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Abstract The visibility graph of a simple polygon represents visibility relations
between its vertices. Knowing the correct order of the vertices around the boundary
of a polygon and its visibility graph, it is an open problem to locate the vertices
in a plane in such a way that it will be consistent with this visibility graph. This
problem has been solved for special cases when we know that the target polygon
is a tower or spiral one. In this paper, we propose a linear time reconstruction
algorithm for a visibility graph which is assumed to belong to a simple polygon
with at most three concave chains on its boundary, called a pseuodo-triangle.
Moreover, we introduce a set of necessary and sufficient properties characterizing
visibility graphs of pseudo-triangles and propose algorithms for checking these
properties.

Keywords Computational geometry · Visibility graph · Characterizing visibility
graph · Polygon reconstruction · Pseudo-triangle

1 Introduction

The visibility graph of a simple polygon P is a graph G(V,E) where V is the
vertices of P and an edge (u, v) exists in E if and only if the line segment uv lies
completely inside P. In the visibility graph reconstruction problem, the goal is
to build a polygon whose visibility graph is isomorphic to a given graph. Everett
showed that this problem is in PSPACE[6], and this is the only result known for
general polygons. This problem has been solved only for special cases of spiral
and tower polygons when other than the visibility graph, the correct order of
the vertices on the boundary of the polygon is known as well. These results are
obtained by Everett and Corneil [7] for spiral polygons and by Colley et al. [3] for
tower polygons. In spiral polygons there is at most one concave chain (Fig. 1a)
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Fig. 1: (a) A Spiral polygon, (b) a tower polygon, and (c) a pseudo-triangle.

and the boundary of a tower polygon is composed of two concave chains and a
single edge (Fig. 1b).

Although there is a bit progress on this type of reconstruction problem, there
has been plenty of studies on characterizing visibility graphs [5,8,7,4,1,3]. In 1988,
Ghosh introduced three necessary conditions for visibility graphs and conjectured
their sufficiency[8]. In 1990, Everett proposed a counter-example graph rejecting
Ghosh’s conjecture[6]. She also refined the third Ghosh’s necessary condition to a
new stronger condition[9]. In 1992, Abello et al. built a graph satisfying Ghosh’s
conditions and the stronger version of the third condition which was not the visi-
bility graph of any simple polygon rejecting the sufficiency of these conditions[2].
In 1997, Ghosh added his fourth necessary condition and conjectured that this
condition along with his first two conditions and the stronger version of the third
condition are sufficient for a graph to be a visibility graph. Finally, in 2005 Streinu
proposed a counter example for this conjecture[10].

In this paper, we solve the reconstruction problem for pseudo-triangles. A
pseudo-triangle is a simple polygon consisting of three concave side-chains each pair
shares one convex vertex (called a corner). Let P be a pseudo-triangle formed by
the concave chains U = [cv(V,U), . . . , cv(U ,W)], V = [cv(U ,V), . . . , cv(V,W)], and
W = [cv(U ,W), . . . , cv(W,V)] where cv(V,U) = cv(U ,V), cv(U ,W) = cv(W,U),
and cv(W,V) = cv(V,W) are the corners (Fig. 1c). We use cv(·, ·) as an abbrevi-
ation for the common vertex of the two side-chains.

Let H =< cv(V,U), . . . , cv(U ,W), . . . , cv(W,V), . . . , cv(V,U) > be the Hamil-
tonian cycle of the visibility graph of P which indicates the order of vertices on
the boundary of P. Knowing H for a visibility graph G(V,E), we introduce a set
of necessary properties on H and G when this pair belongs to a pseudo-triangle
and prove that these properties are sufficient as well.

Having these properties, we propose a linear-time algorithm for reconstructing
a pseudo-triangle P =< cv(V,U), . . . , cv(U ,W), . . . , cv(W,V), . . . , cv(V,U) > with
G(V,E) as its visibility graph. Moreover, we propose algorithms for verifying the
properties on a given pair ofH and G. These characterizing algorithms run in linear
time in terms of the size of G. Therefore, in this paper we solve the characterizing
and reconstructing problem for another class of polygons called pseudo-triangles.

Whileas a tower polygon is a special case of a pseudo-triangle, we use Colley’s
algorithm as a sub-routine in our algorithm to build the initial part of the polygon.

Our motivation in solving this problem for pseudo-triangles is that every poly-
gon can be partitioned into pseudo-triangles. To solve a general reconstruction
problem, we can handle three steps:
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u0 = v0

v1
u1

uj
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vc−1
sj+1

vi

Fig. 2: Constructing a tower polygon.

– Recognize a pseudo-triangle decomposition for the target polygon from G(V,E)
and H.

– Reconstruct each pseudo-triangle separately.

– Attach the reconstructed pseudo-triangles supporting the pseudo-triangle de-
composition and the visibility constraints.

In Section 2, we briefly describe Colley’s algorithm for reconstructing tower
polygons which is used as a sub-routine in our algorithm. In Section 3, we describe
the properties of the visibility graph of pseudo-triangles and in Section 4, we
propose the reconstruction algorithm. Finally, we analyze the running time of
algorithms required to check the properties and the reconstruction algorithm.

2 Reconstructing Tower Polygons

A strong ordering on a bipartite graph G(V,E) with partitions U and W is a pair
of <U and <W orderings on respectively (resp.) U and W such that if u <U u′,
w <W w′, and there are edges (u,w′) and (u′, w) in E, the edges (u,w) and (u′, w′)
also exist in E.

The following theorem by Colley et al. [3] indicates the main property of the
visibility graph of a tower polygon and guarantees the existence of a tower polygon
consistent with such a visibility graph.

Theorem 1 [3] Removing the edges of the reflex chains from the visibility graph
of a tower gives an isolated vertex plus a connected bipartite graph for which the
ordering of the vertices in the partitions provides a strong ordering. Conversely,
any connected bipartite graph with strong ordering belongs to a tower polygon.
Furthermore, such a tower can be constructed in linear time in terms of the number
of vertices.

The outline of Colley’s algorithm is as follows. As input, it takes the corner
vertex cv(U ,V) = u0 = v0 and a connected bipartite graph G(V,E) with vertices
partitioned into two independent sets U = {u1, . . . , um} and V = {v1, . . . , vn}
having strong ordering. In the first step, the position of the corner u0 = v0 and
the vertices u1 and v1 are determined as in Fig. 2. In a middle step, suppose that
the positions of the vertices cv(V,U), . . . , uj−1 and cv(U ,V), . . . , vk−1 are known
and it has been determined the half-lines from uj−1 and vk−1 which contain uj and
vk, respectively, where (uj , vk) ∈ E. To complete such a middle step, the position
of the vertex uj and the half-line from uj which contains uj+1 (where uj+1 is
visible from vk) must be determined. For this purpose, uj is located somewhere on
its containing half-line horizontally below the vertex vc which vc has the minimum
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VU
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u−1cv(U,V)
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u+1
cv(U,V)

v−1cv(U,V)(u)
vcv(U,V)(u)
Vcv(U,V)(u)

V +1
cv(U,V)(u)

Fig. 3: Notations used for vertices.

index among vertices of V which are visible from uj+1. Then, the containing half-
line of uj+1 lies on the supporting line of uj and sj+1 downward from uj . Here,
sj+1 is a point on vc−1vc with an ε distance below sj , when sj lies on vc−1vc. If
sj does not lie on vc−1vc, then sj+1 is a point on vc−1vc with an ε distance below
vc−1. According to this construction, sj is the intersection of V and the supporting
line of uj and uj−1. Similarly, ri is the intersection of U and the supporting line
of vj and vj−1 (Fig. 2).

3 Properties of Pseudo-Triangle Visibility Graphs

In this section, we describe a set of properties that a pair of H and G must have
to be the Hamiltonian cycle and visibility graph of a pseudo-triangle.

Any sub-sequence < vi, . . . , vj > on the Hamiltonian cycle is called a chain and
is denoted by [vi, . . . , vj ]. A vertex va on a chain [vi, . . . , vj ] is a blocking vertex for
the invisible pair (vi, vj) if there is no visible pair of vertices vl on [vi, . . . , va−1]
and vk on [va+1, . . . , vj ]. Ghosh showed that for every invisible pair of vertices
(u, v) in a visibility graph, there is at least one blocking vertex in [u, . . . , v] or
[v, . . . , u]. Furthermore, every vertex on the shortest Euclidean path between u
and v is a blocking vertex for this pair [8]. Note that In a pseudo-triangle the
shortest Euclidean path between two invisible vertices turns in only one direction
(i.e. clockwise or counterclockwise).

Let U , V, and W be the side-chains of a pseudo-triangle. The order of vertices
in these chains is defined with respect to one of their common vertices. Precisely,
for a vertex u ∈ U , u−kcv(U,V) is a vertex in the subchain [cv(U ,V), . . . , u] where

the length of the subchain [u−kcv(U,V), . . . , u] is k. Similarly, u+lcv(U,V) is a vertex

in [u, . . . , cv(U ,W)] where the length of [u, . . . , u+lcv(U,V)] is l. In addition, we use

ucv(U,V)(x) and Ucv(U,V)(x) to respectively denote the closest and the farthest
vertices of U to cv(U ,V) that are visible to x where x lies on a side-chain other
than U . If u′ = ucv(U,V)(x), then u+icv(U,V)(x) and u−icv(U,V)(x) notations are used for

respectively u
′+i
cv(U,V) and u

′−i
cv(U,V). Similarly, if u′ = Ucv(U,V)(x), then U+i

cv(U,V)(x)

and U−icv(U,V)(x) notations are used for respectively u
′+i
cv(U,V) and u

′−i
cv(U,V). Fig. 3

depicts these notations.

Lemma 1 It is always possible to identify at least two corners of a pseudo-triangle
P from its corresponding Hamiltonian cycle and visibility graph.
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cv(U ,V)

u1

cv(W,V)cv(U ,W)

w w′
v1

Fig. 4: A pseudo-triangle with cv(U ,W) and cv(W,V) as its detectable corners.

Proof Since a corner is a convex vertex, it cannot be a blocking vertex for its
neighbors. Therefore, in the Hamiltonian cycle of a pseudo-triangle, there are at
most three vertices whose adjacent vertices are visible pairs. By traversing the
Hamiltonian cycle, these visible pairs and so the corresponding corners can be
identified.

Suppose that this method does not identify all three corners. Without loss of
generality(w.l.o.g.), assume that cv(U ,V) is an unidentified corner. This means
that u1 = cv(V,U)+1

cv(U,V) and v1 = cv(U ,V)+1
cv(U,V) do not see each other and

there must be a blocking vertex for this invisible pair. Due to their concavity, this
blocking vertex cannot belong to the side-chains U and V. Consider the Shortest
Euclidean path between u1 and v1 (Fig. 4). It is clear that this path is a subchain
of W, saying [w, . . . , w′] where w′ = w+l

cv(U,W) and the edges (u1, w) and (w′, v1)

belong to the visibility graph. The polygon formed by < u1, . . . , cv(U ,W), . . . , w >
is a tower polygon with base (u1, w) and corner cv(U ,W). The corner of this tower
is the isolated vertex obtained by removing the edges of its Hamiltonian cycle
from its visibility graph. Therefore, the corner cv(U ,W) is detectable. The same
argument holds for the tower polygon formed by < w′, . . . , cv(W,V), . . . , v1 > from
which the corner cv(W,V) can be identified. This means that if cv(U ,V) cannot be
identified from the visibility graph, the other two corners will be detectable. ut

Consider a pseudo-triangle P with side-chains U , V, and W, and G and H as
its visibility graph and Hamiltonian cycle, respectively. Assume that the method
described in Lemma 1, identifies only two corners of P. W.l.o.g., assume that
cv(U ,V) is the unidentified vertex. This means that there is a subchain on W
which blocks the visibility of u1 and v1. Then, there is no visibility edge between
a vertex from U and a vertex of V. By removing the edges of the Hamiltonian
cycle from the visibility graph, two isolated vertices cv(U ,W) and cv(W,V) and a
connected bipartite graph is obtained. By adding one of the adjacent edges (e) of
these isolated vertices to this bipartite graph, we will have a single isolated vertex
and a graph with strong ordering which according to Theorem 1 corresponds to a
tower polygon with base e and G and H as its visibility graph and Hamiltonian
cycle, respectively.

Therefore, we have the following property about the pair of H and G of a
pseudo-triangle.

Property 1 If H and G are respectively the Hamiltonian cycle and visibility graph
of a pseudo-triangle P, at least two corners of P can be identified. Furthermore,
if only two corners are detectable, the given H and G belong to a pseudo-triangle
if and only if there is a tower polygon with H and G as its Hamiltonian cycle and
visiblity graph, respectively.
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cv(U ,V)

u = ucv(U,V)(v)

v

v−1cv(U,V)

(a)

cv(U ,V)

ucv(U,V)(v)

v
v′ = v+1

cv(U,V)

(b)

ucv(U,V)(v′)

Fig. 5: (a) Property 3: v−1
cv(U,V) and ucv(U,V)(v) see each other, (b) Corollary 1:

ucv(U,V)(v
′) cannot be closer to cv(U ,V) than ucv(U,V)(v).

So, in the remainder of this section we assume that the method described in
the proof of Lemma 1 identifies all three corners.

An interval of a side-chain with endpoints p and q is the set of points on this
side-chain connecting p to q. Note that it is not necessary for an endpoint of an
interval to be a vertex of the side-chain.

Property 2 Every non-corner vertex of a side-chain sees a single nonempty in-
terval from each of the other side-chains.

Proof The inner angle of such a vertex is more than π and its inner visibility
region cannot be bounded by a single concave chain. Therefore, it will see some
parts from any of the other side-chains. The continuity of this visible parts on each
side-chain is proved by contradiction. Assume that a vertex u ∈ U sees two disjoint
intervals [vi, . . . , vj ] and [vk, . . . , vl] from V meaning that the interval (vj , . . . , vk)
is not visible from u. Consider an invisible point v′ in (vj , . . . , vk). There must be
a blocking vertex for the invisible pair (u, v′). This blocking vertex must lie on the
third side-chain which will also blocks either the visibility of u and vj or u and
vk. ut

Property 3 (Fig. 5(a)) For any pair of side-chains U and V and a pair of vertices
(u, v) where u ∈ U , v ∈ V, v 6= cv(U ,V), and u = ucv(U,V)(v), then (v−1

cv(U,V), u) ∈
E.

Proof Consider the subpolygon < u, u−1
cv(U,V), . . . , cv(U ,V), . . . , v−1

cv(U,V), v >. If we
triangulate this polygon, there is no internal diagonal connected to v which means
that< u, v, v−1

cv(U,V) > must be a triangle in any triangulation. Therefore, the edge

(u, v−1
cv(U,V)) is a diagonal and this edge must exist in the visiblity graph. ut

Corollary 1 (Fig. 5(b)) For any pair of side-chains U and V and a vertex v ∈ V,
if ucv(U,V)(v) = uj and ucv(U,V)(v

+1
cv(U,V)) = uk, then uk is not closer than uj to

cv(U ,V).

Corollary 2 For any pair of side-chains U and V and a vertex v ∈ V, if v does
not see any vertex from U , then v+1

cv(U,V) does not see any vertex of U as well.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Pseudo-Triangle Visibility Graph 7

cv(U ,V)

u
v

v−1cv(U,V)

(a)

cv(U ,V)

u

v

v+3
cv(U,V)

(b)

u+2
cv(U,V)

u−2cv(U,V) v+1
cv(U,V)

cv(U ,V)

u
v

(c)

u+k
cv(U,V)

u
+(k−1)
cv(U,V)

Fig. 6: (a) Property 4: u−2
cv(U,V) and v−1

cv(U,V) must see each other, (b) Property 5:

u and v+1
cv(U,V) see each other, (c) Corollary 3: Visible vertices of V from u+kcv(U,V)

are also visible to u
+(k−1)
cv(U,V).

Property 4 (Fig. 6(a)) For any pair of side-chains U and V and a pair of vertices
(u, v) where u ∈ U and v ∈ V and k, l > 0, if both (u−kcv(U,V), v) and (u, v−lcv(U,V))

exist in E, then (u−kcv(U,V), v
−l
cv(U,V)) also exists in E.

Proof If u−kcv(U,V) and v−lcv(U,V) do not see each other, then the blocking vertex
cannot belong to the third side-chain. If this blocking vertex lies on V, it will also
block the visibility of u−kcv(U,V) and v. Similarly, it cannot belong to U . ut

Property 5 (Fig. 6(b)) For any pair of side-chains U and V and a pair of vertices
(u, v) where u ∈ U and v ∈ V, if both (u+kcv(U,V), v

+l
cv(U,V)) and (u, v) exist in E where

l, k > 0, then at least one of the edges (u+1
cv(U,V), v) and (u, v+1

cv(U,V)) exists in E.

Proof If follows from triangulating the subpolygon formed by boundary vertices
< u+kcv(U,V), . . . , u, v, . . . , v

+l
cv(U,V) >. ut

Corollary 3 (Fig. 6(c)) For any pair of side-chains U and V and a pair of vertices
u ∈ U and v ∈ V, where (u, v) ∈ E and none of the edges (u+1

cv(U,V), v) and

(u, v+1
cv(U,V)) exists in E, all visible vertices of V from u+kcv(U,V) are also visible from

u
+(k−1)
cv(U,V) (for any k > 0). This implies that Vcv(U,V)(u

+k
cv(U,V)) must lie above v.

Proof Any visible vertex v′ must belong to [cv(U ,V), . . . , v−1
cv(U,V)]. Otherwise, ac-

cording to Property 5 either (u+1
cv(U,V), v) or (u, v+1

cv(U,V)) must exist. According to

Corollary 1, vcv(U,V)(u) is closer to cv(U ,V) than vcv(U,V)(u
+k
cv(U,V)), and because

of the continuity of the chain visible from u (Property 2) , v′ will be visible from
u. This implies that v′ is visible from all vertices of the chain [u, . . . , u+kcv(U,V)]. ut

It is clear that every diagonal edge (u, v) in the visibility graph of a pseudo-
triangle specifies a tower formed by the bounary vertices< u, . . . , cv(U ,V), . . . , v >.
The vertices of this tower satisfy the strong ordering defined earlier. This strong
ordering can be derived from properties 2, 4, and 5. Therefore, we do not specify
this as a new property.
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cv(U ,V)

u v

(a)

cv(U ,V)

ucv(U,V)(w)
vcv(U,V)(w)

(b)

w

Fig. 7: (a) Property 6: u and v must see common vertices on mW , (b) Property 7:
ucv(U,V)(w) and vcv(U,V)(w) must see each other.

Property 6 (Fig. 7(a)) For any pair of side-chains U and V and a pair of vertices
u ∈ U and v ∈ V, where (u, v) ∈ E and none of the edges (u+1

cv(U,V), v) and

(u, v+1
cv(U,V)) exists in E, there is a nonempty subchain of the third side-chain W

which is visible from both u and v.

Proof Triangulating P using the edge (u, v), the adjacent triangle of this edge in
the opposite side of cv(U ,V) must have its third vertex on W. This is due to the
invisibility of (u+1

cv(U,V), v) and (u, v+1
cv(U,V)) pairs. Therefore, this chain contains at

least one vertex. From Property 2 we know that the visible part of W from any
one of u and v vertices is continuous and their intersection will be continuous as
well. ut

Corollary 4 For any side-chain W, there exists at least one vertex w ∈ W that
sees some vertices from both of the other side-chains. Furthermore, every vertex
w−kcv(U,W) where k > 0, sees at least one vertex from U .

Proof The first part follows from Property 6 and the second part follows from
Property 3. ut

Property 7 (Fig. 7(b)) For any side-chain W and a vertex w ∈ W with distinct
vertices u = ucv(U,V)(w) and v = vcv(U,V)(w), the vertices u and v are visible from
each other.

Proof Let P ′ be the subpolygon with < cv(V,U), . . . , u, w, v, . . . , cv(V,U) > as its
boundary vertices. The vertex w does not see any other vertex of P ′ which means
that the diagonal uv must be used to triangulate P ′. This means that u and v
must be visible from each other. ut

Property 8 (Fig. 8) For any pair of side-chains U and V and a pair of vertices
u ∈ U and v ∈ V, where (u, v) ∈ E and none of the edges (u+1

cv(U,V), v) and

(u, v+1
cv(U,V)) exists in E, let [w, . . . , w′] be the maximum subchain of W visible to

both u and v where w′ = w+l
cv(U,W), l ≥ 0 . Then, w′ is not closer to cv(U ,W) than

Wcv(U,W)(u
+1
cv(U,V)) .

Proof According to Property 6, the subchain [w, . . . , w′] is nonempty. For the sake
of a contradiction, assume that w′′ = Wcv(U,W)(u

+1
cv(U,V)) is farther from cv(U ,W)
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cv(U ,V)

u

vu+1
cv(U,V) v+1

cv(U,V)w
w′

cv(U ,W)

Wcv(U,W)(u
+1
cv(U,V)

) wcv(U,W)(v
+1
cv(U,V)

)

Fig. 8: Property 8: w′ is not closer to cv(U ,W) than Wcv(U,W)(u
+1
cv(U,V)), Prop-

erty 9: wcv(U,W)(v
+1
cv(U,V)) is not closer to cv(U ,W) than Wcv(U,W)(u

+1
cv(U,V)).

than w′. Then, the edges (w′′, u+1
cv(U,V)) and (w′, v) intersect within the pseudo-

triangle. Let p be this intersection point. The subpolygon formed by the boundary
vertices < u, u+1

cv(U,V), p, v > is a convex polygon which completely lies inside the

pseudo-triangle. So, the diagonal edge (u+1
cv(U,V), v) must exist in E which is a

contradiction. ut

Property 9 (Fig. 8) For any pair of side-chains U and V and a pair of ver-
tices u ∈ U and v ∈ V, where (u, v) ∈ E and none of the edges (u+1

cv(U,V), v)

and (u, v+1
cv(U,V)) exists in E, wcv(U,W)(v

+1
cv(U,V)) is not closer to cv(U ,W) than

Wcv(U,W)(u
+1
cv(U,V)).

Proof Let v′ be v+1
cv(U,V) and u′ be u+1

cv(U,V). For the sake of contradiction, assume

that wcv(U,W)(v
′) is closer to cv(U ,W) than Wcv(U,W)(u

′). Therefore, the edges
(v′, wcv(U,W)(v

′)) and (u′,Wcv(U,W)(u
′)) intersect within the pseudo-triangle. Let

p be this intersection point. The subpolygon formed by the boundary vertices
< u, v, v′, p, u′ > is a convex polygon which completely lies inside the pseudo-
triangle. So, all diagonal edges (u, v′), (u′, v), and (u′, v′) must exist in E which
is a contradiction. ut

Property 10 (Fig. 9) For any side-chainW, let u and v be respectively the closest
vertices on U and V to cv(U ,V) which are visible from some vertex (not necessarily
the same) of W. Then, there exists a nonempty subchain [w, . . . , w′] in W , w′ =
w+l

cv(U,W) and l ≥ 0, that either all vertices of this subchain are visible from both u

and v, or, (w,w′) is an edge of W and w sees v and w′ sees u.

Proof It is simple to show that (u, v) ∈ E. Assume that there is no vertex on W
that sees both vertices u and v. Then, we first show that there is a pair of vertices
w and w′ = w+l

cv(U,W) where w sees v and w′ sees u. Let w be wcv(W,V)(v) and w′

be wcv(U,W)(u). Trivially, w 6= w′ and w is closer to cv(U ,W) than w′ (otherwise,
u and v will be visible to both w and w′). To complete the proof, it is enough to
show that w′ = w+1

cv(U,W). This is done by showing that any vertex w′′ between w

and w′ on W must see at least one of the vertices u and v which contradicts the
definition of w and w′.
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u v

cv(U ,V)

w w′

cv(U ,V)

u v

w
w′

Fig. 9: Different cases of Property 10.

Assume that there is a vertex w′′ between w and w′ and it sees neither u nor
v. In the tower polygon formed by boundary < u, . . . , cv(U ,W), . . . , w′′, w′ >, the
blocking vertex for the invisible pair (w′′, u) must lie on U . Similarly, in the tower
formed by boundary < w,w′′, . . . , cv(W,V), . . . , v >, the blocking vertex for the
invisible pair (w′′, v) must lie on V. Therefore, at least one of the side-chains U
and V must be convex which is a contradiction. So, w′′ must see at least one of
the vertices u and v. ut

Corollary 5 (Fig. 10) If w and w′ satisfy the conditions of Property 10, then for
k > 0:

– ui = ucv(U,V)(w
′−k
cv(U,W)) is not closer to cv(U ,V) than uj = ucv(U,V)(w

′−(k−1)
cv(U,W)).

– If there are vertices vi = vcv(U,V)(w
−k
cv(U,W)) and vj = vcv(U,V)(w

−(k−1)
cv(U,W)), then

vi is not closer to cv(U ,V) than vj.

These mean that as we move from w′ to w the topmost visible vertices of U and V
go down along these chains.

Proof For the sake of contradiction, assume that ui is closer to cv(U ,V) than
uj . The diagonal edge (w′, ucv(U,V)(w

′)) forms a tower polygon with boundary
< w′, . . . , cv(W,U), . . . , ucv(U,V)(w

′) > which contains the vertices ui and uj , and

satisfies strong ordering. Having the edges (w
′−k
cv(U,W), ui) and (w

′−(k−1)
cv(U,W), uj), the

edge (w
′−(k−1)
cv(U,W), ui) must also exist in E.

We prove the second part by contradiction. Let w−lcv(U,W) be the closest vertex

of W to cv(U ,W) which sees at least one vertex from V (l ≥ 0). For l ≥ k > 0,
assume that vi is closer to cv(U ,V) than vj . Since vcv(U,V)(w) is not farther from
cv(U ,V) than vi, Property 4 implies that vi sees w. According to Property 2, vi

is also visible from w
−(k−1)
cv(U,W) which is a contradiction. ut

Property 11 Let [wi, . . . , wj ] be the subchain ofW satisfying Property 10 and for
any vertex w ∈ W, u = ucv(U,V)(w) and v = vcv(U,V)(w) are the closest vertices
to cv(U ,V) which are visible to w. Then:
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u v

cv(U ,W)

w′
w
′−(k−1)
cv(U ,W)

w
′−k
cv(U ,W)

cv(U ,V)

uj

ui

vj

vi

Fig. 10: Corollary 5: ui (resp. vi) is not closer to cv(U ,V) than uj (resp. vj).

– If w ∈ [wi, . . . , wj ], then at least one of the pairs (u+1
cv(U,V), v

−1
cv(U,V)) and

(u−1
cv(U,V), v

+1
cv(U,V)) are invisible.

– If w 6= cv(U ,W) is closer to cv(U ,W) than wi, then (u+1
cv(U,V), v

−1
cv(U,V)) is an

invisible pair.

Proof Consider the subpoygon P ′ with boundary < w, v, . . . , cv(U ,V), . . . , u >.
The pairs (w, v−1

cv(U,V)) and (w, u−1
cv(U,V)) are invisible. These pairs share the same

blocking vertex. If u is the blocking vertex, then (u+1
cv(U,V), v

−1
cv(U,V)) is an invisible

pair, and if v is the blocking vertex, then the pair (u−1
cv(U,V), v

+1
cv(U,V)) is invisible.

Now, we show the correctness of the second part. It is clear that at least
one of the vertices ucv(U,V)(wi) and vcv(U,V)(wi) is farther from cv(U ,V) than u

and v. For the sake of contradiction, assume that (u+1
cv(U,V), v

−1
cv(U,V)) is a visible

pair. Then, considering P ′ =< w, v, . . . , cv(U ,V), . . . , u >, v must be the blocking
vertex for the pairs (w, v−1

cv(U,V)) and (w, u−1
cv(U,V)). This vertex also blocks the

pairs (w+l
cv(U,W), u

−i
cv(U,V)) and (w+l

cv(U,W), v
−j
cv(U,V)). But, for some l > 0 and i and

j ≥ 0, w+l
cv(U,W) = w′, u−icv(U,V) = ucv(U,V)(w

′), and v−jcv(U,V) = vcv(U,V)(wi) which
contradicts the definition of wi. ut

As it has been mentioned earlier, Ghosh introduced four necessary conditions
for a visibility graph of a simple polygon. It is simple to show that these conditions
are derived from the properties described in this section.

4 Pseudo-Triangle Reconstruction

In this section, G(V,E) denotes the visibility graph of a pseudo-triangle P with U ,
V, andW side-chains and the order of vertices on the boundary of P is specified by
a Hamiltonian cycleH =< cv(V,U), . . . , cv(U ,W), . . . , cv(W,V), . . . , cv(V,U) > in
G. We assume that the inputs G and H satisfy the properties 1 to 11. We propose
an algorithm for reconstructing a pseudo-triangle corresponding to the given pair
of G and H.
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cv(U ,V)

uν

vµuν+1 vµ+1wi wj

cv(U ,W)

Wcv(U,W)(uν+1)

wcv(U,W)(vµ+1)

wN

wN

Fig. 11: The partitions of the initial polygon in reconstruction algorithm: the light-
gray region is X , the dark-gray is Y and the white parts are Z and Z ′.

In order to reconstruct the pseudo-triangle P, we divide P into four sub-
polygons X , Y, Z, and Z ′ as shown in Fig. 11 and reconstruct each one sepa-
rately. For the sake of brevity, ui = cv(U ,V)+icv(U,V), vj = cv(U ,V)+jcv(U,V), and

wk = cv(U ,W)+kcv(U,W) where i, j, k ≥ 0. We assume that U and V have respec-
tively α+ 1 and δ + 1 vertices.

The subpolygon X is formed by subchains [cv(V,U), . . . , uν ] and [cv(U ,V), . . . , vµ]
and edge (uν , vµ) where Vcv(U,V)(uν) = vµ and Ucv(U,V)(vµ) = uν . The subpolygon
X is a tower polygon with strong ordering in its visibility graph. Note that uν+1

or vµ+1 exists only when the side-chainW has more than one edge, otherwise, two
identified adjacent corners uν and vµ compose the base of a tower polygon which
can be constructed by Colley’s algorithm. So, we assume that W has more than
one edge.

The subpolygon Y is identified as follows: Let [wi, . . . , wj ] be the maximum
subchain of W visible from both uν and vµ. According to Property 6, this chain
is nonempty and continuous. Let Wcv(U,W)(uν+1) = wk and wcv(U,W)(vµ+1) =
wl. From Property 8, k ≤ j and l ≥ i and from Property 9, k ≤ l. We de-
fine M and N as max(k, i) and min(l, j), respectively. It is clear that chain
[wM , . . . , wN ] contains at least one vertex. Then, Y is defined to be the polygon
with < uν , wM , . . . , wN , vµ > as its boundary.

The subpolygon Z is formed by subchains [uν , . . . , cv(U ,W)] and [cv(U ,W), . . . , wM ]
and edge (uν , wM ). Similarly, subchains [vµ, . . . , cv(V,W)] and [cv(V,W), . . . , wN ]
and edge (vµ, wN ) specify the subpolygon Z ′. It is clear that P is the union of X ,
Y, Z, and Z ′.

Our reconstruction algorithm first builds X using Colley’s algorithm in such a
way that vertices of U lie to the left of vertices of V. According to this algorithm,
positions of vertices cv(V,U), . . . , uν−1 and cv(U ,V), . . . , vµ−1 are obtained and
directions of the edges (uν−1, uν) and (vµ−1, vµ) are determined. In order to specify
the actual position of uν , choose a point on its half-line that is below the horizontal
line passing through vcv(U,V)(uν). The position of vµ is determined similarly. Then,
we extend this polygon to build Y (Section 4.1) and build and attach Z and Z ′
parts to this polygon (Section 4.2) to complete the construction procedure.
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ui+1

ui
ui−1

vl−1

vl

uν vµ

si+1

si

Fr(vl, ui)
Fr(si+1, ui)

Fl(ui−1, ui)
Fl(vl−1, ui)

Fb(vµ, uν)

Fig. 12: W j
i,l is the shaded region.

4.1 Reconstructing Y

In this step, we build the subpolygon Y =< uν , wM , . . . , wN , vµ >. We know the
position of vertices uν and vµ from the previous step, which are also on the bound-
ary of Y. To locate positions of other vertices, we show that there are nonempty
regions in which these vertices can be placed.

For an arbitrary vertex wj from Y which ucv(U,V)(wj) = ui and vcv(U,V)(wj) =

vl, we define a region W j
i,l from which each point sees all vertices in the subchains

[ui, . . . , uν ] and [vl, . . . , vµ]. Therefore, wj can be placed in W j
i,l supporting the

visibility constraints between wi and vertices of X . We use W j instead of W j
i,l

whenever i and l indices are not important. The region W j is determined as follows:
While wj sees uν and vµ, the vertices ui and vl always exist and are well-defined.
If ui and vl are identical, then i = l = 0 and the region W j = W j

0,0 is defined to be
the part of the cone formed by the lines through (cv(V,U), u1) and (cv(V,U), v1)
restricted to the underneath of the line through uνvµ. Trivially, each point of W j

sees all vertices uν , . . . , cv(V,U) = cv(U ,V), . . . , vµ.

Let Fz(x, y) be the ‘z’ half-plane defined by the line through x and y where ‘z’
is ‘b’ (bottom), ‘r’ (right), or ‘l’ (left). If ui and vl are distinct vertices, according to
Property 11, at least one of the pairs (ui+1, vl−1) and (ui−1, vl+1) do not see each
other. The invisible pair is determined by applying Corollary 5 and Property 11.
W.l.o.g., assume that (ui+1, vl−1) is the invisible pair. Then, W j

i,l is defined to be
Fr(si+1, ui)

⋂
Fr(vl, ui)

⋂
Fl(ui−1, ui)

⋂
Fl(vl−1, ui)

⋂
Fb(vµ, uν) (Fig. 12). It is

simple to see that all points in this region satisfy the visibility constraints of wj
with respect to the vertices uν , . . . , cv(U ,V), . . . , vµ.

From concavity of U and V, Fr(si+1, ui)
⋂
Fl(ui−1, ui) and Fr(vl, ui)

⋂
Fl(vl−1, ui)

are not empty. Therefore, W j
i,l will be empty only when Fr(si+1, ui)

⋂
Fl(vl−1, ui)

is empty or Fr(vl, ui)
⋂
Fl(ui−1, ui) is empty. The first case is impossible, because

otherwise, ui+1 must be visible from vl−1 which is in contradiction with invisibility
assumption of (ui+1, vl−1). The second case is also impossible, because then, the
pair ui and vl must be invisible. But, according to Property 7, ui and vl must be
visible from each other.

Therefore, the region Fr(si+1, ui)
⋂
Fr(vl, ui)

⋂
Fl(ui−1, ui)

⋂
Fl(vl−1, ui) is

nonempty and some part of this intersection lies in half-plane Fb(vµ, uν).

According to the above discussion, W j is defined by Fb(vµ, uν) and two half-
planes of {Fr(si+1, ui),Fr(vl, ui),Fl(ui−1, ui),Fl(vl−1, ui)}. The apex of W j is
defined to be the intersection of the corresponding lines of these two half-planes.
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ui−1

ui
wj

wj+1

Wcv(U,W)(ui)

vk−1

vk
wj′

wj′−1

wcv(U,W)(vk)

s′i

si

r′k

rk

t′jt′j′

Fig. 13: Points s(·), s
′
(·), r(·), r

′
(·), and t′(·).

Note that if the apex of W j lies on U , the apex of W j−1 will lie on U as well.
Furthermore, W j−1 is either completely coinsiding W j or is completely on its left.
Similarly, if the apex of W j lies on V, then the apex of W j+1 lies on V as well,
and W j+1 is either coinciding W j or is completely on its right.

Then, we can place the vertices wM , . . . , wN of Y on an arbitrary concave
chain inside Fb(vµ, uν) in such a way that wj ∈ W j . This placement satisfies the
visibility constraints for X and Y. However, to guarantee the reconstruction of Z
and Z ′, we define some constraints on this concave chain which is described in the
rest of this section.

Let s′i (i > ν) be the intersection of V and the line through ui andWcv(U,W)(ui),
r′k (k > µ) be the intersection of U and the line through vk and wcv(U,W)(vk), t′j
(j < M) be the intersection of V and the line through wj and wj+1, and t′j (j > N)
be the intersection of U and the line through wj and wj−1 (see Fig. 13).

Note that although we have not yet determined positions of vertices defin-
ing s′i, r

′
k, and t′j , we can determine their containing edges from the visibility

information as follows: for i > ν, if ui sees at least one vertex from V, si lies
on (v−1

cv(U,V)(ui), vcv(U,V)(ui)) and s′i lies on (Vcv(U,V)(ui), V
+1
cv(U,V)(ui)). On the

other hand, if ui sees no vertex from V, then for k ≥ i, both sk and s′k lie on
(V −1

cv(U,V)(uj), Vcv(U,V)(uj)) where uj has the highest index among the vertices of
U that see at least one vertex from V. However, this has an exception when i = ν+1
and wM−1 is visible to both uν and vµ, for which both sk and s′k for k ≥ i lie on
(vµ, vµ+1). The same situation happens for rl and r′l when l > µ.

The containing edge of t′j for j < M is determined as follows: If wj sees at

least one vertex from V, then t′j lies on (Vcv(U,V)(wj), V
+1
cv(U,V)(wj)), otherwise, it

lies on the containing edge of s′α (Note that according to our assumption at the
beginning of Section 4, α and δ are respectively the greatest indices of vertices ui
and vj on U and V side-chains.) Similarly for j > N , if wj sees at least one vertex
from U , then t′j lies on (Ucv(U,V)(wj), U

+1
cv(U,V)(wj)), and otherwise, it lies on the

containing edge of r′δ.

The containing edges of s′α and r′δ are respectively called “the floating edge in
V” and “the floating edge in U”. We call these edges floating because we increase
their length, and reposition their underneath vertices to enforce the concavity in
building Z and Z ′.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Pseudo-Triangle Visibility Graph 15

cv(U ,V)

u v

sα
s′α

rδ
r′δ

R(sα, u)
Rs′α(sα, u)

R(rδ, v)
Rr′δ (rδ, v)

Fig. 14: The rays R(sα, u), Rs′α(sα, u), R(rδ, v), and Rr′δ (rδ, v).

We define the vertices wM∗ and wN∗ as follows: If W has two edges, then wM
and wN are both equal to w1 (the middle vertex of W), and wM∗ and wN∗ are
also defined to be w1. When W has more than two edges, M∗ is defined to be
M when the apex of W M does not lie on a vertex of V below its floating edge.
Otherwise, M∗ is defined to be j where j is the maximum index for which the
apex of W j lies above the floating edge of V (this edge may lie on U). If the index
of ucv(U,V)(wM∗) is greater than ν, the apex of W M∗ is temporarily assumed to be

uν and W M∗ is defined to lie between Fr(si+1, uν) and Fl(uν−1, uν). The index
N∗ is defined similarly. It is clear that at least wM∗ = wM or wN∗ = wN .

We use R(x, y) to denote the ray from x towards y. In addition, Ra(x, y)
denotes the ray from a and parallel to R(x, y) (Fig. 14).

Despite our definition of the regions W i for all vertices wi ∈ W, we refine this
definition for W N∗ (resp. W M∗) when N∗ 6= N (resp. M∗ 6= M) or the floating
edge of V (resp. U) lies under the line through uν and dµ. It is simple to see
that at most one of the floating edges lies under R(uν , dµ). Let v be a point on
Rvµ(rµ+1, vµ) when the floating edge of V lies underR(uν , vµ), or be vµ otherwise.
Similarly, u is defined to be either uν or a point on Ruν (sν+1, uν). The regions
W N∗ and W M∗ are restricted to lie under the line through u and v. Moreover, we
know that at most one of the indices M∗ and N∗ is not equal to its corresponding
index M or N . W.l.o.g, assume that N∗ 6= N . Then, we additionally restrict the
region W N∗ as follows (this restriction is not applied when we reconstruct Z or
Z ′). Let p be a point inside the intersection of W N and Fb(u, v) and with an
arbitrary positive distance from R(u, v). We determine t′N∗ on its edge and with
εl distance above the lower endpoint of this edge where ε > 0 and l is the number
of vertices in V and W whose r′(·)’s and t′(·)’s lie on this edge. The region W N∗ is

restricted to lie under the line through t′N∗ and p (see Fig. 15).

Let sα be a point on its edge and with εk distance below the upper endpoint
of this edge where ε > 0 and k is the number of vertices in U whose s(·)’s lie on
this edge. Similarly, let s′α be a point on its edge and with εm distance above the
lower endpoint of this edge where ε > 0 and m is the number of vertices in U and
W whose s′(·)’s and t′(·)’s lie on this edge. The value of ε is small enough such that

sα lies above s′α. The points rδ and r′δ are defined similarly.

Let S (resp. T ) be the strip defined by the supporting lines of R(sα, u) and
Rs′α(sα, u) (resp. R(rδ, v) and Rr′δ (rδ, v)).

Lemma 2 It is always possible to enlarge the floating edges of V (resp. U) such
that the intersection of W M∗ (resp. W N∗) and S (resp. T ) is not empty.
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R(u, v)

R(t′N∗ , p)
u v

t′N∗

p

W M W N W N∗

Fig. 15: Restricting W N∗ .

Proof Assume that the intersection of W M∗ and S is empty. According to the
definition of M∗, the apex of W M∗ either lies above the floating edge of V or lies
on U . This implies that enlarging the floating edge of V only affects the upper
half-plane that defines W M∗ . Then, we can enlarge the floating edge of V in such
a way that the lower defining ray of S and the upper defining half-plane of W M∗

intersect inside W M∗ which means that the intersection of W M∗ and S is not
empty. Moreover, when this intersection is not empty, this extension will just
increase the intersection. To complete the proof, it is simple to see that extending
the floating edge of U will again increase the intersection of WM∗ and S.

The proof for wN∗ is analogously the same. ut

After locating the position of vertices in X (by possibly extending the floating
edges), we place the vertices of Y as follows: If N∗ 6= N , then we set p as wN
and place wM∗ = wM inside the intersection of W M and S in such a way that
both wM and wN be visible to u and v; neither wM blocks the visibility of wN ,
nor wN blocks the visibility of wM . When M∗ 6= M , wM and wN are positioned
analogously. Finally, if M∗ = M and N∗ = N , we select a point from S ∩W M as
wM and a point from T ∩W N as wN again in such a way that both see u and v.
Then, we put the vertices wM+1, . . . , wN−1 on a slightly concave chain from wM
to wN in such a way that each wj (M ≤ j ≤ N) lies inside W j and sees u and
v. It is simple to check that this setting is compatible with the visibility graph
restricted to the vertices of X and Y.

4.2 Reconstructing Z and Z ′

In this step, we place the vertices of Z and Z ′ to complete the reconstruction
procedure. As said before, Z (resp. Z ′) is a part of the target pseudo-triangle with
< uν , uν+1, . . . , cv(U ,W), . . . , wM > (resp. < vµ, vµ+1, . . . , cv(V,W), . . . , wN >)
boundary vertices. Here, we only describe how to build Z. The construction of Z ′
is the same.

Location of a vertex ui ∈ Z is determined by the intersection point of the
rays R(si, ui−1) and R(s′i,Wcv(U,W)(ui)) and location of a vertex wh ∈ Z is an

arbitrary point on R(t′h, wh+1) inside the region W h. Therefore, to construct Z we
start from uν+1 and wM−1, and in each step we determine the position of one of
the vertices and go forward to the next vertex. This is done by incrementally de-
termining direction of the rays R(si, ui−1), R(s′i,Wcv(U,W)(ui)), and R(t′h, wh+1)

as well as W h regions.
Consider the edges of the pseudo-triangle on which the points si, s

′
i, rj , r

′
j ,

and t′l for i > ν, j > µ, and l < M and l > N lie. Keep an upper point and a
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ui−1
Wcv(U,W)(ui)

s′i

si

ui
R(s′i,Wcv(U,W)(ui))

R(si, ui−1)

(a)

wj

wj+1

t′j

R(t′j , wj+1)

W j

(b)

Fig. 16: (a) Determining ui, (b) Determining wj .

lower point for each edge. Initialize the upper point with the upper endpoint of
that edge or the latest located s(·) or r(·) on this edge. Initialize the lower point
with the lower endpoint of the edge. Position of each s(·), r(·), s

′
(·), r

′
(·), and t′(·) is

determined whenever we need the rays passing through them. We place the points
s′(·), r

′
(·), and t′(·), with ε > 0 distance above the current lower point of their edges

and place the points s(·) and r(·), with ε > 0 distance below the upper point of
their edges. Whenever a new s(·), r(·), s

′
(·), r

′
(·), or t′(·) point is located on an edge,

the upper or lower point of that edge is updated properly.
More precisely, assume that we have already determined positions of vertices

uν , uν+1, . . . , ui−1 (i > ν) as well as the vertices wM , wM−1, . . . , wj+1 (j < M).
To determine position of one of the vertices ui and wj we do as follows: Let wk
be Wcv(U,W)(ui). If k < j, then we have already located the position of wk, and
directions of the rays R(si, ui−1) and R(s′i,Wcv(U,W)(ui)) are known. We will
show in Lemma 3 that these rays intersect. So, ui is located on the intersection
point of these rays (Fig. 16a). Otherwise, we must first determine position of wj
which lies onR(t′j , wj+1) and inside W j (Fig. 16b). The position of wj+1 is already
known and t′j+1 is determined according to the above paragraph. From these two

points the direction of R(t′j , wj+1) is obtained. The region W j is determined as

follows: Suppose that ucv(U,V)(wj) = uk and vcv(U,V)(wj) = vl. We define W j as
in the previous section with the exception that it may be possible that only one
of the vertices uk and vl exists. By Corollary 4, for j < M , uj always exists. If wj
sees no vertex from V, then it would see a part of the floating edge of V. Hence,
we consider the upper endpoint of this edge as vl−1. From properties 7 and 11
we know that W j is not empty and lies to the left of W j+1. Moreover, it will be
shown in Lemma 3 that R(t′j , wj+1) intersects Rs′α(sα, u). Since Rs′α(sα, u) passes

through all W (·), R(t′j , wj+1) passes through W j . Therefore, we can determine the
position of wj . According to the definition of R(si, ui−1) and R(s′i,Wcv(U,W)(ui))

for ui and R(t′j , wj+1) and W j for wj , in both cases (locating ui or wj), visibility
of the newly located vertex is exactly the same as its visibility in the visibility
graph (restricted to the vertices of X , Y, and the constructed part of Z).

Lemma 3 The rays R(si, ui−1) and R(s′i,Wcv(U,W)(ui)) for i > ν are convergent
inside S.
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Proof Remember that S is the strip defined by the supporting lines of R(sα, u)
and Rs′α(sα, u). By Corollary 1 and Corollary 3, we know that si lies above the
strip S and s′i lies below this strip. Then, it is enough to show that for i > ν,
R(s′i,Wcv(U,W)(ui)) crosses Rs′α(sα, u) and R(si, ui−1) crosses R(sα, u). We first
prove that R(s′i,Wcv(U,W)(ui)) intersects Rs′α(sα, u). Let Wcv(U,W)(ui) = wh.
For M∗ ≤ h ≤ M , it can be easily shown by induction that wh is located above
R(t′M∗ , wM ). Moreover, it is simple to see that s′i must lie below t′M∗ . Then,
knowing that R(t′M∗ , wM ) crosses Rs′α(sα, u) implies that R(s′i, wh) intersects
Rs′α(sα, u) as well. From the fact that wM∗ lies inside S, it can also be shown by
induction that wh for h < M∗ lies inside S which means that R(s′i, wh) crosses
Rs′α(sα, u).

To complete the proof, we prove by induction on i that R(si, ui−1) crosses
R(sα, u). It is clear that sν+1 is located above sα which means thatR(sν+1, uν) in-
tersectsR(sα, u). From the previous paragraph we know thatRs′α(sα, u) intersects
R(s′ν+1,Wcv(U,W)(uν+1)). Therefore, R(sν+1, uν) and R(s′ν+1,Wcv(U,W)(uν+1))
will intersect at a point within S. Since we put uν+1 at this intersection point,
as the induction step, assume that ui−1 lies inside S where i > ν + 1. Then,
R(si, ui−1) intersects R(sα, u). ut

5 Analysis

In previous sections, we proved several properties on the visibility graph of a
pseudo-triangle and proposed an algorithm that constructs a pseudo-triangle for
a given pair of visibility graph G(V,E) and Hamiltonian cycle H when this pair
supports these properties. In this section, we analyze the time complexity of algo-
rithms required to check these properties and the running time of the reconstruc-
tion algorithm.

We assume that we have the adjacency matrix of G. Otherwise, we can obtain
this matrix from adjacency list representation of the graph in O(n2). To check
Property 1, we need a linear time trace on vertices of G according to their order
in H. This is done in O(n) time. If two corners are identified in this way, the
existence of a tower polygon corresponding to the pair of G and H can also be
verified in linear time [3]. Property 2 can be verified in O(|E|) by a simple trace
of the adjacency matrix or can be verified in O(n2) using the adjacency list rep-
resentation. In order to verify the rest of the properties, it is required to know the
visibile subchains from each vertex. These subchains are obtained as by-products
when checking Property 2. Having these subchains for each vertex, Property 3
can be verified in O(n). For any pair of side-chains U and V and a vertex v ∈ V,
let TU [v] be the farthest vertex of U from cv(U ,V) which is visible to a vertex
in [cv(U ,V), . . . , v]. Similarly, let BU [v] be the farthest vertex of U from cv(U ,V)
which is visible to a vertex in [v, . . . , cv(V,W)]. The arrays BU ,BV ,BW ,TU ,TV ,
and TW are computed in O(n) having the visible subchains of all vertices by an
aggregate-like trace on vertices of each side-chain in both direction. Property 4
can be checked in O(n): In this property, there are two different edges that leads
to the existence of another edge. However, this property can be written as “for
each vertex u ∈ U , TU [v−1

cv(U,V)(u)] must strictly lie above u” which can be verified

in O(n). To verify Property 5, we must check that for any edge (u, v) when none
of the edges (u+1

cv(U,V), v) and (u, v+1
cv(U,V)) exists, BU [v] must strictly lie above u.
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This can be examined in O(|E|). In properties 6, 8, and 9, for each pair (U ,V)
of side-chains, we must find all pairs of visible vertices (u ∈ U , v ∈ V) such that
(u+1

cv(U,V), v) and (u, v+1
cv(U,V)) are invisible. Having the adjacency matrix, this is

done in O(|E|) by a Brute-Force algorithm. Then, examing properties 6, 8, and 9 is
done in a constant time for each obtained pair. Checking properties 7 and 11 needs
O(n) and examining Property 10 needs constant time. Therefore, all properties
can be verified in O(n2).

To complete the analysis, we compute the running time of the reconstruction
algorithm presented in Section 4. Assume that G satisfies all of the properties
introduced in Section 3 and we know the visible subchains of each vertex according
to their order in H. The side-chains of the target pseudo-triangle are identified
in linear time according to the algorithm described in the proof of Lemma 1.
Reconstructing X is done using Colley’s algorithm whose running time is linear in
terms of the number of edges in the visibility graph reduced to X . To reconstruct
Y, the algorithm needs to determine the floating edges of U and V which can be
done in constant time. Computing the W -type regions (for each vertex wi ∈ W)
and determining the vertices wN∗ and wM∗ needs O(n) time. If the conditions of
Lemma 3 are not satisfied, the floating edges of U and V must be extended which
is done in O(1): A lower bound for the increase in floating edges can be computed
by using Thales’ theorem and trigonometric functions. Locating each vertex of Y is
also done in constant time. Finally, placing each vertex of Z and Z ′ takes constant
time, as well. Therefore, the total running time of the algorithm is O(n2). We can
combine all results as:

Theorem 2 The visibility graph and the boundary vertices of a pseudo-triangle
satisfy properties 1 to 11, and conversely, for any pair of graph G and Hamiltonian
cycle H supporting these properties, there is a pseudo-triangle P whose visibility
graph and boundary vertices are respectively isomorphic to G and H. Checking
these properties and reconstructing such a polygon can be done in O(n2).

6 Conclusion

In this paper, we considered properties of the visibility graph of a pseudo-triangle
and obtained a set of necessary and sufficient conditions that such graphs must
have. Then, we propose an algorithm to reconstruct a polygon from a given visibil-
ity graph which supports these properties. This characterizing and reconstructing
problem has a long history and it seems that there is still a long way to be com-
pleted for all polygons.
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