that has a
countable basis.

Remark. Second countable spaces are obviously first countable too.

Theorem 11.50. Subspaces of first or second countable spaces are respectively first
or second countable. Also, products of finitely many first or second countable spaces
are respectively first or second countable.

Proof. First suppose Y ⊂ X, and x ∈ Y . Let {Un} be a countable basis at
x. Then it is easy to see that {Un ∩ Y } is a countable basis at x with respect to
the subspace topology on Y . Similarly, if {Un} is a countable basis for X, then
{Un ∩ Y } is a countable basis for Y . Note that the restriction of a basis is a basis
for the subspace.

Next suppose that x = (x1, . . . , xk) ∈
∏
i≤kXi. Let {Un,i}n∈N be a decreasing

countable basis at xi. Then {
∏
i≤k Un,i}n∈N is a countable basis at x. The reason

is that if U is an open neighborhood of x, then there are open sets Vi in Xi such
that

x ∈
∏
i≤k
Vi ⊂ U.

Now for each i there is ni such that x ∈ Uni,i ⊂ Vi. Hence for n = maxi≤k{ni} we
have

x ∈
∏
i≤k
Un,i ⊂ U.

Finally, let Bi be a countable basis for Xi. Then

{B1 × · · · ×Bn : Bi ∈ Bi}

is a countable basis for
∏
i≤kXi. Note that the product of finitely many countable

collections is countable. �

Theorem 11.51. Rn and its subspaces are second countable.
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Proof. The bounded intervals with rational endpoints form a countable basis
for R (why?). Therefore their products, i.e. open rectangles whose vertices have
rational coordinates, form a countable basis for Rn. Finally, the subspaces of second
countable spaces are second countable. �

Definition 11.52. A subset of a topological space is dense if its closure is the
whole space. A topological space is called separable if it has a countable dense
subset.

Example 11.53. Qn is a countable dense subset of Rn, so Rn is separable. By
the next theorem, the subspaces of Rn are also separable, since they are second
countable.

Theorem 11.54. A second countable space is separable.

Proof. Let {Ui} be a countable basis for X. We can assume that all Ui’s are
nonempty. Let ai ∈ Ui. Then we claim that {ai} is dense in X. Let x be an
arbitrary point of X. Suppose U is an open neighborhood of x. Then for some j we
have x ∈ Uj ⊂ U . Hence aj ∈ U . Therefore any open neighborhood of x intersects
{ai}. Hence x ∈ {ai}. �

Theorem 11.55. A separable metric space is second countable.

Proof. Let {an} be a countable dense subset. We claim that the family

B = {B 1
k
(an) : n, k ∈ N}

is a countable basis. First note that B is countable, since the union of countably
many countable sets is countable. Next, we need to show that B is a basis. Let x be
an arbitrary point of the space. Then B 1

2
(x) contains some an, since it is an open

set that intersects the closure of {an}, i.e. the whole space. Hence x ∈ B1(an).
Thus

⋃
B is the whole space.

Now suppose x ∈ B 1
k
(an) ∩B 1

l
(am). Then for some large enough N we have

B 1
N

(x) ⊂ B 1
k
(an) ∩B 1

l
(am).

Again, B 1
2N

(x) contains some aj . Hence

x ∈ B 1
2N

(aj) ⊂ B 1
k
(an) ∩B 1

l
(am).

Thus B is a basis.
Finally, we have to show that B generates the topology of the space. Suppose

U is an open set, and x ∈ U . Then B 1
N

(x) ⊂ U for some large enough N . Also,
there is some an ∈ B 1

2N
(x). Therefore x ∈ B 1

2N
(an) ⊂ U . �
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Definition 11.56. An open covering of a subset A of a topological space X, is
a family U of open subsets of X such that⋃

U =
⋃
U∈U

U ⊃ A.

A subcovering V of U is a subfamily of U which is itself an open covering of A.

Theorem 11.57. Every open covering of a second countable space has a countable
subcovering.

Proof. Suppose U is an open covering of X. Let B be a countable basis for X.
For every x ∈ X there is Ux ∈ U such that x ∈ Ux. Also there is Bi ∈ B such
that x ∈ Bi ⊂ Ux. Let Ui be one of the Ux’s that contain Bi. Since Bi’s form a
countable family, so do Ui’s. Now for every x there is Bi such that x ∈ Bi ⊂ Ui.
Hence {Ui} is a countable subcovering of U . �

Remark. A space whose every open covering has a countable subcovering is called
a Lindelof space. By the above theorem second countable spaces, in particular Rn
and its subspaces, are Lindelof.

11.6 Continuous Functions

Definition 11.58. Let f : X → Y , and A ⊂ Y . Then the preimage or the
inverse image of A is

f−1(A) := {x ∈ X : f(x) ∈ A}.

Note that we do not require the map f to be invertible.

Definition 11.59. A function f : X → Y is called continuous if for each open
subset U of Y , the set f−1(U) is an open subset of X. A function that is not
continuous is called discontinuous.

Theorem 11.60. Suppose B is a basis for the topology of Y . Then a map f : X →
Y is continuous if for each open set B ∈ B, the set f−1(B) is an open subset of X.

Proof. Suppose U is an open subset of Y . Then U =
⋃
αBα for some Bα ∈ B.

Now we have

f−1(U) = {x ∈ X : f(x) ∈
⋃
α

Bα} =
⋃
α

{x ∈ X : f(x) ∈ Bα} =
⋃
α

f−1(Bα).

Thus f−1(U) is a union of open sets, hence it is open. �
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Theorem 11.61. A map f : X → Y is continuous if and only if for each closed
subset C of Y , the set f−1(C) is a closed subset of X.

Proof. We know that Cc is an open subset of Y . Then

f−1(Cc) = {x ∈ X : f(x) ∈ Cc} = {x ∈ X : f(x) /∈ C} = (f−1(C))c.

Thus (f−1(C))c is open, hence f−1(C) is closed. The converse is similar. �

Proposition 11.62. The constant functions are continuous. The identity map of
any space

idX : X → X
x 7→ x

is continuous. Also, the projections

πi : X1 × · · · ×Xn → Xi

(x1, . . . , xn) 7→ xi

from a product space to any of its components are continuous.

Proof. The first two cases are obvious. For the projections note that if U is an
open subset of Xi, then

π−1
i (U) = X1 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn

is an open subset of
∏
Xj . �

Theorem 11.63. The composition of continuous functions is continuous.

Proof. Suppose f : X → Y and g : Y → Z are continuous. We want to show
that g ◦ f : X → Z is continuous. Let U be an open subset of Z. Then

(g ◦ f)−1(U) = {x ∈ X : g(f(x)) ∈ U}
= {x ∈ X : f(x) ∈ g−1(U)} = f−1(g−1(U)).

Hence (g◦f)−1(U) is an open subset of X, since g−1(U) is an open subset of Y . �

Theorem 11.64. Suppose that f : X → Y is continuous. Then for every conver-
gent sequence xn → x in X, we have f(xn) → f(x). The converse holds if X is
first countable.
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Proof. Let U be an open set containing f(x). Then f−1(U) is an open set
containing x. Hence there is a positive integer N such that for all n ≥ N we have
xn ∈ f−1(U). Therefore for n ≥ N we have f(xn) ∈ U as desired.

For the converse, suppose to the contrary that f is not continuous. Then there
is an open set U such that f−1(U) is not open. Therefore (f−1(U))c is not closed.
Let

x ∈ (f−1(U))c − (f−1(U))c.

Note that x ∈ f−1(U), hence f(x) ∈ U . Now as X is first countable, there is
a sequence (an) in (f−1(U))c that converges to x. Then as an → x we have
f(an) → f(x). Therefore for large enough n we must have f(an) ∈ U . But this is
impossible since an /∈ f−1(U). �

Remark. Remember that when X,Y are metric spaces, a map f : X → Y is
continuous if and only if

∀x ∈ X ∀ε > 0 ∃δ > 0 such that
∀y ∈ X dX(y, x) < δ =⇒ dY (f(y), f(x)) < ε.

Theorem 11.65. Suppose f : X → Y is continuous, A ⊂ X, and f(A) ⊂ B ⊂ Y .
Then

f |A : A→ B
x 7→ f(x)

is continuous.

Proof. Let V be an open subset of B. Then there is an open subset U of Y such
that V = U ∩B. Now

(f |A)−1(V ) = f−1(U ∩B) ∩A = f−1(U ∩ f(A)) ∩A = f−1(U) ∩A. �

Remark. Let A be a subspace of X. Then the inclusion map

jA : A→ X
x 7→ x

is continuous, since it is the restriction of idX .

Theorem 11.66. For functions into product spaces we have
(i) The function

f = (f1, . . . , fn) : X −→ Y1 × · · · × Yn
x 7→ (f1(x), . . . , fn(x))

is continuous if and only if each fi : X → Yi is continuous.
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(ii) The function

f = f1 × · · · × fn : X1 × · · · ×Xn −→ Y1 × · · · × Yn
(x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn))

is continuous if each fi : Xi → Yi is continuous. The converse holds if in
addition each Xi is nonempty.

Proof. Let Ui be an open subset of Yi. Note that for the continuity of f it is
enough to show that f−1(U1 × · · · × Un) is open for all choice of Ui’s.

(i) If each fi is continuous, then f−1
i (Ui) is open for all i. Hence

f−1(U1 × · · · × Un) = f−1
1 (U1) ∩ · · · ∩ f−1

n (Un)

is also open. Conversely if f is continuous we have

f−1
i (Ui) = f−1(Y1 × · · · × Yi−1 × Ui × Yi+1 × · · · × Yn).

(ii) If each fi is continuous, then f−1
i (Ui) is open for all i. Hence

f−1(U1 × · · · × Un) = f−1
1 (U1)× · · · × f−1

n (Un)

is also open. Conversely, suppose f is continuous. Let ak ∈ Xk be a fixed element.
Then by part (i) the map

ji : Xi −→ X1 × · · · ×Xi × · · · ×Xn

xi 7→ (a1, . . . , ai−1, xi, ai+1, . . . , an)

is continuous. Now fi can be written as a composition of continuous functions as
follows

fi = πi ◦ f ◦ ji,

where πi : Y1 × · · · × Yn → Yi is the projection on the ith component. �

Pasting Lemma. Suppose X =
⋃
α∈I Aα and f : X → Y is a map such that

f |Aα : Aα → Y is continuous. Then f is continuous if one of the following holds
(i) Each Aα is open, or
(ii) Each Aα is closed, and I is finite.

Proof. (i) Let U be an open subset of Y . Then

f−1(U) = f−1(U) ∩
(⋃
α∈I

Aα

)
=
⋃
α∈I

(f−1(U) ∩Aα) =
⋃
α∈I

(f |Aα)−1(U).

Since Aα is open in X and (f |Aα)−1(U) is open in Aα, (f |Aα)−1(U) is also open in
X. Now the result follows from the fact that the union of a family of open sets is
open.
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(ii) Let C be a closed subset of Y . Then

f−1(C) = f−1(C) ∩
(⋃
α∈I

Aα

)
=
⋃
α∈I

(f−1(C) ∩Aα) =
⋃
α∈I

(f |Aα)−1(C).

Since Aα is closed in X and (f |Aα)−1(C) is closed in Aα, (f |Aα)−1(C) is also closed
in X. Now the result follows from the fact that the union of finitely many closed
sets is closed. �

Remark. If we have functions fα : Aα → Y such that

fα|Aα∩Aβ = fβ|Aα∩Aβ

for all α, β ∈ I, then we can define f : X → Y as f |Aα := fα. We can use this to
give a different formulation of the pasting lemma.

Definition 11.67. A continuous bijective function whose inverse is also continuous
is called a homeomorphism. Two spaces are said to be homeomorphic if there
exists a homeomorphism between them.

Remark. It is easy to check that being homeomorphic is an equivalence relation.

Example 11.68. The interval (0, 1) is homeomorphic to R. For example

x 7→ tan(
π

2
(2x− 1))

is a homeomorphism from (0, 1) onto R.

Proposition 11.69. Suppose f : X → Y is a homeomorphism. Then f induces a
bijection between the topology of X and the topology of Y .

Proof. Since f−1 is continuous, f(U) is open for every open set U ⊂ X. It is
easy to see that the map U 7→ f(U) is a bijection between the topologies. �

Proposition 11.70. The map

(X1 × · · · ×Xk)× (Xk+1 × · · · ×Xn)→ X1 × · · · ×Xn(
(x1, . . . , xk) , (xk+1, . . . , xn)

)
7→ (x1, . . . , xn)

is a homeomorphism.

Proof. Let Ui be an open subset of Xi. Then the restriction of the described
map is a bijection between (U1× · · ·×Uk)× (Uk+1× · · ·×Un) and (U1× · · ·×Un).
These sets form bases for the topology of their corresponding spaces. Hence we get
the desired result. �
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Definition 11.71. A map f : X → Y is called continuous at a point x ∈ X if
for each open set U containing f(x), the set f−1(U) is a neighborhood of x.

Remark. The above theorems can be generalized to the case of maps that are
continuous at a point.

Theorem 11.72. A map is continuous if and only if it is continuous at every point.

Proof. It is easy to see that continuity of a map implies its continuity at every
point. For the converse, suppose that f : X → Y is continuous at every x ∈ X. Let
U be an open subset of Y . Then for every x ∈ f−1(U) we have f(x) ∈ U . Thus
f−1(U) must be a neighborhood of all of its elements. Therefore f−1(U) is a union
of open sets, hence it is open. �

11.7 Connectedness

Definition 11.73. A separation of a topological space X is a pair of nonempty
open subsets A,B of X such that

X = A ∪B, and A ∩B = ∅.

A topological space X is disconnected if there exists a separation of X.
A nonempty topological space is connected if it is not disconnected, i.e. there

does not exist a separation of it. A nonempty subset of a space is connected if it is
connected as a topological space with the subspace topology.

Notation. We use the notation A tB for A ∪B, when A ∩B = ∅.

Theorem 11.74. A space X is connected if and only if the only subsets of X that
are both open and closed in X are ∅, X.

Proof. Any other closed and open subset A, has a nonempty open complement
Ac; and together they form a separation of X. �

Theorem 11.75. A nonempty subset of R is connected if and only if it is an
interval, or has only one element.

Proof. This is the same as Theorem 2.82. �

Intermediate Value Theorem. Suppose f : X → R is continuous and X is
connected. If a, b ∈ f(X) and a < c < b then c ∈ f(X).

Proof. If c /∈ f(X), then f−1((−∞, c)) t f−1((c,+∞)) is a separation of X. �

Theorem 11.76. The continuous image of a connected set is connected.
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Proof. Suppose X is connected and f : X → Y is continuous. We want to show
that f(X) is connected. Let A be a nonempty open and closed subset of f(X).
It is enough to show that A = f(X). Now f−1(A) is both open and closed. It
is also nonempty, since A is nonempty and contains elements of the image of f .
Thus f−1(A) = X since X is connected. Hence we have A = f(f−1(A)) = f(X)
as desired. �

Remark. An immediate consequence of the above theorem is that a space which
is homeomorphic to a connected space, is connected.

Theorem 11.77. The union of a family of connected sets that have a point in
common, is connected.

Proof. Suppose {Xα} is a family of connected sets. Let X =
⋃
Xα, and suppose

p ∈
⋂
Xα. Suppose that X has a nonempty closed and open subset U . We either

have p ∈ U or p ∈ U c. Suppose U contains p, otherwise we can work with the
nonempty closed and open subset U c. Then U ∩Xα is nonempty for all α. Also as
Xα ⊂ X, U ∩ Xα is a closed and open subset of Xα. Hence by connectedness of
Xα, we have U ∩Xα = Xα. Therefore U contains all Xα’s and we have U = X. �

Theorem 11.78. Suppose A is a connected subset of X, and A ⊂ B ⊂ Ā. Then
B is also connected. In particular, the closure of a connected set is connected.

Proof. Suppose V is a nonempty closed and open subset of B. Then there is an
open set U ⊂ X such that V = U ∩B. Now

V ∩A = (U ∩B) ∩A = U ∩A

is a closed and open subset of A. Let us show that U ∩ A is nonempty. We know
that there is b ∈ U ∩ B. If b ∈ A we are done. Otherwise we have b ∈ Ā − A.
Therefore b is a limit point of A. Thus as U is an open set containing b, U must
intersect A. Hence by connectedness of A we get U ∩A = A.

Therefore V contains A. Since V is also closed in B, there is a closed subset C
of X such that V = C ∩ B. But then C contains A, and as C is closed we have
C ⊃ Ā. Consequently V = C ∩B = B. Thus B is connected. �

Theorem 11.79. The product of finitely many connected spaces is connected.

Proof. It is sufficient to prove the theorem for the product of two spaces. The
general result follows by induction. Suppose X,Y are connected. For every y ∈ Y ,
the map that takes x 7→ (x, y) from X → X × Y is continuous. Also, for every
x ∈ X, the map that takes y 7→ (x, y) from Y → X × Y is continuous. Therefore
the images of theses maps, i.e. X × {y} and {x} × Y are connected, for all x ∈ X
and y ∈ Y .
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Let a ∈ X be a fixed element. Then for all y ∈ Y , X × {y} ∪ {a} × Y is the
union of two connected sets having (a, y) in common, so it is connected. Therefore
X × Y is the union of connected subsets

X × Y =
⋃
y∈Y

(X × {y} ∪ {a} × Y ),

that have (a, b) in common, where b ∈ Y is a fixed element. Hence X × Y is
connected. �

Theorem 11.80. Suppose X is a topological space, and x, y ∈ X. Define the
relation x ∼ y if there exists a connected subset that contains both x and y. Then
∼ is an equivalence relation. The equivalence classes of ∼ are connected and are
called the (connected) components of X.

Proof. It is obvious that x ∼ x, since {x} is connected. Also x ∼ y implies
y ∼ x by the very definition of ∼. Now suppose x ∼ y and y ∼ z. Then there are
connected sets A,B such that x, y ∈ A and y, z ∈ B. Since A,B both contain y,
A ∪B is connected. But x, z ∈ A ∪B, hence x ∼ z.

Next suppose A is the equivalence class of x. Then for every y ∈ A there is a
connected set Ay such that x, y ∈ Ay. Note that for any z ∈ Ay we have z ∼ x.
Therefore Ay ⊂ A, and consequently A =

⋃
y∈AAy. But x ∈

⋂
y∈AAy, thus A is

connected. �

Theorem 11.81. If a connected subset of a space intersects a component, it is
contained in that component.

Proof. Suppose B is a connected subset that intersects the component A. Let
x ∈ B ∩ A. Then for any y ∈ B we have x ∼ y, since x, y ∈ B. Thus y ∈ A too,
and hence B ⊂ A. �

Theorem 11.82. Components are closed.

Proof. Suppose A is a path component. Then Ā is connected, since A is con-
nected. On the other hand Ā intersects A, so we must have Ā ⊂ A. Hence A = Ā,
and A is closed. �

Definition 11.83. A topological space is called locally connected if every open
neighborhood of every point contains a connected open neighborhood of that point.

Theorem 11.84. The components of a locally connected space are both open and
closed.

Proof. Let A be a component. Then any x ∈ A has a connected open neighbor-
hood Ux. Since Ux intersects A, we have Ux ⊂ A. Thus A =

⋃
x∈A Ux, and therefore

A is open. Now, Ac is also open. Because Ac is the union of other components,
which are all open. Hence A is closed too. �
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11.8 Path Connectedness

Definition 11.85. Let X be a topological space, and x, y ∈ X. A path in X from
x to y, is a continuous function f from an interval [a, b] to X such that f(a) = x
and f(b) = y. A nonempty topological space X is called path connected if for
any two points x, y ∈ X there exists a path from x to y. A nonempty subset A
of a space X is path connected if it is path connected as a topological space with
the subspace topology, in other words between any two points of A there is a path
inside A.

Remark. Note that by a linear change of variable, we can assume that the domain
of a path is any given closed interval.

Theorem 11.86. A path connected space is connected.

Proof. Suppose to the contrary that X is path connected, and there is a separa-
tion AtB of X. Let x ∈ A and y ∈ B. Then there is a path f : [a, b]→ X from x
to y. But it is easy to see that f−1(A)t f−1(B) is a separation of [a, b], which is a
contradiction. �

Theorem 11.87. The continuous image of a path connected set is path connected.

Proof. Suppose X is path connected and f : X → Y is continuous. Let x, y ∈
f(X). Then there are z, w ∈ X such that f(z) = x and f(w) = y. Now let
g : [a, b] → X be a path from z to w. Then f ◦ g : [a, b] → f(X) is a path from x
to y. �

Remark. An immediate consequence of the above theorem is that a space which
is homeomorphic to a path connected space, is path connected.

Theorem 11.88. The union of a family of path connected sets that have a point
in common, is path connected.

Proof. Suppose {Xα} is a family of path connected sets. Let X =
⋃
Xα, and

suppose p ∈
⋂
Xα. Let x1, x2 ∈ X. Suppose x1 ∈ X1 and x2 ∈ X2. Then there are

paths fi : [a, b]→ Xi from xi to p. Now by pasting lemma

f(t) :=

{
f1(t) t ∈ [a, b]

f2(2b− t) t ∈ [b, 2b− a]

is a continuous path from x1 to x2. �

Theorem 11.89. The product of finitely many path connected spaces is path con-
nected.
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Proof. It is sufficient to prove the theorem for the product of two spaces. The
general result follows by induction. Suppose X,Y are path connected spaces. Let
(x1, y1), (x2, y2) ∈ X × Y . Then there are paths f : [a, b] → X from x1 to x2, and
g : [a, b]→ Y from y1 to y2. Now

(f, g) : [a, b] −→ X × Y
t 7→ (f(t), g(t))

is a continuous path from (x1, y1) to (x2, y2). �

Theorem 11.90. Suppose X is a topological space, and x, y ∈ X. Define the
relation x ∼ y if there exists a path connected subset that contains both x and y.
Then ∼ is an equivalence relation. The equivalence classes of ∼ are path connected
and are called the path components of X.

Proof. It is obvious that x ∼ x, since {x} is path connected. Also x ∼ y implies
y ∼ x by the very definition of ∼. Now suppose x ∼ y and y ∼ z. Then there are
path connected sets A,B such that x, y ∈ A and y, z ∈ B. Since A,B both contain
y, A ∪B is path connected. But x, z ∈ A ∪B, hence x ∼ z.

Next suppose A is the equivalence class of x. Then for every y ∈ A there is
a path connected set Ay such that x, y ∈ Ay. Note that for any z ∈ Ay we have
z ∼ x. Therefore Ay ⊂ A, and consequently A =

⋃
y∈AAy. But x ∈

⋂
y∈AAy, thus

A is path connected. �

Remark. Since path components are path connected, they are connected. Thus
every path component is contained in the component of its points by Theorem
11.81.

Theorem 11.91. The path component of X containing a point x is the set of all
points y ∈ X such that there is a path from x to y.

Proof. If there is path from x to y then the image of that path is a path connected
subset that contains both x, y, hence x ∼ y. Conversely, if x ∼ y then x, y belong
to a path connected subset of X, hence there is a path from x to y. �

Remark. We could have defined the path components using the equivalence re-
lation of the existence of a path between any two given points. Then the above
theorem implies that we would have obtained the same classes.

Theorem 11.92. If a path connected subset of a space intersects a path component,
it is contained in that path component.

Proof. Suppose B is a path connected subset that intersects the path component
A. Let x ∈ B ∩A. Then for any y ∈ B we have x ∼ y, since x, y ∈ B. Thus y ∈ A
too, and hence B ⊂ A. �
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Example 11.93. Not every connected set is path connected. For example the
topologist’s sine curve

X := {(x, y) : y = sin
1

x
, x ∈ (0, 1]}

⋃
{(0, y) : y ∈ [−1, 1]}

is a connected subset of R2 which is not path connected. Let G be the graph of sin 1
x

for x ∈ (0, 1]. First note that G is path connected, since any two points sin 1
a and

sin 1
b on it can be joined by the continuous path sin 1

x |[a,b]. So G is also connected.
Now note that X = G. Because if

(xn, sin
1

xn
)→ (t, s)

and (t, s) /∈ G, then t = 0, since otherwise (t, s) would belong to G due to the
continuity of sin 1

x on its domain. Then as | sin | ≤ 1, we have |s| ≤ 1. Hence
G ⊂ X. Conversely, for any y ∈ [−1, 1] we have( 1

c+ 2nπ
, sin(c+ 2nπ)

)
→ (0, y),

where c ∈ (2π, 4π) satisfies sin c = y. Thus G = X. Therefore X is connected.
Now suppose to the contrary that X is path connected. Let f be a continuous

path from the point (0, 0) to the point (1, sin 1), defined on the interval [0, 1]. Let
S := X−G be the closed line segment {0}× [−1, 1]. Let A := f−1(S) ⊂ [0, 1]. Note
that A is closed, since S is closed. We will show that A is also open. Let τ ∈ A,
and suppose z = f(τ). Then z ∈ S. Let B be an open box around z. Then B ∩X
consists of infinitely many disjoint small paths on G and a small line segment B∩S
containing z. These are the path components of B ∩ X. Also, f−1(B ∩ X) is an
open neighborhood of τ in [0, 1]. Now f : f−1(B ∩X)→ B ∩X is continuous. Let
I ⊂ f−1(B ∩X) be a small connected open interval around τ . Then f(I) is a path
connected subset of B ∩X, since I is path connected. So f(I) is contained in one
of the path components of B ∩X. But f(I) must contain z = f(τ). Hence f(I) is
contained in the line segment B ∩ S. Thus I ⊂ f−1(S) = A. Therefore A is open,
since τ was arbitrary. So as A is nonempty, and [0, 1] is connected, we must have
A = [0, 1]. But this means that the image of f is completely inside S, which is a
contradiction.

As an interesting consequence, we see that G, i.e. the graph of sin 1
x , is a path

connected set whose closure is not path connected. �

Definition 11.94. A topological space is called locally path connected if every
open neighborhood of every point contains a path connected open neighborhood of
that point.

Remark. It is obvious that a locally path connected space is locally connected.
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Theorem 11.95. In a space where every point has a path connected open neighbor-
hood, components and path components are the same. In particular, the components
and path components of a locally path connected space are the same.

Proof. Let A be a path component. Then any x ∈ A has a path connected open
neighborhood Ux. Since Ux intersects A, we have Ux ⊂ A. Thus A =

⋃
x∈A Ux,

and therefore A is open. Now, Ac is also open. Because Ac is the union of other
path components, which are all open. Hence A is closed too. Finally, let B be the
component containing x ∈ A. Then we know that A ⊂ B. But A is both closed
and open, and B is connected, hence A = B as desired. �

Example 11.96. A connected space that is not path connected cannot be locally
path connected. Because it has only one component, and if it was locally path
connected it would have only one path component. So it must have been path
connected, contrary to the assumption.

11.9 Compactness

Definition 11.97. An open covering of a subset A of a topological space X, is
a family U of open subsets of X such that⋃

U =
⋃
U∈U

U ⊃ A.

A subcovering V of U is a subfamily of U which is itself an open covering of A.

Definition 11.98. A subset A of a topological space X is compact if every open
covering of A has a finite subcovering.

Remark. Note that we do not say that A has a finite open covering. Rather, we
say that from any open covering of A we can choose finitely many open sets whose
union covers A.
Remark. It is easy to see that a subset of a space is compact if and only if it is
compact as a space equipped with the subspace topology.
Remark. Note that we consider the empty set ∅ to be compact. In all of the
following theorems, you should check that the claim holds for the empty compact
set trivially.

Theorem 11.99. Closed subsets of a compact space are compact.

Proof. Let A be a closed subset of the compact space X. Let {Uα} be an open
covering of A. Then {Uα, Ac} is an open covering of X. Thus we have a finite
subcovering {Uα1 , . . . , Uαn , A

c} of X. Then {Uα1 , . . . , Uαn} is a finite subcovering
of A. �
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Theorem 11.100. Compact subsets of a Hausdorff space are closed.

Proof. Let C be a compact subset of X. If C = X then it is closed. Otherwise,
we will show that Cc is open. Let a be an arbitrary element of Cc. It suffices to
show that a has an open neighborhood contained in Cc. For every x ∈ C there are
disjoint open sets Ux, Vx such that x ∈ Ux and a ∈ Vx. Then {Ux}x∈C is an open
covering of C. Hence it has a finite subcovering {U1, . . . , Un}. Now

⋂
i≤n Vi is an

open neighborhood of a that does not intersect
⋃
i≤n Ui, hence it does not intersect

C. Therefore Cc is open. �

Theorem 11.101. Compact subsets of a metric space are closed and bounded.

Proof. Metric spaces are Hausdorff, so their compact subsets are closed. To
prove the boundedness, we can cover the compact subset by the open covering
{Bn(a)}n∈N for some a in the space. Now a finite subcovering of this covering must
cover the compact subset. Hence it is bounded. �

Theorem 11.102. The continuous image of a compact set is compact.

Proof. Suppose f : X → Y is continuous, and A is a compact subset of X. Let
{Uα} be an open covering of f(A). Then {f−1(Uα)} is an open covering of A. Thus
we have a finite subcovering {f−1(Uα1), . . . , f−1(Uαn)} of A. Then {Uα1 , . . . , Uαn}
is a finite subcovering of f(A). �

Remark. An immediate consequence of the above theorem is that a space which
is homeomorphic to a compact space, is compact.

Extreme Value Theorem. A continuous function from a nonempty compact set
into R is bounded, and achieves its maximum and minimum values.

Proof. Let f : X → R be continuous, and suppose X is compact. Then f(X)
is compact in the metric space R. Hence f(X) is nonempty, bounded and closed.
Every nonempty, closed and bounded subset of R contains its finite supremum and
infimum. Therefore the supremum and infimum of f(X) are achieved by f , i.e.
there are x1, x2 ∈ X such that

f(x2) = sup{f(x) : x ∈ X}, f(x1) = inf{f(x) : x ∈ X}.

These are the maximum and the minimum of f respectively. �

Theorem 11.103. Closed bounded intervals in R are compact.

Proof. The empty set is obviously compact. Let U be an open covering of [a, b].
Set

S = {x ∈ [a, b] : [a, x] is covered by a finite subcovering of U },
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and c = supS. Note that an interval of the form [a, a+δ] is contained in some open
set in U , so S is nonempty and a < c. Let U be an open set in U that contains c.
Then U contains [c− ε, c] for some positive ε. If c 6= b, then U will contain [c, c+ ε]
too.

Since c−ε is not an upper bound of S, there is s ∈ S between c−ε and c. Hence
[a, s] is covered by a finite subcovering of U . Therefore by adding U to that finite
subcovering, we see that [a, c] is also covered by a finite subcovering of U . Thus
c ∈ S. If c 6= b then this finite subcovering of [a, c] that contains U , will also cover
[a, c+ ε]. This contradicts the fact that c is an upper bound of S. Therefore c = b
and b ∈ S. �

Theorem 11.104. The product of finitely many compact spaces is compact.

Proof. It is enough to prove the theorem for the product of two spaces. The
general result follows by induction. If one of the spaces is empty, the product is
empty and compact. SupposeX,Y are nonempty compact spaces. For every y ∈ Y ,
the map that takes x 7→ (x, y) from X → X × Y is continuous. Also, for every
x ∈ X, the map that takes y 7→ (x, y) from Y → X × Y is continuous. Therefore
the images of theses maps, i.e. the slices X ×{y} and {x}× Y are compact, for all
x ∈ X and y ∈ Y .

Consider an open covering U of X×Y . It has a finite subcovering U ′ that covers
a slice {x0}×Y for a fixed x0 ∈ X. Now, any point (x0, y) in the slice has an open
neighborhood of the form Uy × Vy that is contained in

⋃
U ′. Since {Vy}y∈Y covers

Y , it has a finite subset {V1, . . . , Vn} that covers Y too. Therefore

(
⋂
i≤n

Ui)× Y ⊂
⋃
U ′.

Hence for any x ∈ X there is an open neighborhood Ux of x, such that Ux × Y is
covered by a finite subcovering of U . Now {Ux}x∈X covers X. Hence it has a finite
subset {U1, . . . , Um} that covers X too. Therefore X × Y is covered by the union
of finite subcoverings of U that contain Uj × Y for j = 1, . . . ,m. �

Example 11.105. The product of closed bounded intervals [a1, b1]× · · · × [an, bn]
is compact in Rn.

Heine-Borel Theorem. A subset of Rn is compact if and only if it is closed and
bounded in the Euclidean metric.

Proof. Any bounded subset is contained in the product of some closed bounded
intervals, which is a compact set. Hence if the subset is closed it is compact. For
the converse note that Rn is a metric space, so its compact subsets are closed and
bounded. �
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Theorem 11.106. An infinite subset of a compact space has a limit point.

Proof. Suppose to the contrary that A is an infinite subset of the compact space
X that does not have a limit point. Then any a ∈ A has an open neighborhood
Ua such that Ua ∩ A = {a}, since a is not a limit point of A. On the other hand,
Ā is the union of A and its limit points. Thus Ā = A. Hence A is closed in X.
Therefore A is compact. Now {Ua}a∈A is an open covering of A. Thus for some
a1, . . . , an ∈ A, Ua1 , . . . , Uan will cover A. But then we must have

A ⊂ A ∩
⋃
i≤n

Uai =
⋃
i≤n

(A ∩ Uai) =
⋃
i≤n
{ai},

which is a contradiction. �

Theorem 11.107. Any sequence in a compact first countable space has a conver-
gent subsequence.

Proof. Let (an) be a sequence in the compact set A. If the set {an} is finite,
then obviously (an) has a constant subsequence, and the constant subsequence is
convergent. So we assume that the set {an} is infinite. Now suppose to the contrary
that no subsequence of (an) converges to a point of A. For any x ∈ A let {Ux,n}n∈N
be a decreasing countable basis at x. Then for any x ∈ A there is nx such that
Ux,nx contains at most a finite number of points of {an}. Since otherwise there is
a ∈ A such that for all m the set Ua,m contains infinitely many points of {an}.
Then for each m we can choose anm ∈ Ua,m such that nm > nm−1. Now it is easy
to see that the subsequence (anm) converges to a, contrary to our assumption.

Thus Ux,nx ∩ {an} is a finite set for every x ∈ A. Now {Ux,nx : x ∈ A} is an
open covering of the compact set A. Hence it has a finite subcovering, namely

A ⊂ Ux1,nx1 ∪ · · · ∪ Uxk,nxk ,

for some x1, . . . , xk ∈ A. But this implies that infinitely many points of {an}
must belong to at least one of the open sets Uxi,nxi , which is a contradiction.
Consequently (an) has a convergent subsequence in A. �

Bolzano-Weierstrass Theorem. A bounded sequence in Rn has a convergent
subsequence.

Proof. Any bounded sequence is contained in the product of some closed bounded
intervals, which is a compact set in the first countable space Rn. �

Theorem 11.108. A continuous bijection from a compact space into a Hausdorff
space is a homeomorphism.
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Proof. Let f : X → Y be a continuous bijection, and suppose X is compact.
We have to show that f−1 is continuous. For any closed set C ⊂ X we have
(f−1)−1(C) = f(C). But C is compact, hence f(C) is compact too. Thus f(C) is
closed, and f−1 is continuous. �

Theorem 11.109. Compact metric spaces are second countable.

Proof. Suppose X is a compact metric space. Let n ∈ N. Then the fam-
ily {B 1

n
(x)}x∈X is an open covering of X. Hence there are finitely many points

x1, . . . , xk ∈ X such that

X ⊂ B 1
n

(x1) ∪ · · · ∪B 1
n

(xk). (∗)

Let us rename these points and call them xn,1, . . . , xn,kn . Now we claim that the
family of open balls

B := {B 1
n

(xn,i) : n ∈ N, i ≤ kn}

is a countable basis for X. To prove this it suffices to show that for every open set
U ⊂ X and every a ∈ U there is B ∈ B such that a ∈ B ⊂ U . There is r > 0 so
that Br(a) ⊂ U . Now for every n ∈ N there is xn,in such that a ∈ B 1

n
(xn,in) by

(∗). It is easy to see that xn,in → a as n → ∞. Therefore for large enough n we
have xn,in ∈ B r

2
(a). Let n be large enough so that 1

n <
r
2 . Then we have

a ∈ B 1
n

(xn,in) ⊂ Br(a) ⊂ U,

as desired. Finally note that B is countable since it is the union of countably many
finite collections. �

Definition 11.110. A locally compact topological space is a space in which
every point has a compact neighborhood.



Appendix A

Matrices

Definition A.1. Let F be a field, and m,n ∈ N. An m × n matrix with entries
in F is a function

A : {(i, j) : i, j ∈ N, i ≤ m, j ≤ n} → F.

We denote by Aij (or Ai,j) the value of A at (i, j), and call it the ijth entry of A.
The matrix A is usually denoted as a rectangular array of elements of F with m
rows and n columns

A = [Aij ] =

A11 · · · A1n
...

. . .
...

Am1 · · · Amn

.
The 1× n matrix [Ai1, . . . , Ain] is called the ith row of A, and is denoted by Ai,..
Also, the m× 1 matrix A1j

...
Amj


is called the jth column of A, and is denoted by A.,j . A 1 × n matrix is also
called a row vector, and an m × 1 matrix is also called a column vector. The
set of m× n matrices with entries in F is denoted by Fm×n. The size of a matrix
A ∈ Fm×n is m× n.

Remark. We know that Fn is the set of ordered n-tuples of elements of F . In
order to make this precise, we can define Fn to be the set of functions

a : {1, 2, . . . , n} → F.

Then we denote by ai the value of a at i, and we call it the ith component of a.
We will also denote a by the following familiar notation

a = (a1, . . . , an),

394
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and we also call it a vector. We can identify Fn with both F 1×n and Fn×1 via the
maps

(a1, . . . , an) 7→ [a1, . . . , an],

(a1, . . . , an) 7→

a1
...
an

.
In particular, we always identify F with F 1×1. We also refer to the i,1th entry of a
column vector, or the 1,ith entry of a row vector, as the ith component of them.

Remark. Note that as matrices are functions into F , it suffices to define them by
specifying their ijth entry for every i, j. Also, when we want to show that two
matrices are equal, it is enough to check the equality of their ijth entry for each
i, j. The same things apply to the elements of Fn.

Definition A.2. Let F be a field, and m,n ∈ N. The m × n zero matrix is a
matrix whose entries are all zero. We often denote the zero matrix simply by 0.
A square matrix is a matrix for which m = n, i.e. a matrix that has the same
number of rows and columns. The (main) diagonal of a square matrix A is the
n-tuple (A11, A22, . . . , Ann) ∈ Fn. The entries Aii are referred to as the diagonal
entries of A. The square matrix A is called upper triangular if Aij = 0 for j < i.
In other words, the entries of A below its main diagonal are zero, so A has the form

A11 A12 · · · A1n

0 A22 . . . A2n
...

...
. . .

...
0 0 · · · Ann

.
Similarly, a square matrix A is called lower triangular if Aij = 0 for j > i. A
diagonal matrix is a square matrix A for which Aij = 0 when i 6= j, so it has the
form 

A11 0 · · · 0
0 A22 . . . 0
...

...
. . .

...
0 0 · · · Ann

.
A special diagonal matrix is the n× n identity matrix, which is defined by

Iij = (In)ij :=

{
0 i 6= j,

1 i = j.
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Definition A.3. Let F be a field, and m,n ∈ N. The addition of two m × n
matrices A,B with entries in F , is defined by

(A+B)ij := Aij +Bij .

The multiplication of an m × n matrix A with an n × l matrix B is an m × l
matrix AB, which is defined by

(AB)ij :=
n∑
k=1

AikBkj .

The scalar multiplication of a ∈ F and A ∈ Fm×n is defined by

(aA)ij := aAij .

The transpose of an m× n matrix A is the n×m matrix AT that satisfies

(AT)ij := Aji.

Notation. For a matrix A we set −A := (−1)A, so (−A)ij = −Aij . Also, for two
m× n matrices A,B we set A−B := A+ (−B).

Remark. Remember that we can identify Fn with both Fn×1 and F 1×n. These
identifications allow us to apply the above operations to the elements of Fn. In
particular the addition and scalar multiplication on Fn are defined as follows

(a1, . . . , an) + (b1, . . . , bn) := (a1 + b1, . . . , an + bn),

a(a1, . . . , an) := (aa1, . . . , aan),

where a ∈ F and (a1, . . . , an), (b1, . . . , bn) ∈ Fn. In addition, the zero vector
is 0 = (0, . . . , 0), and we set −(a1, . . . , an) := (−a1, . . . ,−an). Note that these
operations will also have the properties stated in the next theorem, since they are
equivalent to the operations on matrices.

Remark. Let A,B ∈ Fm×n and a ∈ F . It is easy to show that for every i, j we
have

(A+B)i,. = Ai,. +Bi,., (aA)i,. = aAi,., (Ai,.)
T = AT

.,i,

(A+B).,j = A.,j +B.,j , (aA).,j = aA.,j , (A.,j)
T = AT

j,..

Theorem A.4. Let F be a field. Then for all L ∈ F p×m, A,B,E ∈ Fm×n,
C ∈ Fn×l, and a, b ∈ F we have
(i) The addition of matrices is associative and commutative, i.e.

A+ (B + E) = (A+B) + E, A+B = B +A.
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(ii) Let 0 ∈ Fm×n be the zero matrix, then

A+ 0 = A, A+ (−A) = 0.

(iii) 1A = A, and ImA = A = AIn.
(iv) We have

L(A+B) = LA+ LB, (A+B)C = AC +BC.

(v) We have

a(A+B) = aA+ aB, (a+ b)A = aA+ bA,

(aA)C = a(AC) = A(aC), a(bA) = (ab)A.

(vi) If A or C is the zero matrix, then AC is the zero matrix. Also, if a is zero,
or A is the zero matrix, then aA is the zero matrix.

(vii) We have

(A+B)T = AT +BT, (aA)T = aAT,

(AC)T = CTAT, (AT)T = A.

Proof. (i) For each i, j we have(
A+ (B + E)

)
ij

= Aij + (B + E)ij = Aij + (Bij + Eij)

= (Aij +Bij) + Eij = (A+B)ij + Eij =
(
(A+B) + E

)
ij
.

The other one is similar.
(ii) This is similar to (i).
(iii) It is obvious that 1A = A. For the second part we have

(ImA)ij =
∑
k≤m

(Im)ikAkj = 0A1j + · · ·+ 1Aij + · · ·+ 0Amj = Aij .

The other half is similar.
(iv) We have(

(A+B)C
)
ij

=
∑
k≤n

(A+B)ikCkj =
∑
k≤n

(Aik +Bik)Ckj

=
∑
k≤n

AikCkj +
∑
k≤n

BikCkj = (AC)ij + (BC)ij .

The other one is similar.
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(v) We only prove a(AC) = A(aC), the others can be proved similarly. We
have (

A(aC)
)
ij

=
∑
k≤n

Aik(aC)kj =
∑
k≤n

AikaCkj

= a
∑
k≤n

AikCkj = a(AC)ij =
(
a(AC)

)
ij
.

(vi) These are all easy to show.
(vii) We have

(
(AT)T

)
ij

= (AT)ji = Aij . Also(
(aA)T

)
ij

= (aA)ji = aAji = a(AT)ij = (aAT)ij .

In addition, we have(
(AC)T

)
ij

= (AC)ji =
∑
k≤n

AjkCki

=
∑
k≤n

CkiAjk =
∑
k≤n

(CT)ik(A
T)kj = (CTAT)ij .

The other one is similar. �

Remark. As a consequence of the above theorem, we can easily show by induction
that if A1, . . . , Ak ∈ Fn×n then we have

(A1 · · ·Ak)T = AT
k · · ·AT

1.

Theorem A.5. The multiplication of matrices is associative, i.e. for any field F
and all matrices A ∈ F p×m, B ∈ Fm×n, and C ∈ Fn×l, we have

(AB)C = A(BC).

Proof. We have

(
(AB)C

)
ij

=
n∑
k=1

(AB)ikCkj =
n∑
k=1

( m∑
l=1

AilBlk

)
Ckj

=
n∑
k=1

m∑
l=1

AilBlkCkj =
m∑
l=1

n∑
k=1

AilBlkCkj

=

m∑
l=1

Ail

( n∑
k=1

BlkCkj

)
=

m∑
l=1

Ail(BC)lj =
(
A(BC)

)
ij
. �
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Example A.6. Let A =

[
1 0
0 0

]
and B =

[
0 1
0 0

]
be matrices in F 2×2, for some

field F . Then we have

AB =

[
0 1
0 0

]
6=
[
0 0
0 0

]
= BA.

Hence the multiplication of matrices is not in general commutative. This exam-
ple also shows that the product of two nonzero matrices can be zero. Hence the
cancellation law does not hold for matrix multiplication, i.e. for A,B,C ∈ Fn×n

AC = BC 6=⇒ A = B.

Theorem A.7. Suppose F is a field, and A ∈ Fm×n, C ∈ Fn×l. Then we have

(AC)ij = Ai,.C.,j , (AC).,j = AC.,j , (AC)i,. = Ai,.C.

Remark. In other words, the jth column of AC is the product of A and the jth
column of C. And the ith row of AC is the product of the ith row of A, and C.

Proof. Since Ai,. and C.,j are respectively 1×n and n×1 matrices, their product
is a 1× 1 matrix, i.e. an element of F ; and we have

(Ai,.C.,j)1,1 =
∑
k≤n

(Ai,.)1,k(C.,j)k,1 =
∑
k≤n

Ai,kCk,j = (AC)ij .

Similarly, (AC).,j and (AC)i,. are respectively m× 1 and 1× l matrices. Hence we
have (

(AC).,j
)
i,1

= (AC)i,j =
∑
k≤n

AikCkj =
∑
k≤n

Aik(C.,j)k,1 = (AC.,j)i,1,

(
(AC)i,.

)
1,j

= (AC)i,j =
∑
k≤n

AikCkj =
∑
k≤n

(Ai,.)1,kCkj = (Ai,.C)1,j . �

Exercise A.8. Suppose A ∈ Fm×n and C ∈ Fn×l. Show that

AC =
∑
k≤n

A.,kCk,..

Solution. Note that A.,k and Ck,. are respectively m × 1 and 1 × l matrices.
Hence their product is an m× l matrix. Now we have(∑

k≤n
A.,kCk,.

)
i,j

=
∑
k≤n

(
A.,kCk,.

)
i,j

=
∑
k≤n

1∑
s=1

(A.,k)i,s(Ck,.)s,j

=
∑
k≤n

(A.,k)i,1(Ck,.)1,j =
∑
k≤n

Ai,kCk,j = (AC)i,j ,

as desired. �
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Notation. Let j, n ∈ N, and suppose j ≤ n. We denote by ej the column vector
in Fn×1 whose components are all zero except for its jth component which is one,
i.e.

ej :=



0
...
0
1
0
...
0


← j-th row.

We call this the jth vector of the standard basis of Fn×1. We also have

eTj =
[
0 · · · 0 1 0 · · · 0

]
∈ F 1×n.

We call this the jth vector of the standard basis of F 1×n. We also sometimes abuse
the notation and call ej ’s or eTj ’s the standard basis vectors of Fn. Note that we
use the same notation for every n. For example e1 can be any of the followings

[1],

[
1
0

]
,

1
0
0

, . . . .
But this should cause no confusion, since the value of n is usually evident from the
context.
Remark. Let I be the identity matrix. Then we have Ii,. = eTi , and I.,j = ej .

Theorem A.9. Suppose F is a field, and A ∈ Fm×n. Let x = [x1, . . . , xn]T ∈ Fn×1

be a column vector, and let y = [y1, . . . , ym] ∈ F 1×m be a row vector. Then we have

Ax =
∑
j≤n

xjA.,j , yA =
∑
i≤m

yiAi,..

In particular for ej ∈ Fn×1 and eTi ∈ F 1×m we have

Aej = A.,j , eTiA = Ai,..

Remark. We say that Ax is a linear combination of the columns of A, and yA is
a linear combination of the rows of A.

Proof. We know that Ax and yA are respectively m×1 and 1×n matrices. Then
we have

(Ax)i,1 =
∑
j≤n

Aijxj =
∑
j≤n

xj(A.,j)i,1 =
(∑
j≤n

xjA.,j

)
i,1
,

(yA)1,j =
∑
i≤m

yiAij =
∑
i≤m

yi(Ai,.)1,j =
(∑
i≤m

yiAi,.

)
1,j
.
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The final statement of the theorem is a trivial consequence of the above relations,
and the special form of the standard basis vectors. �

Definition A.10. Let F be a field. A square matrix A ∈ Fn×n is called invertible
if there is B ∈ Fn×n such that

AB = In = BA.

We say B is an inverse of A. Also, we say two matrices A,C ∈ Fn×n commute if

AC = CA.

Theorem A.11. Suppose F is a field, and A,C ∈ Fn×n are invertible matrices.
Then
(i) The inverse of A is unique, and we denote it by A−1.
(ii) A−1 and AT are also invertible, and

(A−1)−1 = A, (AT)−1 = (A−1)T.

(iii) AC is also invertible, and

(AC)−1 = C−1A−1.

Proof. (i) Suppose that A has two inverses B,E. Then

B = BI = B(AE) = (BA)E = IE = E.

(ii) Since A−1A = I = AA−1, A−1 is invertible, and we must have (A−1)−1 = A
due to the uniqueness of the inverse. We also have

(A−1)TAT = (AA−1)T = IT = I.

Similarly we have AT(A−1)T = I. Hence we get the desired due to the uniqueness
of the inverse.

(iii) First note that

(C−1A−1)(AC) = C−1
(
A−1(AC)

)
= C−1

(
(A−1A)C

)
= C−1(IC) = C−1C = I.

Similarly (AC)(C−1A−1) = I. Therefore AC is invertible. Now the result follows
from the uniqueness of the inverse of a matrix. �

Remark. As a consequence of the above theorem, we can easily show by induction
that if A1, . . . , Ak ∈ Fn×n are invertible then A1 · · ·Ak is also invertible, and

(A1 · · ·Ak)−1 = A−1
k · · ·A

−1
1 .
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Example A.12. Let a, b, c, d ∈ F . Consider the following 2× 2 matrices

A =

[
a b
c d

]
, B =

[
d −b
−c a

]
.

Then it is easy to show by direct computation that

AB =

[
a b
c d

] [
d −b
−c a

]
=

[
ad− bc 0

0 ad− bc

]
=

[
d −b
−c a

] [
a b
c d

]
= BA.

Now suppose ad − bc 6= 0. Then the above equation implies that A is invertible,
and

A−1 =
1

ad− bc

[
d −b
−c a

]
.

On the other hand, if ad − bc = 0 then we have AB = 0. Therefore A cannot be
invertible, since otherwise we would have B = IB = A−1AB = A−10 = 0. But this
implies that A = 0, and hence I = A−1A = A−10 = 0, which is a contradiction.



Appendix B

Normed Spaces

B.1 Normed Spaces

Definition B.1. Suppose V is a vector space over R or C. A norm on V is a map

‖ ‖ : V → R

that satisfies
(i) ‖ ‖ is positive definite, i.e. for every v ∈ V we have

‖v‖ ≥ 0, and ‖v‖ = 0 =⇒ v = 0.

(ii) ‖ ‖ is homogeneous, i.e. for every vectors v and scalars c we have

‖cv‖ = |c|‖v‖.

(iii) ‖ ‖ satisfies the triangle inequality, i.e. for every v, w ∈ V we have

‖v + w‖ ≤ ‖v‖+ ‖w‖.

A vector space equipped with a norm is called a normed space.

Remark. Note that by homogeneity of norm we always have

‖0‖ = ‖0 · 0‖ = |0|‖0‖ = 0,

‖ − v‖ = ‖(−1)v‖ = |−1|‖v‖ = ‖v‖.

It is also easy to show by induction that

‖v1 + · · ·+ vk‖ ≤ ‖v1‖+ · · ·+ ‖vk‖.

Example B.2. Every inner product space is a normed space with the norm induced
by the inner product.

403



APPENDIX B. NORMED SPACES 404

Theorem B.3. On every normed space, d(v, w) := ‖v − w‖ is a metric.

Remark. We always equip a normed space with this metric and its induced topol-
ogy.

Proof. First note that d(v, w) = ‖v − w‖ ≥ 0, and d(v, v) = ‖v − v‖ = ‖0‖ = 0.
Now if d(v, w) = 0 then ‖v − w‖ = 0; thus v − w = 0. Hence v = w. We also have

d(v, w) = ‖v − w‖ = ‖(−1)(w − v)‖ = |−1|‖w − v‖ = d(w, v).

Finally, we have

d(v, u) = ‖v − u‖ = ‖v − w + w − u‖
≤ ‖v − w‖+ ‖w − u‖ = d(v, w) + d(w, u). �

Remark. Note that metrics induced by norms are homogeneous and translation
invariant, i.e.

d(cv, cw) = |c|d(v, w), d(v + v0, w + v0) = d(v, w). (∗)

Also, every norm can be expressed in terms of its metric as ‖v‖ = d(v, 0).

Exercise B.4. Suppose d is a metric on a (real or complex) vector space V that
satisfies (∗). Show that ‖v‖ = d(v, 0) is a norm on V that induces d.

Theorem B.5. In every normed space (V, ‖ ‖) we have∣∣‖v‖ − ‖w‖∣∣ ≤ ‖v − w‖.
Hence the norm is Lipschitz continuous.

Proof. We have ‖v‖ ≤ ‖v − w‖ + ‖w‖. So ‖v‖ − ‖w‖ ≤ ‖v − w‖. By switching
v, w we get the desired result.

Note that by the triangle inequality we have ‖v‖ ≤ ‖v − w‖ + ‖w‖. Therefore
‖v‖ − ‖w‖ ≤ ‖v − w‖. By switching v, w we get

‖w‖ − ‖v‖ ≤ ‖w − v‖ = ‖v − w‖ =⇒ ‖v‖ − ‖w‖ ≥ −‖v − w‖.

Therefore
∣∣‖v‖ − ‖w‖∣∣ ≤ ‖v − w‖, as desired. �

Definition B.6. Two norms ‖ ‖1 , ‖ ‖2 on a vector space V are equivalent if there
exist c, C > 0 such that

c‖v‖1 ≤ ‖v‖2 ≤ C‖v‖1
for all v ∈ V .
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Remark. Equivalent norms induce equivalent metrics, hence they induce the same
topology.

Every subspace of a normed space is itself a normed space. The product of
normed spaces can also be made into a normed space as the next theorem shows.

Theorem B.7. Suppose (V1, ‖ ‖1), . . . , (Vn, ‖ ‖n) are normed spaces. Then on the
product space

n∏
i=1

Vi := V1 × · · · × Vn

there are three equivalent norms

‖v‖2 :=

[
n∑
i=1

‖vi‖2i

]1
2

,

‖v‖1 :=
n∑
i=1

‖vi‖i,

‖v‖∞ := max
i≤n
{‖vi‖i},

where v = (v1, . . . , vn) ∈
∏
i≤n Vi.

Remark. These norms induce the corresponding product metrics.

Proof. All of these functions satisfy the first two conditions of a norm obviously.
Also it is easy to see that ‖ ‖1 satisfies the triangle inequality. For ‖ ‖∞ we have

‖v + w‖∞ = max
i≤n
{‖vi + wi‖i} ≤ max

i≤n
{‖vi‖i + ‖wi‖i}

≤ max
i≤n
{‖vi‖i}+ max

i≤n
{‖wi‖i} = ‖v‖∞ + ‖w‖∞.

Finally for ‖ ‖2 we have

‖v + w‖2 =

[
n∑
i=1

‖vi + wi‖2i

]1
2

≤

[
n∑
i=1

(
‖vi‖i + ‖wi‖i

)2]12

≤

[
n∑
i=1

‖vi‖2i

]1
2

+

[
n∑
i=1

‖wi‖2i

]1
2

= ‖v‖2 + ‖w‖2.

Here we applied the triangle inequality for the standard norm on Rn. Thus it only
remains to show that these norms are equivalent. Let ai := ‖vi‖i. Then

max {ai} ≤
(∑

a2
i

) 1
2 ≤

∑
ai ≤ nmax {ai} ≤ n

(∑
a2
i

) 1
2 ≤ n

∑
ai.

The second inequality above follows from squaring its both sides. �
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Remark. A necessary and sufficient condition for a norm to be induced by an inner
product is that it satisfies the parallelogram law, i.e. for every vectors u, v we have

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.

However, not every norm is induced by an inner product. For example ‖ ‖1, ‖ ‖∞ on
Rn are not induced by an inner product, since they do not satisfy the parallelogram
law (why?).

Theorem B.8. The vector addition + : V × V → V and the scalar multiplication
· : R× V → V are continuous.

Proof. Let ‖ ‖1 be the norm on V ×V . Then to see the continuity of the addition
note that

‖v + w − (v0 + w0)‖ ≤ ‖v − v0‖+ ‖w − w0‖ = ‖(v, w)− (v0, w0)‖1.

Hence addition is Lipschitz continuous.
Now let ‖ ‖1 be the norm on R × V . Suppose |c − c0| < 1. Then for C =

max{‖v0‖, |c0|+ 1} we have

‖cv − c0v0‖ = ‖cv − cv0 + cv0 − c0v0‖ ≤ |c|‖v − v0‖+ |c− c0|‖v0‖
≤ C(‖v − v0‖+ |c− c0|) = C‖(c, v)− (c0, v0)‖1.

So scalar multiplication is continuous. �

Definition B.9. A Banach space is a normed space which is complete as a
metric space. A Hilbert space is a Banach space whose norm is induced by an
inner product.

Remark. Closed subspaces of Banach spaces, and products of finitely many Banach
spaces are Banach spaces, as they are complete.

B.2 Bounded Linear Maps

Definition B.10. A linear map T : V → W between normed spaces is called
bounded if there exists a constant C > 0 such that

‖Tv‖W ≤ C‖v‖V

for all v ∈ V .

Remark. It is easy to see that bounded linear maps form a subspace of the space
of linear maps. We denote this subspace by B(V,W ).



APPENDIX B. NORMED SPACES 407

Remark. Note that the composition of bounded maps is bounded.

Theorem B.11. For a linear map T : V →W between normed spaces the following
are equivalent
(i) T is bounded.
(ii) T is Lipschitz (hence it is uniformly continuous everywhere).
(iii) T is continuous at one point.

Proof. If T is bounded we have

‖Tv − Tw‖ = ‖T (v − w)‖ ≤ C‖v − w‖,

so T is Lipschitz.
If T is continuous at v0 then there is ε > 0 such that when ‖v−v0‖ < ε we have

‖Tv − Tv0‖ < 1. Now for an arbitrary nonzero v we have∥∥( εv

2‖v‖
+ v0

)
− v0

∥∥ =
ε

2‖v‖
‖v‖ < ε.

Thus ‖T ( εv
2‖v‖)‖ = ‖T ( εv

2‖v‖+v0)−Tv0‖ < 1. Hence ‖Tv‖ < 2
ε‖v‖. We can obviously

allow v to be 0 in this inequality. Therefore T is bounded. �

Definition B.12. Let V be a normed space over the field F , where F is either R
or C. We equip F with its standard norm. Then the dual space of the normed
space V is

V ∗ = B(V, F ).

Elements of V ∗ are called (continuous or bounded) functionals on V .

Definition B.13. The operator norm of a bounded linear map T : V →W is

‖T‖ := sup
v 6=0

‖Tv‖W
‖v‖V

.

Remark. It is easy to see that equivalent norms on V,W give rise to equivalent
operator norms.

Theorem B.14. The operator norm makes B(V,W ) into a normed space.

Proof. It is obvious that ‖T‖ is nonnegative and finite for bounded maps. Sup-
pose ‖T‖ = 0. Then ‖Tv‖ = 0 for all nonzero v, so T = 0. We also have

‖cT‖ = sup
v 6=0

‖cTv‖
‖v‖

= sup
v 6=0

|c|‖Tv‖
‖v‖

= |c|sup
v 6=0

‖Tv‖
‖v‖

= |c|‖T‖.
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In addition

‖T + S‖ = sup
v 6=0

‖Tv + Sv‖
‖v‖

≤ sup
v 6=0

‖Tv‖+ ‖Sv‖
‖v‖

≤ sup
v 6=0

‖Tv‖
‖v‖

+ sup
v 6=0

‖Sv‖
‖v‖

= ‖T‖+ ‖S‖.

Here we used the fact that supa∈A, b∈B{a+ b} ≤ supa∈A{a}+ supb∈B{b}. �

Theorem B.15. B(V,W ) is a Banach space when W is a Banach space. As a
result, V ∗ is always a Banach space.

Proof. Let Tn be a Cauchy sequence of linear maps. Then for all v ∈ V we have

‖Tmv − Tnv‖ ≤ ‖Tm − Tn‖‖v‖ −→
m,n→∞

0.

Thus (Tnv) is a Cauchy sequence in W . Thus it converges to a unique element
Tv ∈ W . Now define T : V → W by T (v) = Tv. We must show that T is linear.
We have

T (v + cw) = lim(Tn(v + cw)) = lim(Tnv + cTnw) = Tv + cTw.

Next we must show that T is bounded. First note that |‖Tm‖−‖Tn‖| ≤ ‖Tm−Tn‖.
Hence the sequence of operator norms is also Cauchy and it converges to some
r ∈ R. Now for large n we have ‖Tn‖ < r + 1. So ‖Tv‖‖v‖ = lim ‖Tnv‖

‖v‖ < r + 1 for all
nonzero v. Thus T is bounded.

Finally we need to show that Tn → T . Let n be large enough such that
‖Tm − Tn‖ < ε

2 for m ≥ n. For each v we can also find m(v) ≥ n such that
‖T v
‖v‖ − Tm(v)

v
‖v‖‖ <

ε
2 . Then

‖T − Tn‖ = sup
v 6=0

‖Tv − Tnv‖
‖v‖

≤ sup
v 6=0

‖Tv − Tm(v)v‖+ ‖Tm(v)v − Tnv‖
‖v‖

< ε.

Therefore Tn → T as desired. �

B.3 Finite Dimensional Normed Spaces

Theorem B.16. Let (V, ‖ ‖) be a normed space. Then any linear map T : Rn → V
is continuous. Furthermore, if T is a bijection it is a homeomorphism.

Proof. Let {ei} be the standard basis of Rn. Then for v =
∑
viei we have

‖Tv‖ =
∥∥∑ viTei

∥∥ ≤∑ |vi|‖Tei‖ ≤ (
∑
‖Tei‖)|v|.
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Hence ‖Tv‖ ≤ C|v| for some C > 0. Therefore T is continuous. As a result the set

A := T ({v : |v| = 1})

is a compact subset of V , being the continuous image of a compact set. Thus A is
closed and its complement is open.

Now suppose T is bijective. Then 0 ∈ Ac, since Tv 6= 0 when v 6= 0. So there
is r > 0 such that Br(0) ⊂ Ac. This means that for ‖v‖ < r we have |S(v)| 6= 1,
where S = T−1. If |S(v)| > 1 for some v with ‖v‖ < r, then we have ‖ v

|S(v)|‖ < r.

But then we get |S( v
|S(v)|)| =

|S(v)|
|S(v)| = 1, which is a contradiction. Therefore

‖v‖ < r =⇒ |S(v)| < 1.

Now for an arbitrary nonzero v we have ‖ rv
2‖v‖‖ = r

2 < r. So |S( rv
2‖v‖)| < 1. Thus

|S(v)| < 2
r‖v‖. We can obviously allow v to be 0 in this inequality. Therefore

S = T−1 is also continuous. �

Theorem B.17. All norms on a finite dimensional space are equivalent.

Proof. It suffices to show that all norms are equivalent to one particular norm.
Let V be a finite dimensional space with some norm ‖ ‖. Let {vi} be a basis for
V , and let [ ] : V → Rn be the representation of vectors in this basis. Define
|v| := |[v]|. It is easy to see that this is a norm. As [ ]−1 is a linear isomorphism, it
is a homeomorphism. Therefore [ ]−1, [ ] are continuous, hence they are bounded.
Thus there are c, C > 0 such that |v| = |[v]| ≤ c‖v‖, and ‖v‖ = ‖[[v]]−1‖ ≤ C|[v]| =
C|v|. �

Theorem B.18. All finite dimensional normed spaces are Banach spaces.

Proof. Let (V, ‖ ‖) be a finite dimensional space. Let [ ] : V → Rn be the
representation map in some basis. We know that [ ]−1 is a homeomorphism being
a linear bijection. Let (vi) be a Cauchy sequence in V . Then

|[vi]− [vj ]| ≤ c‖vi − vj‖ −→
i.j→∞

0.

Hence ([vi]) is Cauchy in Rn. So [vi]→ x for some x ∈ Rn. Let v ∈ V be the vector
that satisfies [v] = x. Then we have ‖vi − v‖ ≤ C|[vi]− x| → 0. �

Theorem B.19. A finite dimensional subspace of a normed space is closed.

Proof. If a sequence in the subspace converges to some point in the space, then
that sequence is Cauchy. Since the finite dimensional subspace is complete by the
above theorem, the sequence must converge to some point in the subspace. Now
the result follows from the uniqueness of limit. �
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