سطح ریاضی دانشجویی
دانشگاه صنعتی شریف
دانشکده علوم ریاضی
موضوع امتحان: آنالیز عددی

مدت امتحان: ۲ ساعت
تاریخ: ۸۳/۱۱/۲۹

بارم هر سوال ۱۰ تمره است.

سوال ۱) فرض کنید 
\[ \{p_n\}_{n=0}^{\infty} \] یک دنباله از چندجمله‌ایهای معادلی یکه نسبت به تابع وزن \( \omega > 0 \) روي باره \([a, b]\). \( p_{i}(x) \) برای باشد \( i \neq j \) و برای باشد با صفر اگر \( i = j \). فرض کنید
\[
l_{kn}(x) = \frac{p_{n}(x)}{p'_{n}(x_{kn})(x - x_{kn})} \in \Pi_{n-1}
\]
که در آن \( x_{kn} < \cdots < x_{n} \) همه ریشه‌های چندجمله‌ای \( p_{n} \) هستند و \( \Pi_{n-1} \) مجموعه چندجمله‌ایهای درجه کوچکتر از مساوی با \( n - 1 \) می‌باشد. ثابت کنید برای هر \( 1 \leq n \leq \infty \) داریم:
\[
\int_{a}^{b} p(x) \omega(x) dx = \sum_{k=1}^{n} p(x_{kn}) \lambda_{kn}
\]
که در آن
\[
\lambda_{kn} = \int_{a}^{b} l_{kn}(x) \omega(x) dx.
\]
همچنین ثابت کنید
\[
x_{\lambda n} = \max_{p \in \Pi_{n-1}} \frac{\int_{a}^{b} x p(x) \omega(x) dx}{\int_{a}^{b} p(x) \omega(x) dx}.
\]

سوال ۲) فرض کنید \( x_{1} < x_{2} < x_{3} < \cdots < x_{n} \leq 1 \) (که در آن \( 1 \leq i \leq n \) \( l_{i}(x) = \prod_{j \neq i} \left( \frac{x - x_{j}}{x_{i} - x_{j}} \right) \) تابع لپ‌گر از صورت زیر تعیین کنید:
\[
\Lambda(x) = \sum_{i=1}^{n} |l_{i}(x)|.
\]
ثابت کنید که \( \Lambda \) روی هریک از بازه‌های \( [0, 1], [x_{1}, x_{2}], \ldots, [x_{n-1}, x_{n}], [x_{n}, 1] \) دارای ماکزیمم موضعی منحصر به فرد است.

سوال ۳) فرض کنید \( f \) تابعی پیوسته روی باره \([a, b]\) باشد که در آن \( 0 < a < b \) دنباله از چندجمله‌ایهای با ضرایب صحیح موجودند که بطور مقطعی به تابع \( f \) همگرا هستند.